CumInCAD is a Cumulative Index about publications in Computer Aided Architectural Design
supported by the sibling associations ACADIA, CAADRIA, eCAADe, SIGraDi, ASCAAD and CAAD futures

PDF papers
References

Hits 1 to 20 of 610

_id sigradi2013_294
id sigradi2013_294
authors Arenas Alvarez del Castillo, Ubaldo; José Manuel Falcón Meraz
year 2013
title Hacia la Adaptabilidad en Sistemas Robóticos de Construcción [Towards Adaptability in Robotic Building Systems]
source SIGraDi 2013 [Proceedings of the 17th Conference of the Iberoamerican Society of Digital Graphics - ISBN: 978-956-7051-86-1] Chile - Valparaíso 20 - 22 November 2013, pp. 71 - 75
summary This article explores the concept of adaptability within the built environment, extending the feedback and inter-communication characteristics of parametric design into construction processes and the material components of contemporary buildings; providing a conceptual and contextual framework, it also describes several strategies explored to achieve such type of communication.
series SIGRADI
email
last changed 2016/03/10 09:47

_id cf2013_315
id cf2013_315
authors Chang, Darren
year 2013
title Aerodynamic Performance Driven Form-Generation for Skyscraper Design
source Global Design and Local Materialization[Proceedings of the 15th International Conference on Computer Aided Architectural Design Futures / ISBN 978-3-642-38973-3] Shanghai, China, July 3-5, 2013, pp. 315-326.
summary I have conducted a study to explore aerodynamic performance as a driver for skyscraper design, utilizing up-to-date parametric design and computational fluid dynamics (CFD) technologies readily available to architects. Previous scientific research has suggested strategies in modifying the form of skyscrapers for the purpose of improving their aerodynamic performance. I have incorporated six of such strategies into parametric design tool to produce a matrix of 60 prototypes. These prototypes are subjected to qualitative and quantitatively evaluation iterations to yield the most optimized design, with considerations given primarily to aerodynamic performance, and secondarily to structural robustness, program potential, and image attractiveness. The selected design option is further developed into a skyscraper concept. A multi-staged aerodynamic performance-driven design process is the most important result of the study. In addition, two valuable insights have been obtained: first, to inject a new inspiration into the design of skyscrapers, I have implemented the MultiDisciplinary Optimization (MDO) methodology from the aerospace industry. Second, I am able to support form-generation parametric design by quantitative evaluation process.
keywords performative architecture, performance-driven form-generation, skyscraper design, multi-disciplinary optimization, tall building aerodynamics
series CAAD Futures
email
last changed 2014/03/24 07:08

_id caadria2013_100
id caadria2013_100
authors Chen Kian Wee, Patrick Janssen and Arno Schlueter
year 2013
title A Design Method for Multicriteria Optimisation of Low Exergy Architecture
source Open Systems: Proceedings of the 18th International Conference on Computer-Aided Architectural Design Research in Asia (CAADRIA 2013) / Singapore 15-18 May 2013, pp. 117-126
doi https://doi.org/10.52842/conf.caadria.2013.117
wos WOS:000351496100012
summary This paper proposes a design method for the exploration of holistic low exergy design strategies which factor in limitations and constraints of both passive and active systems. A design method that consists of a two loop structure is proposed. The inner loop consists of an automated workflow that includes three main components: a developmental procedure for generating design variants; evaluation procedures for evaluating design variants; and an optimisation procedure for optimising populations of design variants. The outer loop consists of a manual workflow that has two main components: a schema formulation process for defining the inputs to the automated workflow and a data analysis process for analysing the data produced by the automated workflow. A case study is presented that demonstrates the proposed method.  
keywords Low exergy design, Parametric design, Evolutionary design, Integrated design process, Performance driven design 
series CAADRIA
email
last changed 2022/06/07 07:55

_id acadia20_688
id acadia20_688
authors del Campo, Matias; Carlson, Alexandra; Manninger, Sandra
year 2020
title 3D Graph Convolutional Neural Networks in Architecture Design
source ACADIA 2020: Distributed Proximities / Volume I: Technical Papers [Proceedings of the 40th Annual Conference of the Association of Computer Aided Design in Architecture (ACADIA) ISBN 978-0-578-95213-0]. Online and Global. 24-30 October 2020. edited by B. Slocum, V. Ago, S. Doyle, A. Marcus, M. Yablonina, and M. del Campo. 688-696.
doi https://doi.org/10.52842/conf.acadia.2020.1.688
summary The nature of the architectural design process can be described along the lines of the following representational devices: the plan and the model. Plans can be considered one of the oldest methods to represent spatial and aesthetic information in an abstract, 2D space. However, to be used in the design process of 3D architectural solutions, these representations are inherently limited by the loss of rich information that occurs when compressing the three-dimensional world into a two-dimensional representation. During the first Digital Turn (Carpo 2013), the sheer amount and availability of models increased dramatically, as it became viable to create vast amounts of model variations to explore project alternatives among a much larger range of different physical and creative dimensions. 3D models show how the design object appears in real life, and can include a wider array of object information that is more easily understandable by nonexperts, as exemplified in techniques such as building information modeling and parametric modeling. Therefore, the ground condition of this paper considers that the inherent nature of architectural design and sensibility lies in the negotiation of 3D space coupled with the organization of voids and spatial components resulting in spatial sequences based on programmatic relationships, resulting in an assemblage (DeLanda 2016). These conditions constitute objects representing a material culture (the built environment) embedded in a symbolic and aesthetic culture (DeLanda 2016) that is created by the designer and captures their sensibilities.
series ACADIA
type paper
email
last changed 2023/10/22 12:06

_id ecaade2013_076
id ecaade2013_076
authors Dolas, Caner; Dieckmann, Andreas and Russell, Peter
year 2013
title Building Your Own Urban Tool Kit
source Stouffs, Rudi and Sariyildiz, Sevil (eds.), Computation and Performance – Proceedings of the 31st eCAADe Conference – Volume 2, Faculty of Architecture, Delft University of Technology, Delft, The Netherlands, 18-20 September 2013, pp. 485-493
doi https://doi.org/10.52842/conf.ecaade.2013.2.485
wos WOS:000340643600049
summary The paper describes the development of a set of smart BIM components to facilitate and accelerate the creation of large-scale urban models in the early design phase in a BIM software environment. The components leverage the analytical, parametric and modelling capabilities of the BIM environment to support adaptive parameter-driven building geometry, patterning of different building types, early numerical and graphical design evaluation, various simulation methods and the exploration of design alternatives. The toolset consists of the most common building shapes, but can be extended with additional shapes and their respective area and volumetric calculations when necessary. The rapid large-scale deployment of the components has been achieved by diverting existing tools from their intended use.
keywords BIM; urban planning; early design; rule-based design; parametric design.
series eCAADe
email
last changed 2022/06/07 07:55

_id ecaade2013_028
id ecaade2013_028
authors Fricker, Pia; Girot, Christophe and Munkel, Georg
year 2013
title How to Teach ‘New Tools’ in Landscape Architecture in the Digital Overload
source Stouffs, Rudi and Sariyildiz, Sevil (eds.), Computation and Performance – Proceedings of the 31st eCAADe Conference – Volume 2, Faculty of Architecture, Delft University of Technology, Delft, The Netherlands, 18-20 September 2013, pp. 545-553
doi https://doi.org/10.52842/conf.ecaade.2013.2.545
wos WOS:000340643600055
summary The central theme of the paper is the introduction of hands-on tools showing the integration of information technology within a postgraduate study program (MAS LA) for landscape architects. What has already become a part of the discourse in the field of architecture – generic design – is now also finding more resonance in the context of large-scale landscape architectural design. If one studies the educational backgrounds of landscape architects, however, they often do not match the same standard as those of architects. A solid background in the area of innovative use of information technology, especially computer-assisted design and CAD/CAM construction is only at a preliminary state at most universities. The critical arguments in the choice of the selected medium and the building up of a continuous digital chain stand here in the forefront. The aim is not to improve the quality of the landscape design based on the variety of the applied tools, but rather through the sensible use of the said. Reflections as well as questions of method and theory stand at the forefront of our efforts. 
keywords Design tool development; computational design research and teaching; new design concepts and strategies; parametric and evolutionary design.
series eCAADe
email
last changed 2022/06/07 07:50

_id caadria2013_042
id caadria2013_042
authors Kaijima, Sawako; Roland Bouffanais and Karen Willcox
year 2013
title Computational Fluid Dynamics for Architectural Design
source Open Systems: Proceedings of the 18th International Conference on Computer-Aided Architectural Design Research in Asia (CAADRIA 2013) / Singapore 15-18 May 2013, pp. 169-178
doi https://doi.org/10.52842/conf.caadria.2013.169
wos WOS:000351496100017
summary Computational Fluid Dynamics (CFD) is a cost-effective, well-known technique widely employed in industrial design. While indoor analysis can be achieved via CFD, Wind Tunnel Testing (WTT) is still the prevailing mode of analysis for outdoor studies. WTT is often only performed a few times during the course of a building design/construction cycle and primarily for verification purposes. This paper presents a cross-disciplinary research initiative aiming to make CFD understandable and accessible to the architecture community. Our particular interest is in the incorporation of CFD into the early stages of architectural design. Many critical decisions, including those pertaining to building performance, are made during these stages, and we believe access to wind/airflow information during these stages will help architects make responsible design decisions. As a first step, we designed a passive cooling canopy for a bus stop based on the equatorial climatic conditions of Singapore where wind/airflow was a driving factor for geometry generation. We discuss our strategies for overcoming the two bottlenecks we identified when utilising CFD for this framework: mesh generation and result comprehension/visualisation.  
keywords CFD, Simulation, Visualization, Concept design 
series CAADRIA
email
last changed 2022/06/07 07:52

_id sigradi2013_52
id sigradi2013_52
authors Rivera, Omar; Alexis Salinas; Paula Ulloa; Oscar Otárola; Braulio Gatica; William Fuentes; Rodrigo García Alvarado; Mauro Chiarella
year 2013
title Emprendimiento de Componentes Constructivos Paramétricos [Entrepreneurship of Building Parametric Components]
source SIGraDi 2013 [Proceedings of the 17th Conference of the Iberoamerican Society of Digital Graphics - ISBN: 978-956-7051-86-1] Chile - Valparaíso 20 - 22 November 2013, pp. 244 - 248
summary New technologies of parametric design and digital fabrication encourages development of building components, involving a new approach to architectural work and promote professional endeavors. This paper presents several experiences of recent graduates of architecture in U. Bio-Bio, Chile, which demonstrate these capabilities. The development of a roof module, a structural grid, a flexible envelope, cutting partitions and folded units for wind protection are examples of mass-customization, with implementation of new processes of design, construction and divulgation into the building industry.
keywords Parametric Design, Digital Fabrication, Building Construction, Entrepreneurship, Innovative Architecture
series SIGRADI
email
last changed 2016/03/10 09:58

_id sigradi2013_400
id sigradi2013_400
authors Sanguinetti, Paola
year 2013
title Performance Testing in Architectural Design: Evolving the Problem-Solving Paradigm for Novice Designers
source SIGraDi 2013 [Proceedings of the 17th Conference of the Iberoamerican Society of Digital Graphics - ISBN: 978-956-7051-86-1] Chile - Valparaíso 20 - 22 November 2013, pp. 520 - 523
summary This paper compares two approaches to introduce novice architectural designers to computational tools for performance testing. Focus is placed on parametric design changes to test solutions. The first approach is limited to the design of a shading component. The second approach consists of short exercises using Building Information Modeling to test and analyze discrete decisions. The hurdles in the learning process are discussed, including the role of visualization to evaluate performance. The effectiveness on learning strategies is discussed.
keywords Design education; BIM; Performance-based design; Novice designer; Design problem-solving
series SIGRADI
email
last changed 2016/03/10 09:59

_id caadria2013_185
id caadria2013_185
authors Turrin, Michela; Rudi Stouffs and Sevil Sar_y_ld_z
year 2013
title Performance-Based Parameterization Strategies – A Theoretic Framework and Case Studies
source Open Systems: Proceedings of the 18th International Conference on Computer-Aided Architectural Design Research in Asia (CAADRIA 2013) / Singapore 15-18 May 2013, pp. 519-528
doi https://doi.org/10.52842/conf.caadria.2013.519
wos WOS:000351496100051
summary In this paper, alternative approaches to structure the parametric geometry in relation to information on various performances are described and exemplified. They relate to different levels of knowledge that concern the performances considered in the process and which are available to the designer while the parametric model is being set. A theoretic framework embeds the different approaches, for which the use of parametric modelling is structured in three phases: strategy-definition; model-building; and solution-assessment. The phases and their interrelations are discussed. Finally, four case studies are presented, focusing on the relation between the knowledge available in strategy-definition and the exploration occurring in solution-assessment.  
keywords Conceptual design, Parametric design, Performance analysis  
series CAADRIA
email
last changed 2022/06/07 07:58

_id ecaade2013_245
id ecaade2013_245
authors Weston, Mark and Greenberg, Dan
year 2013
title Sweetgum Panels
source Stouffs, Rudi and Sariyildiz, Sevil (eds.), Computation and Performance – Proceedings of the 31st eCAADe Conference – Volume 1, Faculty of Architecture, Delft University of Technology, Delft, The Netherlands, 18-20 September 2013, pp. 569-573
doi https://doi.org/10.52842/conf.ecaade.2013.1.569
wos WOS:000340635300059
summary The paper describes a novel technique for creating flat, bi-layer, compliant mechanisms for adaptive building components to be used in solar shading. Micro-actuation of these periodic, flexible devices cause innumerable three-dimensional micro-loops to erupt in the panel surface, permitting passage of diffused light while maintaining visual privacy and shade.
keywords Compliant mechanisms; biomimicry; passive energy design; solar shading; autonomous control; computer aided manufacture; parametric modeling.
series eCAADe
email
last changed 2022/06/07 07:56

_id ecaade2023_317
id ecaade2023_317
authors Zamani, Alireza, Mohseni, Alale and Bertug Çapunaman, Özgüç
year 2023
title Reconfigurable Formwork System for Vision-Informed Conformal Robotic 3D Printing
source Dokonal, W, Hirschberg, U and Wurzer, G (eds.), Digital Design Reconsidered - Proceedings of the 41st Conference on Education and Research in Computer Aided Architectural Design in Europe (eCAADe 2023) - Volume 1, Graz, 20-22 September 2023, pp. 387–396
doi https://doi.org/10.52842/conf.ecaade.2023.1.387
summary Robotic additive manufacturing has garnered significant research and development interest due to its transformative potential in architecture, engineering, and construction as a cost-effective, material-efficient, and energy-saving fabrication method. However, despite its potential, conventional approaches heavily depend on meticulously optimized work environments, as robotic arms possess limited information regarding their immediate surroundings (Bechthold, 2010; Bechthold & King, 2013). Furthermore, such approaches are often restricted to planar build surfaces and slicing algorithms due to computational and physical practicality, which consequently limits the feasibility of robotic solutions in scenarios involving complex geometries and materials. Building on previous work (Çapunaman et al., 2022), this research investigates conformal 3D printing of clay using a 6 degrees-of-freedom robot arm and a vision-based sensing framework on parametrically reconfigurable tensile hyperbolic paraboloid (hypar) formwork. In this paper, we present the implementation details of the formwork system, share findings from preliminary testing of the proposed workflow, and demonstrate application feasibility through a design exercise that aims to fabricate unique components for a poly-hypar surface structure. The formwork system also offers parametric control over generating complex, non-planar tensile surfaces to be printed on. Within the scope of this workflow, the vision-based sensing framework is employed to generate a digital twin informing iterative tuning of the formwork geometry and conformal toolpath planning on scanned geometries. Additionally, we utilized the augmented fabrication framework to observe and analyze deformations in the printed clay body that occurs during air drying. The proposed workflow, in conjunction with the vision-based sensing framework and the reconfigurable formwork, aims to minimize time and material waste in custom formwork fabrication and printing support materials for complex geometric panels and shell structures.
keywords Robotic Fabrication, Conformal 3D Printing, Additive Manufacturing, Computer-Vision, Reconfigurable Formwork
series eCAADe
email
last changed 2023/12/10 10:49

_id ecaade2013_096
id ecaade2013_096
authors Achten, Henri
year 2013
title Buildings with an Attitude
source Stouffs, Rudi and Sariyildiz, Sevil (eds.), Computation and Performance – Proceedings of the 31st eCAADe Conference – Volume 1, Faculty of Architecture, Delft University of Technology, Delft, The Netherlands, 18-20 September 2013, pp. 477-485
doi https://doi.org/10.52842/conf.ecaade.2013.1.477
wos WOS:000340635300050
summary In order to achieve interactive architecture it is necessary to consider more than the technological components of sensors, controllers, and actuators. The interaction can be focused to different interaction activities: instructing, conversing, manipulating, and exploring (we propose to call this the interaction view). Additionally, the purpose of the building may range from performing, sustaining, servicing, symbolising, to entertaining (we propose to call this the world view). Combined, the interaction view and world view establish 20 different attitudes, which are flavours of behaviour for the interactive building. Through attitudes interaction profiles can be established and criteria derived for the design of interactive buildings.
keywords Interactive architecture; design theory; Human-Computer Interaction; augmented reality; mixed reality.
series eCAADe
email
last changed 2022/06/07 07:54

_id ijac201310105
id ijac201310105
authors Agkathidis, Asterios and Andre_ Brown
year 2013
title Tree-Structure Canopy:A Case Study in Design and Fabrication of Complex Steel Structures using Digital Tools
source International Journal of Architectural Computing vol. 11 - no. 1, 87-104
summary This paper describes and reflects on the design and manufacturing process of the Tree-Structure canopy for the WestendGate Tower in Frankfurt upon Main, completed early 2011.The project investigated fabrication and assembly principles of complex steel structures as well as the integration of contemporary computational design, engineering, optimization and simulation techniques in a collaborative design approach. This paper focuses on the notion of modular standardization as opposed to non standard customized components. It also engages with issues relating to digital production tools and their impact on construction cost, material performance and tolerances. In addition it examines the reconfiguration of liability during a planning and construction process, an aspect which can be strongly determined by fabrication companies rather than the architect or designer.This paper is written as a reflection on the complete building process when contemporary digital tools are used from design through to fabrication. It studies both the generation of the steel structure as well the ETFE cushion skin. It reports on a collaborative project, where the main author was responsible for the canopies design, parameterization, digitalization and fabrication, as well as for the dissemination of the outcomes and findings during the design and realization process.As such it represents an example of research through design in a contemporary and evolving field.The canopy received a design award by the Hellenic Architecture Association.
series journal
last changed 2019/05/24 09:55

_id acadia13_393
id acadia13_393
authors Bieg, Kory
year 2013
title Rapid Type Coffee Pod
source ACADIA 13: Adaptive Architecture [Proceedings of the 33rd Annual Conference of the Association for Computer Aided Design in Architecture (ACADIA) ISBN 978-1-926724-22-5] Cambridge 24-26 October, 2013), pp. 393-394
doi https://doi.org/10.52842/conf.acadia.2013.393
summary Rapid Type Coffee Pod combines prefabricated building construction, parametric modeling and the financial vitality of the food truck movement into the design of a prototypical full-service mobile sales platform.
keywords Teaching; design build, parametric, 3ds Max, Grasshopper, boolean, mobile
series ACADIA
type Design Poster
email
last changed 2022/06/07 07:52

_id ecaade2013_023
id ecaade2013_023
authors Biloria, Nimish and Chang, Jia-Rey
year 2013
title Hyper-Morphology
source Stouffs, Rudi and Sariyildiz, Sevil (eds.), Computation and Performance – Proceedings of the 31st eCAADe Conference – Volume 1, Faculty of Architecture, Delft University of Technology, Delft, The Netherlands, 18-20 September 2013, pp. 529-537
doi https://doi.org/10.52842/conf.ecaade.2013.1.529
wos WOS:000340635300055
summary Hyper-Morphology is an on-going research outlining a bottom-up evolutionary design process based on autonomous cellular building components. The research interfaces critical operational traits of the natural world (Evolutionary Development Biology, Embryology and Cellular Differentiation) with Evolutionary Computational techniques driven design methodologies. In the Hyper-Morphology research, genetic sequences are considered as sets of locally coded relational associations between multiple factors such as the amount of components, material based constraints, and geometric adaptation/degrees of freedom based adaptation abilities etc, which are embedded autonomously within each HyperCell component. Collective intelligence driven decision-making processes are intrinsic to the Hyper-Morphology logic for intelligently operating with autonomous componential systems (akin to swarm systems). This subsequently results in user and activity centric global morphology generation in real-time. Practically, the Hyper-Morphology research focuses on a 24/7 economy loop wherein real-time adaptive spatial usage interfaces with contemporary culture of flexible living within spatial constraints in a rapidly urbanizing world.
keywords Evo-devo; cellular differentiation; self-organization; evolutionary computation; adaptive architecture.
series eCAADe
email
last changed 2022/06/07 07:54

_id ecaade2013_073
id ecaade2013_073
authors Both, Katherine; Heitor, Teresa and Medeiros, Valério
year 2013
title Assessing Academic Library Design: A Performance-Based Approach
source Stouffs, Rudi and Sariyildiz, Sevil (eds.), Computation and Performance – Proceedings of the 31st eCAADe Conference – Volume 1, Faculty of Architecture, Delft University of Technology, Delft, The Netherlands, 18-20 September 2013, pp. 337-346
doi https://doi.org/10.52842/conf.ecaade.2013.1.337
wos WOS:000340635300035
summary Academic Libraries (ALs) design concept has been under a changing process, precipitated by both internal needs and external pressures including changes in the societal context of education, the information services and documentation storage requirements. This paper is focused on a model of form and function to assess AL’ in use, in order to explore ways for better understanding their performance. The proposed model was developed within the scope of a wider research project and makes both use of Post-Occupancy Evaluation and of Space Syntax procedures in order to explore how the spatial configuration influences the performance and use of ALs space. It considers ALs building typology as spatial, physical and social systems, by: 1) measuring users satisfaction about how well the space supports their requirements; and 2) providing information on how architecture and spatial design support - enable and generate - flows of information, communication and knowledge.The analysis provides evidence suggesting that ALs’ spatial system influences study performance, patterns of use and co-presence of its users. The results of data inputs point out prospective strategies about space intervention.
keywords Academic libraries; functionality; users; evaluation; performance.
series eCAADe
email
last changed 2022/06/07 07:54

_id sigradi2013_205
id sigradi2013_205
authors Chiarella, Mauro; Luis Felipe González Böhme; Cristian Calvo Barentin
year 2013
title Robots: Automatización en Diseño y Construcción para la Enseñanza de Arquitectura [Robots: Automation in Design and Manufacturing for Teaching Architecture]
source SIGraDi 2013 [Proceedings of the 17th Conference of the Iberoamerican Society of Digital Graphics - ISBN: 978-956-7051-86-1] Chile - Valparaíso 20 - 22 November 2013, pp. 439 - 443
summary Industrial robots controlled by parametric design software and visual programming environments are gaining popularity in the research and use of non-conventional construction processes in architecture. Process automation which can be personalized through variable components promises to become an industry standard with similar cost structures to current pre-fabrication industrial processes. In order to incorporate competencies from non-serial variable architectural modular design, an initial teaching initiative (Advanced Architectural Design Studio – USM) was developed in Latin América. The strategy employed is based on incorporating concepts and instruments of Construction & Design Automation for CAD/CAM processes with a Six Axis Robotic Arm (KUKA KR125/2).
keywords Robotic fabrication; Parametric modeling, Teaching architecture
series SIGRADI
email
last changed 2016/03/10 09:48

_id acadia13_025
id acadia13_025
authors Cordero Maisonet, Sixto; Smith, Austin
year 2013
title Responsive Expansion
source ACADIA 13: Adaptive Architecture [Proceedings of the 33rd Annual Conference of the Association for Computer Aided Design in Architecture (ACADIA) ISBN 978-1-926724-22-5] Cambridge 24-26 October, 2013), pp. 25-32
doi https://doi.org/10.52842/conf.acadia.2013.025
summary Although commonly considered problematic within the wider range of standardized isotropic construction materials, wood’s mechanical deficiencies are simultaneously an asset for the adventurous designer. These anisotropic and organic characteristics can be critically investigated, even exaggerated, with the possibility of productively yielding a complex and adaptive building material.Given wood’s fibrous make-up, as derived from its ecological function as an evaporative capillary system, wood as a material is predisposed to react to environmental and contextual fluctuations—moisture in particular. As a consequence of its cellular and chemical anatomy, wood—unlike other standard construction materials—will morphologically react to changes in moisture. This reactivity is derived from interactions such as rehydration and swelling at the cellular level which accumulate to induce formal transformations at the macro level. This responsiveness, when coupled with the affordances of industrial standardization, reframes wood within architecture as a reactive material capable of consistent transformation well-suited to parametric definition within computational modeling.
keywords Complex Systems: complex, adaptive, expansion, wood, material investigation, emergent and self-organizing systems
series ACADIA
type Normal Paper
email
last changed 2022/06/07 07:56

_id caadria2013_001
id caadria2013_001
authors Doelling, Max C. and Ben Jastram
year 2013
title Daylight Prototypes: From Simulation Data to Four-Dimensional Artefact-Physical Metrics  Models in Sustainable Design Education
source Open Systems: Proceedings of the 18th International Conference on Computer-Aided Architectural Design Research in Asia (CAADRIA 2013) / Singapore 15-18 May 2013, pp. 159-168
doi https://doi.org/10.52842/conf.caadria.2013.159
wos WOS:000351496100016
summary The increasing use of building performance simulation in architectural design enriches digital models and derived prototyping geometries with performance data that makes them analytically powerful artefacts serving sustainable design. In our class “Parametric Design”, students perform concurrent thermal and daylight optimization during the architectural ideation process, employing digital simulation tools, and also utilize rapid prototyping techniques to produce process artefacts and whole-building analysis models with climate-based day-light metrics physically embedded. Simulation metrics are merged with prototyping geometries to be output on a colour-capable Zprinter; the resultant hybrid artefacts simultaneously allow three-dimensional formal as well as whole-year daylight performance evaluation, rendering analysis scope four-dimensional. They embody a specific epistemological type that we compare to other model instances and posit to be an example of multivalent representation, a formal class that aids knowledge accretion in  workflows and allows designers to gain a physically reframed understanding of geometry-performance relationships.
keywords Rapid prototyping, Building performance modelling, Daylight simulation, Physical data models, Design representation 
series CAADRIA
email
last changed 2022/06/07 07:55

For more results click below:

this is page 0show page 1show page 2show page 3show page 4show page 5... show page 30HOMELOGIN (you are user _anon_33951 from group guest) CUMINCAD Papers Powered by SciX Open Publishing Services 1.002