CumInCAD is a Cumulative Index about publications in Computer Aided Architectural Design
supported by the sibling associations ACADIA, CAADRIA, eCAADe, SIGraDi, ASCAAD and CAAD futures

PDF papers
References

Hits 1 to 20 of 569

_id ecaade2013_023
id ecaade2013_023
authors Biloria, Nimish and Chang, Jia-Rey
year 2013
title Hyper-Morphology
source Stouffs, Rudi and Sariyildiz, Sevil (eds.), Computation and Performance – Proceedings of the 31st eCAADe Conference – Volume 1, Faculty of Architecture, Delft University of Technology, Delft, The Netherlands, 18-20 September 2013, pp. 529-537
doi https://doi.org/10.52842/conf.ecaade.2013.1.529
wos WOS:000340635300055
summary Hyper-Morphology is an on-going research outlining a bottom-up evolutionary design process based on autonomous cellular building components. The research interfaces critical operational traits of the natural world (Evolutionary Development Biology, Embryology and Cellular Differentiation) with Evolutionary Computational techniques driven design methodologies. In the Hyper-Morphology research, genetic sequences are considered as sets of locally coded relational associations between multiple factors such as the amount of components, material based constraints, and geometric adaptation/degrees of freedom based adaptation abilities etc, which are embedded autonomously within each HyperCell component. Collective intelligence driven decision-making processes are intrinsic to the Hyper-Morphology logic for intelligently operating with autonomous componential systems (akin to swarm systems). This subsequently results in user and activity centric global morphology generation in real-time. Practically, the Hyper-Morphology research focuses on a 24/7 economy loop wherein real-time adaptive spatial usage interfaces with contemporary culture of flexible living within spatial constraints in a rapidly urbanizing world.
keywords Evo-devo; cellular differentiation; self-organization; evolutionary computation; adaptive architecture.
series eCAADe
email
last changed 2022/06/07 07:54

_id caadria2013_198
id caadria2013_198
authors Chee Zong Jie and Patrick Janssen
year 2013
title Exploration of Urban Street Patterns – Multi-Criteria Evolutionary Optimisation Using Axial Line Analysis
source Open Systems: Proceedings of the 18th International Conference on Computer-Aided Architectural Design Research in Asia (CAADRIA 2013) / Singapore 15-18 May 2013, pp. 695-704
doi https://doi.org/10.52842/conf.caadria.2013.695
wos WOS:000351496100068
summary In urban design, researchers have developed techniques to automate both the generation and evaluation of urban street patterns. In most cases, these approaches are investigated in isolation from one another. Recently, a number of researchers have attempted to couple these approaches, in order to enable larger numbers of street patterns to be generated and evaluated in an iterative loop. However, to date, the possibility of fully automating the generative-evaluative loop using optimisation algorithms has not been explored. This research proposes an explorative design method in which urban street patterns can be optimised for multiple conflicting performance criteria. The optimisation process uses evolutionary algorithms to evolve populations of design variants by iteratively applying three key procedures: development, evaluation, and feedback. For development, a generative technique is proposed for constructing street patterns. For evaluation, various performance measures are used, including in particular Space Syntax based Axial Line analysis. For feedback, a Pareto-ranking algorithm is used that ranks street patterns according to multiple criteria. The proposed method is demonstrated using an abstract scenario in which orthogonal street patterns are evolved for a small urban area.  
keywords Axial line analysis, Generative modelling, Evolutionary algorithms, Decision chain encoding, Urban street patterns 
series CAADRIA
email
last changed 2022/06/07 07:55

_id caadria2013_203
id caadria2013_203
authors Janssen, Patrick and Vignesh Kaushik
year 2013
title Skeletal Modelling – A Developmental Template for Evolutionary Design
source Open Systems: Proceedings of the 18th International Conference on Computer-Aided Architectural Design Research in Asia (CAADRIA 2013) / Singapore 15-18 May 2013, pp. 705-714
doi https://doi.org/10.52842/conf.caadria.2013.705
wos WOS:000351496100069
summary Evolutionary designis an approach that evolves populations of design variants through the iterative application of a set of computational procedures. For architecture and urban design, the developmental procedure typically needs to be capable of generating bounded variability, whereby design variants are both highly variable and highly constrained. This paper proposes a template for creating such developmental procedures. The template uses decision chain encoding techniques in order to generate a sparse skeleton model, and then uses standard parametric modelling techniques in order to generate a detailed form model. A demonstration is presented where the template is used to create a developmental procedure for generating design variants for a large residential project.  
keywords volutionary, Developmental, Generative, Design optimisation 
series CAADRIA
email
last changed 2022/06/07 07:52

_id ecaade2013_114
id ecaade2013_114
authors Lin, Shih-Hsin Eve and Gerber, David
year 2013
title Evolutionary Energy Performance Feedback for Design (EEPFD)
source Stouffs, Rudi and Sariyildiz, Sevil (eds.), Computation and Performance – Proceedings of the 31st eCAADe Conference – Volume 2, Faculty of Architecture, Delft University of Technology, Delft, The Netherlands, 18-20 September 2013, pp. 175-184
doi https://doi.org/10.52842/conf.ecaade.2013.2.175
wos WOS:000340643600017
summary In order to understand the applicability of multidisciplinary design optimization (MDO) to the building design process, a MDO framework, titled Evolutionary Energy Performance Feedback for Design (EEPFD), along with the prototype tool, H.D.S. Beagle, were developed to support designers with the incorporation of partially automated performance feedback during the early stages of design. This paper presents 2 experimental case studies, one from the design profession and the other from a design studio, that evaluate the applicability and impact of EEPFD on the early stage design process. Through these two case studies two different interaction and automation approaches for applying EEPFD are explored as part of the framework validation. Observed benefits, challenges and suggestions of EEPFD’s implementation are then presented and discussed.
keywords Conceptual energy performance feedback; design decision support; performance-based design; multidisciplinary design optimization; genetic algorithm.
series eCAADe
email
last changed 2022/06/07 07:59

_id ecaade2013_180
id ecaade2013_180
authors Mueller, Volker and Strobbe, Tiemen
year 2013
title Cloud-Based Design Analysis and Optimization Framework
source Stouffs, Rudi and Sariyildiz, Sevil (eds.), Computation and Performance – Proceedings of the 31st eCAADe Conference – Volume 2, Faculty of Architecture, Delft University of Technology, Delft, The Netherlands, 18-20 September 2013, pp. 185-194
doi https://doi.org/10.52842/conf.ecaade.2013.2.185
wos WOS:000340643600018
summary Integration of analysis into early design phases in support of improved building performance has become increasingly important. It is considered a required response to demands on contemporary building design to meet environmental concerns. The goal is to assist designers in their decision making throughout the design of a building but with growing focus on the earlier phases in design during which design changes consume less effort than similar changes would in later design phases or during construction and occupation.Multi-disciplinary optimization has the potential of providing design teams with information about the potential trade-offs between various goals, some of which may be in conflict with each other. A commonly used class of optimization algorithms is the class of genetic algorithms which mimic the evolutionary process. For effective parallelization of the cascading processes occurring in the application of genetic algorithms in multi-disciplinary optimization we propose a cloud implementation and describe its architecture designed to handle the cascading tasks as efficiently as possible.
keywords Cloud computing; design analysis; optimization; generative design; building performance.
series eCAADe
email
last changed 2022/06/07 07:58

_id caadria2013_186
id caadria2013_186
authors Kaushik, Vignesh and Patrick Janssen
year 2013
title An Evolutionary Design Process – Adaptive-Iterative Explorations in Computational Embryogenesis
source Open Systems: Proceedings of the 18th International Conference on Computer-Aided Architectural Design Research in Asia (CAADRIA 2013) / Singapore 15-18 May 2013, pp. 137-146
doi https://doi.org/10.52842/conf.caadria.2013.137
wos WOS:000351496100014
summary Computational embryogenies are a special kind of genotype to phenotype mapping process widely used inexplorative evolutionary systems as they provide the mechanism for generating more complex solutions. This paper focuses on how designers explore embryogenies for specific design scenariosthrough an adaptive-iterative process.The process is demonstratedfor a complex project to generate a prototypical urban farm in Singapore. It is shown that by employing an adaptive-iterative process, the embryogeny can be made progressively more complex and less abstract, thereby allowing the exploration to be guided by the designer.  
keywords Computational embryogeny, Evolutionary, Multi-criteria optimization, Encoding, Decoding 
series CAADRIA
email
last changed 2022/06/07 07:52

_id acadia13_227
id acadia13_227
authors von Buelow, Peter
year 2013
title Techniques for More Productive Genetic Design: Exploration With GAs Using Non-Destructive Dynamic Populations
source ACADIA 13: Adaptive Architecture [Proceedings of the 33rd Annual Conference of the Association for Computer Aided Design in Architecture (ACADIA) ISBN 978-1-926724-22-5] Cambridge 24-26 October, 2013), pp. 227-234
doi https://doi.org/10.52842/conf.acadia.2013.227
summary The products of generative design are ever more commonly explored and refined through evolutionary search techniques. Genetic algorithms (GAs) belong to this class of stochastic procedures, and are particularly well-suited to the way designers investigate a problem. GAs search by mixing and matching different parts of a solution, represented as parametric variables, to find new solutions that outperform their predecessors. Generally the method proceeds through generations of populations in which the better solutions out-survive their less desirable siblings. Inherent to this approach, however, is the fact that all but the select solutions perish. This paper discusses a non-destructive GA that uses dynamic populations drawn from a bottomless pool of solutions to find the most productive breeding pairs. In a typical GA the survival or destruction of a solution depends on a well-defined fitness function. By not enforcing the destruction of less fit individuals, the possibility is held open to modify the fitness function at any time, and allow different parts of the solution space to be explored. This ability is ideal for more complex multi-objective problems that are not easily described by a single fitness function. Generally, design presents just such a problem.
keywords tools and interfaces, design exploration, genetic algorithm, multi-objective optimization
series ACADIA
type Normal Paper
email
last changed 2022/06/07 07:58

_id ecaade2013_288
id ecaade2013_288
authors Folcher, Viviane; Zreik, Khaldoun; Ben Rajeb, Samia and Leclercq, Pierre
year 2013
title Innovative Learning for Collaborative Design in Ergonomics
source Stouffs, Rudi and Sariyildiz, Sevil (eds.), Computation and Performance – Proceedings of the 31st eCAADe Conference – Volume 2, Faculty of Architecture, Delft University of Technology, Delft, The Netherlands, 18-20 September 2013, pp. 605-613
doi https://doi.org/10.52842/conf.ecaade.2013.2.605
wos WOS:000340643600062
summary The proposed article deals with introducing collaborative architectural design into the training of ergonomists at the Master 2 level. The collaborative design workshop aims to confront ergonomists with the difficulties any design project involves, and which challenge architects, designers, engineers and so on: collaboration between people with different skills and different expertise; powerful time constraints; need for their work to converge; working together and/or at a distance; sharing documents; decision-making, etc. The article will present a short review of work carried out in the domains of architecture and design, and of the contribution of ergonomics within architectural projects. We shall then present the workshop’s educational aims, and give details of the way it functioned. Finally, observation results will be presented and discussed.
keywords Collaborative design; architecture; ergonomics; training workshop.
series eCAADe
email
last changed 2022/06/07 07:51

_id caadria2013_006
id caadria2013_006
authors Gerber, David J. and Shih-Hsin (Eve) Lin
year 2013
title Geometric Complexity and Energy Simulation – Evolving Performance Driven Architectural Form
source Open Systems: Proceedings of the 18th International Conference on Computer-Aided Architectural Design Research in Asia (CAADRIA 2013) / Singapore 15-18 May 2013, pp. 87-96
doi https://doi.org/10.52842/conf.caadria.2013.087
wos WOS:000351496100009
summary The research presents the custom development of a software tool and design process for integrating three design domains, their respective objectives, and geometric parameterizations. It then describes a set of experimental projects and analyses in the context of informing form and geometric complexity. Preliminary results of the multidisciplinary design optimization prototype, which, implements a genetic algorithm, are then presented. The findings include discussion of the value for architects for designing-in performance e.g. the bringing of the energy simulation and financial pro-forma upstream in the design process and of the value for trade off design decision making the system provides. The summary discussion includes the benefit of breeding architecturally complex geometries and the kinds of optimisations or search for improvements on designs that can be achieved.  
keywords Parametric, Generative, Optimisation, Design decision support 
series CAADRIA
email
last changed 2022/06/07 07:51

_id acadia13_079
id acadia13_079
authors Jason Gerber, David; Eve Lin, Shih-Hsin; Amber Ma, Xinyue
year 2013
title Designing-In Performance: A Case Study of Applying Evolutionary Energy-Performance Feedback for Design (EEPFD)
source ACADIA 13: Adaptive Architecture [Proceedings of the 33rd Annual Conference of the Association for Computer Aided Design in Architecture (ACADIA) ISBN 978-1-926724-22-5] Cambridge 24-26 October, 2013), pp. 79-86
doi https://doi.org/10.52842/conf.acadia.2013.079
summary This paper explores the application of a novel Multi-disciplinary Design Optimization (MDO) framework to the early stage design process, through a case study where the designer serves as the primary user and driver. MDO methods have drawn attention from the building design industry as a potential means of overcoming obstacles between design and building performance feedback to support design decision-making. However, precedents exploring MDOs in application to the building design have previously been limited to driving use by engineers or research teams,thereby leaving the incorporation of MDO into a design process by designers largely unexplored. In order to investigate whether MDO can enable the ability to design in a performance environment during the conceptual design stage, a MDO design framework entitled Evolutionary Energy-Performance Feedback for Design (EEPFD) was developed. This paper explores the designer as the primary user by conducting a case study where the application of EEPFD to a single family residential housing unit is incorporated. Through this case study EEPFD demonstrates an ability to assist the designer in identifying higher performing design options while meeting the designer’s aesthetic preferences. In addition the benefits, limitations, concerns and lessons learned in the application of EEPFD are also discussed.
keywords conceptual energy-performance feedback; design decision support; parametric design; multi-disciplinary design optimization; genetic algorithm
series ACADIA
type Normal Paper
email
last changed 2022/06/07 07:52

_id cf2013_295
id cf2013_295
authors Markova, Stanimira; Christoph Langenhan, Peter Russell, and Frank Petzold
year 2013
title Building Elements Re-usability Optimization - Design Decision Support Using a Case-Base of Building Information Models and Semantic Fingerprints
source Global Design and Local Materialization[Proceedings of the 15th International Conference on Computer Aided Architectural Design Futures / ISBN 978-3-642-38973-3] Shanghai, China, July 3-5, 2013, pp. 295-305.
summary The complexity of the requirements on buildings is continuously increasing and thus, often confronting designers with interdisciplinary problems, reaching far beyond the traditional challenges and methods of architecture and engineering. Moreover, designers are often required to take decisions, when most of the information and knowledge is still missing or to be generated. In the context of sustainable building design, the re-usability of building elements and the optimisation for exchangeability is crucial for the achievement of two of the main goals: efficient use of material resources and waste reduction. The scope of this work in progress is describing requirements for case-based decision support in order to optimise building element re-usability, create an analysis of explicit re-usability indicators (e.g. “connection liberation”, “modularity” or “life span collision”) and to identify retrieval strategies. A proposal to support decision making processes by retrieving existing design solutions graph representations as well as the use of building information models are also described.
keywords case-based reasoning, sustainable design, early design stage support, building information modelling
series CAAD Futures
email
last changed 2014/03/24 07:08

_id ecaade2013_164
id ecaade2013_164
authors Nicknam, Mahsa; Bernal, Marcelo and Haymaker, John
year 2013
title A Case Study in Teaching Construction of Building Design Spaces
source Stouffs, Rudi and Sariyildiz, Sevil (eds.), Computation and Performance – Proceedings of the 31st eCAADe Conference – Volume 2, Faculty of Architecture, Delft University of Technology, Delft, The Netherlands, 18-20 September 2013, pp. 595-604
doi https://doi.org/10.52842/conf.ecaade.2013.2.595
wos WOS:000340643600061
summary Until recently, design teams were constrained by tools and schedule to only be able to generate a few alternatives, and analyze these from just a few perspectives. The rapid emergence of performance-based design, analysis, and optimization tools gives design teams the ability to construct and analyze far larger design spaces more quickly. This creates new opportunities and challenges in the ways we teach and design. Students and professionals now need to learn to formulate and execute design spaces in efficient and effective ways. This paper describes curriculum that was taught in a course “8803 Multidisciplinary Analysis and Optimization” taught by the authors at Schools of Architecture and Building Construction at Georgia Tech in spring 2013. We approach design as a multidisciplinary design space formulation and search process that seeks maximum value. To explore design spaces, student designers need to execute several iterative processes of problem formulation, generate alternative, analyze them, visualize trade space, and address decision-making. The paper first describes students design space exploration experiences, and concludes with our observations of the current challenges and opportunities.
keywords Design space exploration; teaching; multidisciplinary; optimization; analysis.
series eCAADe
email
last changed 2022/06/07 07:58

_id sigradi2013_30
id sigradi2013_30
authors Bunster, Victor
year 2013
title How to Customize Architecture under Heavily Prescribed Design Conditions? Principles and Prospects for an Evolutionary System
source SIGraDi 2013 [Proceedings of the 17th Conference of the Iberoamerican Society of Digital Graphics - ISBN: 978-956-7051-86-1] Chile - Valparaíso 20 - 22 November 2013, pp. 319 - 323
summary Architectural design is a complex activity. The development of a building involves management of the diverse goals of a heterogeneous group of agents using no more than the discrete resources of a given setting. These variables can often conflict and result in rigid normative frameworks that can limit the capacity of a designer to respond with accuracy to diverse environmental factors. The main aim of this paper is to present the theoretical foundations of an evolutionary system to assist the customization of architecture under such prescribed design conditions.
keywords Mass customization; Design computing; Information theory; Evolution; Prescription
series SIGRADI
email
last changed 2016/03/10 09:47

_id sigradi2013_285
id sigradi2013_285
authors Caldera, Sebastián; Gonzalo Silva; Mauricio Loyola
year 2013
title Uso de Herramientas Paramétricas de Optimización Evolutiva y Simulación Energética en el Diseño Basado en Performance [Using Evolutionary Optimization and Energy Simulation Tools in Performance-based Design]
source SIGraDi 2013 [Proceedings of the 17th Conference of the Iberoamerican Society of Digital Graphics - ISBN: 978-956-7051-86-1] Chile - Valparaíso 20 - 22 November 2013, pp. 343 - 347
summary This article describes three cases of integration of technologies of evolutionary optimization and energy simulation in performance-based design. The aim is to share the details of the process of creation, validation and use of the various techniques and tools, with an emphasis on the mistakes and successes obtained, so that experiences can be useful for non-specialist users interested in working with these methodologies.
keywords Parametric design; Grasshopper 3D; Ecotect; GECO; Galápagos
series SIGRADI
email
last changed 2016/03/10 09:47

_id ecaade2013_197
id ecaade2013_197
authors Koenig, Reinhard; Treyer, Lukas and Schmitt, Gerhard
year 2013
title Graphical Smalltalk with My Optimization System for Urban Planning Tasks
source Stouffs, Rudi and Sariyildiz, Sevil (eds.), Computation and Performance – Proceedings of the 31st eCAADe Conference – Volume 2, Faculty of Architecture, Delft University of Technology, Delft, The Netherlands, 18-20 September 2013, pp. 195-203
doi https://doi.org/10.52842/conf.ecaade.2013.2.195
wos WOS:000340643600019
summary Based on the description of a conceptual framework for the representation of planning problems on various scales, we introduce an evolutionary design optimization system. This system is exemplified by means of the generation of street networks with locally defined properties for centrality. We show three different scenarios for planning requirements and evaluate the resulting structures with respect to the requirements of our framework. Finally the potentials and challenges of the presented approach are discussed in detail.
keywords Design optimization; interactive planning support system; generative system integration; evolutionary multi-criteria optimization.
series eCAADe
email
last changed 2022/06/07 07:51

_id ijac201311401
id ijac201311401
authors Moreno-De-Luca, Leonardo; Oscar Javier Begambre Carrillo
year 2013
title Multi-Objective Heuristic Computation Applied To Architectural And Structural Design: A Review
source International Journal of Architectural Computing vol. 11 - no. 4, 363-392
summary Heuristic computation techniques have been used in a wide range of fields, demonstrating their capacity to solve highly complex optimization problems. This article presents the most common techniques and their extension into the multi-objective optimization field, and emphasizes in the application of them in structural and architectural design by presenting examples within topics like: topological, shape and dimensional optimization of truss structures, roof optimization for sunlight conditions and area minimization, grid structures, façade design, life cycle cost and environmental impact, energy efficiency and construction costs, morphogenetic structural optimization for shell structures, acoustical optimization, evolutionary architectural design, architectural layout design optimization, RC frames optimization, and land use zoning, within others. Finally, the conclusion leads to the recognition of heuristic computation not only as an optimization tool, but also as an important component of a design methodology for creating innovative, creative, efficient, well performing, and aesthetically pleasant architectural/engineering objects.
series journal
last changed 2019/05/24 09:55

_id ecaade2013_230
id ecaade2013_230
authors Parascho, Stefana; Baur, Marco; Knippers, Jan and Menges, Achim
year 2013
title Design Tools for Integrative Planning
source Stouffs, Rudi and Sariyildiz, Sevil (eds.), Computation and Performance – Proceedings of the 31st eCAADe Conference – Volume 2, Faculty of Architecture, Delft University of Technology, Delft, The Netherlands, 18-20 September 2013, pp. 237-246
doi https://doi.org/10.52842/conf.ecaade.2013.2.237
wos WOS:000340643600023
summary The performance of an architectural object is highly difficult to both define and measure in its complexity since it is integrating a constantly increasing amount of information, from concrete measurable characteristics to the subjective perception of individual users. The question arising though is how to predict the performance of a building and influence the design in order to increase it according to a significantly high number of criteria.The presented paper proposes two design tools, both developed and programmed in rhino python for the generation of freeform geometries. The tools are generated for specific tasks, but may be interpreted as exemplary for a way of defining and structuring a design program in order to increase its efficiency. Both tools rely on a computational core that is generally defined and may be fed with as many and different constraints and criteria as considered suitable for the defined task.
keywords Integrative design; evolutionary algorithm; agent-based system.
series eCAADe
email
last changed 2022/06/07 08:00

_id ecaade2013_144
id ecaade2013_144
authors Schneider, Sven and Donath, Dirk
year 2013
title Topo-Metric Variations for Design Optimization
source Stouffs, Rudi and Sariyildiz, Sevil (eds.), Computation and Performance – Proceedings of the 31st eCAADe Conference – Volume 1, Faculty of Architecture, Delft University of Technology, Delft, The Netherlands, 18-20 September 2013, pp. 487-495
doi https://doi.org/10.52842/conf.ecaade.2013.1.487
wos WOS:000340635300051
summary The conception of a Generative Model (GM) is an important step when applying optimization methods in architectural design. The variant spectrum generable with a GM determines if an optimal solution for the different demands placed on a design can be found. Using the example of optimizing façades (more specifically window-layouts), it is shown that GM that exclusively vary either metric or topological properties of the geometry are not sufficient, because they only cover a highly restricted solution-space. To keep the solution space as large as possible, it is argued, that it is necessary to vary both topological and metric properties. The combination of both properties is called topo-metric properties. A GM for the generation of facade variants is presented, that is able to systematically vary these topo-metric properties. The effectiveness of the developed GM compared to conventional GMs is demonstrated using a simple test scenario.
keywords Design optimization; modeling; evolutionary algorithms, topo-metric properties.
series eCAADe
email
last changed 2022/06/07 07:57

_id acadia13_109
id acadia13_109
authors Thün, Geoffrey; Velikov, Kathy
year 2013
title Adaptation as a Framework for Reconsidering High-Performance Residential Design: A Case Study
source ACADIA 13: Adaptive Architecture [Proceedings of the 33rd Annual Conference of the Association for Computer Aided Design in Architecture (ACADIA) ISBN 978-1-926724-22-5] Cambridge 24-26 October, 2013), pp. 109-118
doi https://doi.org/10.52842/conf.acadia.2013.109
summary This paper outlines an approach to adaptive residential design explored through recent research and an executed prototype, the North House project (2007-2009), undertaken through an interdisciplinary collaboration of researchers and students from the University of Waterloo, Ryerson University and Simon Fraser University in concert with professional and industry partners. This project aimed to develop a framework for the delivery of adaptive detached residential buildings capable of net-zero energy performance in the temperate climate zone, or the near north. Within this project, the term “adaptive” is developed across several tracts of conceptualization and execution including site and climatically derived models for building material composition and envelope ratios, environmentally-responsive kinetic envelope components, intelligent HVAC controls and interactive interface design aimed at producing co-evolutionary behaviors between building systems and inhabitants. A provisional definition of adaptive architecture is outlined to address this range of considerations that calls into question the stable image of domestic architecture and its relationship to energy and contemporary assumptions regarding sustainable design. This paper also outlines computational approaches to design optimization, distributed building systems integration and the human-controls interfaces applicable to the home’s ecology of physical and information technologies.
keywords next generation technology, responsive buildings, high performance envelopes, sensing and feedback, passive and active systems, energy modeling, user interface
series ACADIA
type Normal Paper
email
last changed 2022/06/07 07:58

_id ijac201310105
id ijac201310105
authors Agkathidis, Asterios and Andre_ Brown
year 2013
title Tree-Structure Canopy:A Case Study in Design and Fabrication of Complex Steel Structures using Digital Tools
source International Journal of Architectural Computing vol. 11 - no. 1, 87-104
summary This paper describes and reflects on the design and manufacturing process of the Tree-Structure canopy for the WestendGate Tower in Frankfurt upon Main, completed early 2011.The project investigated fabrication and assembly principles of complex steel structures as well as the integration of contemporary computational design, engineering, optimization and simulation techniques in a collaborative design approach. This paper focuses on the notion of modular standardization as opposed to non standard customized components. It also engages with issues relating to digital production tools and their impact on construction cost, material performance and tolerances. In addition it examines the reconfiguration of liability during a planning and construction process, an aspect which can be strongly determined by fabrication companies rather than the architect or designer.This paper is written as a reflection on the complete building process when contemporary digital tools are used from design through to fabrication. It studies both the generation of the steel structure as well the ETFE cushion skin. It reports on a collaborative project, where the main author was responsible for the canopies design, parameterization, digitalization and fabrication, as well as for the dissemination of the outcomes and findings during the design and realization process.As such it represents an example of research through design in a contemporary and evolving field.The canopy received a design award by the Hellenic Architecture Association.
series journal
last changed 2019/05/24 09:55

For more results click below:

this is page 0show page 1show page 2show page 3show page 4show page 5... show page 28HOMELOGIN (you are user _anon_179189 from group guest) CUMINCAD Papers Powered by SciX Open Publishing Services 1.002