CumInCAD is a Cumulative Index about publications in Computer Aided Architectural Design
supported by the sibling associations ACADIA, CAADRIA, eCAADe, SIGraDi, ASCAAD and CAAD futures

PDF papers
References

Hits 1 to 20 of 608

_id ijac201310105
id ijac201310105
authors Agkathidis, Asterios and Andre_ Brown
year 2013
title Tree-Structure Canopy:A Case Study in Design and Fabrication of Complex Steel Structures using Digital Tools
source International Journal of Architectural Computing vol. 11 - no. 1, 87-104
summary This paper describes and reflects on the design and manufacturing process of the Tree-Structure canopy for the WestendGate Tower in Frankfurt upon Main, completed early 2011.The project investigated fabrication and assembly principles of complex steel structures as well as the integration of contemporary computational design, engineering, optimization and simulation techniques in a collaborative design approach. This paper focuses on the notion of modular standardization as opposed to non standard customized components. It also engages with issues relating to digital production tools and their impact on construction cost, material performance and tolerances. In addition it examines the reconfiguration of liability during a planning and construction process, an aspect which can be strongly determined by fabrication companies rather than the architect or designer.This paper is written as a reflection on the complete building process when contemporary digital tools are used from design through to fabrication. It studies both the generation of the steel structure as well the ETFE cushion skin. It reports on a collaborative project, where the main author was responsible for the canopies design, parameterization, digitalization and fabrication, as well as for the dissemination of the outcomes and findings during the design and realization process.As such it represents an example of research through design in a contemporary and evolving field.The canopy received a design award by the Hellenic Architecture Association.
series journal
last changed 2019/05/24 09:55

_id sigradi2013_259
id sigradi2013_259
authors Barbosa Curi, Camila; Neander Furtado Silva
year 2013
title Habitação na Sociedade de Informação: Configurador de Design para o Mercado Imobiliário Brasileiro [Housing in the Information Society: Design Configurator for the Brazilian Real Estate Market]
source SIGraDi 2013 [Proceedings of the 17th Conference of the Iberoamerican Society of Digital Graphics - ISBN: 978-956-7051-86-1] Chile - Valparaíso 20 - 22 November 2013, pp. 76 - 80
summary In this paper, we present preliminary specifications for a computer design tool for the application of mass customization in middle class apartment design in Brazil. Believing that in the digital era, network communication and digital design tools combined may create a design environment that considers consumer needs and preferences, we present a simple drafting of a computer tool that makes use of those concepts. And therefore we believe to contribute for the future construction of a design system that redefines problem scenarios, rather than providing individual solutions, repositioning architects and clients in the design process.
series SIGRADI
email
last changed 2016/03/10 09:47

_id ecaadesigradi2019_449
id ecaadesigradi2019_449
authors Becerra Santacruz, Axel
year 2019
title The Architecture of ScarCity Game - The craft and the digital as an alternative design process
doi https://doi.org/10.52842/conf.ecaade.2019.3.045
source Sousa, JP, Xavier, JP and Castro Henriques, G (eds.), Architecture in the Age of the 4th Industrial Revolution - Proceedings of the 37th eCAADe and 23rd SIGraDi Conference - Volume 3, University of Porto, Porto, Portugal, 11-13 September 2019, pp. 45-52
summary The Architecture of ScarCity Game is a board game used as a pedagogical tool that challenges architecture students by involving them in a series of experimental design sessions to understand the design process of scarcity and the actual relation between the craft and the digital. This means "pragmatic delivery processes and material constraints, where the exchange between the artisan of handmade, representing local skills and technology of the digitally conceived is explored" (Huang 2013). The game focuses on understanding the different variables of the crafted design process of traditional communities under conditions of scarcity (Michel and Bevan 1992). This requires first analyzing the spatial environmental model of interaction, available human and natural resources, and the dynamic relationship of these variables in a digital era. In the first stage (Pre-Agency), the game set the concept of the craft by limiting students design exploration from a minimum possible perspective developing locally available resources and techniques. The key elements of the design process of traditional knowledge communities have to be identified (Preez 1984). In other words, this stage is driven by limited resources + chance + contingency. In the second stage (Post-Agency) students taking the architects´ role within this communities, have to speculate and explore the interface between the craft (local knowledge and low technological tools), and the digital represented by computation data, new technologies available and construction. This means the introduction of strategy + opportunity + chance as part of the design process. In this sense, the game has a life beyond its mechanics. This other life challenges the participants to exploit the possibilities of breaking the actual boundaries of design. The result is a tool to challenge conventional methods of teaching and leaning controlling a prescribed design process. It confronts the rules that professionals in this field take for granted. The game simulates a 'fake' reality by exploring in different ways with surveyed information. As a result, participants do not have anything 'real' to lose. Instead, they have all the freedom to innovate and be creative.
keywords Global south, scarcity, low tech, digital-craft, design process and innovation by challenge.
series eCAADeSIGraDi
email
last changed 2022/06/07 07:54

_id ecaade2013r_020
id ecaade2013r_020
authors Bello Diaz, Gabriel; Dubor, Alexandre
year 2013
title Magnetic architecture. A new order in design
source FUTURE TRADITIONS [1st eCAADe Regional International Workshop Proceedings / ISBN 978-989-8527-03-5], University of Porto, Faculty of Architecture (Portugal), 4-5 April 2013, pp. 237-245
summary With the exploration of additive manufacturing, Magnetic Architecture develops different systems and strategies to use magnetic fields for controlling material through construction. In this research we utilize the overlapping of different technologies and digital tools that participate in the innovation of architecture. Thanks to hacked 6-axis robots, Magnetic Architecture approaches decision making from a top/down and bottom/up process. These new processes and conclusions are continuously leading to more areas of research and new design processes, which begins to question the role of the architect with these emerging technologies.
keywords Additive Manufacturing; Sensor Logic; Incremental Coding; Dynamic Blueprints (DBP)
email
last changed 2013/10/07 19:08

_id ijac201310103
id ijac201310103
authors Bollmann, Dietrich and Alvaro Bonfiglio
year 2013
title Design Constraint Systems - A Generative Approach to Architecture
source International Journal of Architectural Computing vol. 11 - no. 1, 37-63
summary Generative Architectural Design permits the automatic (or semiautomatic) generation of architectural objects for a wide range of applications, from archaeological research and reconstruction to digital sketching. In this paper the authors introduce design constraint systems (DCS), their approach to the generation of architectural design with the help of a simple example: The development of the necessary formalisms to generate a family of architectural designs, i.e. simple houses and pagodas. After explaining the formal system the authors introduce an approach for the generation of complex form based on the application of transformations and distortions.Architecture is bound by the constraints of physical reality: Gravitation and the properties of the used materials define the limits in which architectural design is possible. With the recent development of new materials and construction methods however, the ways in which form and physics go together get more complicated. As a result, the shapes of architecture gain more liberty, and more and more complex shapes and structures become possible.While these advances allow for new ways of architectural expression, they also make the design process much more challenging. For this reason new tools are necessary for making this complexity manageable for the architect and enable her to play and experiment with the new possibilities of complex shapes and structures. Design constraint systems can be used as tool for experimentation with complex form. Therefore, the authors dedicate the final part of this paper to a concise delineation of an approach for the generation of complex and irregular shapes and structures. While the examples used are simple, they give an idea of the generality of design constraint systems: By using a two-component approach to the generation of designs (the first component describes the abstract structure of the modelled objects while the second component interprets the structure and generates the actual geometric forms) and allowing the user to adjust both components freely, it can be adapted to all kind of different architectural styles, from historical to contemporary architecture.
series journal
last changed 2019/05/24 09:55

_id ecaade2013_028
id ecaade2013_028
authors Fricker, Pia; Girot, Christophe and Munkel, Georg
year 2013
title How to Teach ‘New Tools’ in Landscape Architecture in the Digital Overload
doi https://doi.org/10.52842/conf.ecaade.2013.2.545
source Stouffs, Rudi and Sariyildiz, Sevil (eds.), Computation and Performance – Proceedings of the 31st eCAADe Conference – Volume 2, Faculty of Architecture, Delft University of Technology, Delft, The Netherlands, 18-20 September 2013, pp. 545-553
summary The central theme of the paper is the introduction of hands-on tools showing the integration of information technology within a postgraduate study program (MAS LA) for landscape architects. What has already become a part of the discourse in the field of architecture – generic design – is now also finding more resonance in the context of large-scale landscape architectural design. If one studies the educational backgrounds of landscape architects, however, they often do not match the same standard as those of architects. A solid background in the area of innovative use of information technology, especially computer-assisted design and CAD/CAM construction is only at a preliminary state at most universities. The critical arguments in the choice of the selected medium and the building up of a continuous digital chain stand here in the forefront. The aim is not to improve the quality of the landscape design based on the variety of the applied tools, but rather through the sensible use of the said. Reflections as well as questions of method and theory stand at the forefront of our efforts. 
wos WOS:000340643600055
keywords Design tool development; computational design research and teaching; new design concepts and strategies; parametric and evolutionary design.
series eCAADe
email
last changed 2022/06/07 07:50

_id caadria2013_071
id caadria2013_071
authors Lloret Kristensen, Ena; Fabio Gramazio, Matthias Kohler and Silke Langenberg
year 2013
title Complex Concrete Constructions – Merging Existing Casting Techniques with Digital Fabrication
doi https://doi.org/10.52842/conf.caadria.2013.613
source Open Systems: Proceedings of the 18th International Conference on Computer-Aided Architectural Design Research in Asia (CAADRIA 2013) / Singapore 15-18 May 2013, pp. 613-622
summary In the course of the 20th century, architectural construction has gone through intense innovation in its material, engineering and design, radically transforming the way buildings were and are conceived. Technological and industrial advances enabled and challenged architects, engineers and constructors to build increasingly complex architectural structures from concrete. Computer-Aided Design and Manufacturing (CAD/CAM) techniques have, more recently, rejuvenated and increased the possibilities of realising ever more complex geometries. Reinforced concrete is often chosen for such structures since almost any shape can be achieve when poured into a formwork. However, designs generated with digital tools tend to have limited relation to the efficient modes of production typically used in contemporary concrete construction. A large gap has emerged between the technology in architectural design and the building industry, so that few efficient solutions exist for the production of geometrically complex structures in concrete. This paper focuses on the capabilities and efficiency of existing casting techniques both with static and dynamic formwork which, when combined with digital fabrication, allow innovative fabrication approaches to be taken. Particular focus is placed on slipforming, an approved and efficient construction technique, which until now is unexplored in conjunction with digital fabrication. 
wos WOS:000351496100060
keywords Complex concrete structures, Casting techniques, Formwork, Slipforming, Digital fabrication, Smart dynamic casting 
series CAADRIA
email
last changed 2022/06/07 07:59

_id sigradi2013_364
id sigradi2013_364
authors Maing, Minjung; Rodrigo Vargas
year 2013
title Digital Fabrication Processes of Mass Customized Building Facades in Global Practice
source SIGraDi 2013 [Proceedings of the 17th Conference of the Iberoamerican Society of Digital Graphics - ISBN: 978-956-7051-86-1] Chile - Valparaíso 20 - 22 November 2013, pp. 415 - 419
summary This paper describes the process of digital design and fabrication for customized building facades and effects from highly customized configurations in U.S., major manufacturing power of China, and emerging construction in Asia and South America. Case studies are presented to form comparisons of technology adoption to project workflow in these three global contexts. Although integration of digital fabrication has shown signs of success in U.S., traditional practices of limited digital information exchange are commonplace in Asia and South America. With focus on adoption of new fabrication tools, BIM and larger production capacity, the potential benefits of digital fabrication are imminent.
keywords Digital fabrication; Building facades; Mass customization; Curtain wall; BIM
series SIGRADI
email
last changed 2016/03/10 09:55

_id ecaade2013r_017
id ecaade2013r_017
authors Meghna, Saiqa I.; Chowdhury, Suvro S.
year 2013
title Contextual customization of design process. Design through the digital and the material
source FUTURE TRADITIONS [1st eCAADe Regional International Workshop Proceedings / ISBN 978-989-8527-03-5], University of Porto, Faculty of Architecture (Portugal), 4-5 April 2013, pp. 205-216
summary In contemporary world, digital technologies have initiated new architectural languages and have eased the way to communicate them directly from initial design phase to production facilities, allowing for the construction of complex geometries with the use of ever evolving techniques and tools. When the emergence of a substance depends on the material behavior, the design interest shifts towards the ‘formation’ instead of the ‘final form’. Regarding these the design procedures will be discussed from the premise where architecture will be perceived through an evolution process that deals with the coherent variables of elements and shifting parameters within a context. However, there are crucial questions about its application in the contexts which have lower access to contemporary technologies although digital technology has already influenced almost every aspects of the culture of the respective context. Besides, the huge production cost has limited its adaptability in many under developed and developing countries where the construction field relies mainly on traditional and low-tech methods. The paper is an effort to give attention on exploration of the new-found freedoms of material computation in close connection with the respective context by inventing new design processes, material applications and custom devices. It is the time to experiment with flexible, mobile and low-cost fabrication methods applicable to different scenarios while achieving the complexity of the contemporary architectural ge¬ometries. Thus an equal focus has to be given to speculate about projects that are site-specific, custom¬ized and adapted to local climatic conditions and technical know-how, in areas that traditionally have limited access to new technologies.
keywords Complex geometries, material behavior, custom devices, low-cost fabrication, design process
email
last changed 2013/10/07 19:08

_id sigradi2013_311
id sigradi2013_311
authors Porto Carreiro, Patrícia; Rejane de Moraes Rêgo
year 2013
title Mapas Mentais e Ferramentas Computacionais na Gestão da Informação do Processo de Ensino Projetual da Arquitetura, Urbanismo e Paisagismo [Mind Maps and Computational Tools in the Information Management in the Process of Design Teaching in Architecture, Urbanism and Landscaping]
source SIGraDi 2013 [Proceedings of the 17th Conference of the Iberoamerican Society of Digital Graphics - ISBN: 978-956-7051-86-1] Chile - Valparaíso 20 - 22 November 2013, pp. 590 - 594
summary This article relates a teaching experience in the discipline “InfoAU II” at the CAU/UFPE/Brasil. One of the objectives is, working with the students, reflecting about the design as a multidisciplinary knowledge integration process. The other one is opening a discussion about the importance in the Information management in the process of design teaching in Architecture, Urbanism and Landscaping within digital environments. The methodology involves a construction of  mind maps on paper and digital format (using the software Prezi) as a tool for registration of design process, which it shows the requirement to get deeply in seeking methodologies and tools for a reflexive design teaching.
keywords Mind maps; Information management; Design process; Design teaching; Curriculum
series SIGRADI
email
last changed 2016/03/10 09:58

_id acadia13_327
id acadia13_327
authors Raspall, Felix; Imbern, Matías; Choi, William
year 2013
title Adaptive Tectonic Systems: Parametric Modeling and Digital Fabrication of Precast Roofing Assemblies Toward Site-Specific Design Response
doi https://doi.org/10.52842/conf.acadia.2013.327
source ACADIA 13: Adaptive Architecture [Proceedings of the 33rd Annual Conference of the Association for Computer Aided Design in Architecture (ACADIA) ISBN 978-1-926724-22-5] Cambridge 24-26 October, 2013), pp. 327-336
summary In order to design adaptable systems, the requirements include flexible models to generate a range of alternative configurations, analytical engines to evaluate performance, and well-defined selection criteria to identify suitable options. In most cases, design processes driven by performance concentrate on environmental or structural parameters; fabrication often remains disconnected from the generative process. Nonetheless, as design-to-fabrication methods become more robust, it is possible to extend the digital process to introduce fabrication variables to the definition of the project. The main focus of the research presented in this paper is the development of a digital and material workflow that connects design, structural and climate-specific topics (such as sun lighting and water drainage) toward producing a range of efficient structural and spatial assemblies.A case study serves as the main support for this investigation. Miguel Fisac’s “bones” is a light-weight roof system developed during the 1960’s, which had a very well-calibrated structural, natural-lighting, drainage and construction performance, as well as a highly refined spatial output. The system, despite its intelligence, lacked the flexibility possible today: using digital technologies, it can adapt to a significantly wider range of applications. Using “bones” as a starting point, this research develops a design-to-fabrication workflow that attempts to move forward tools, material systems and processes to enable an adaptable tectonic system.This paper describes the background research, concept, form-finding, construction process, methodology, results and conclusions of the investigation.
keywords complex systems, parametric design, integrated design and fabrication, mass customization, Miguel Fisac bones, adaptive material system
series ACADIA
type Normal Paper
email
last changed 2022/06/07 08:00

_id caadria2013_076
id caadria2013_076
authors Raspall, Felix; Matias Imbern and William Choi
year 2013
title Fisac Variations: An Integrated Design and Fabrication Strategy for Adaptable Building Systems
doi https://doi.org/10.52842/conf.caadria.2013.055
source Open Systems: Proceedings of the 18th International Conference on Computer-Aided Architectural Design Research in Asia (CAADRIA 2013) / Singapore 15-18 May 2013, pp. 55-64
summary The promise of robotic fabrication as an enabler for mass-customization in Architecture has been hindered by the intricate workflow required to go from parametric modelling to CNC fabrication. The lack of integration between highly-specialized proprietary software, normally required to operate the machines, and most of the design tools constitutes a major limitation. One way to tackle this constraint is by developing simple tools that directly link parametric modelling to robotic coding. Accordingly, “Fisac Variations” develops an uninterrupted digital workflow from form-generation to robotic fabrication. This innovative approach to Computer Aided Design and Manufacturing was tested by studying and reengineering a specific historic construction system -Miguel Fisac’s Bones System was used as a case study- and by enabling it to address problems of contemporary architectural agenda such as flexibility, variability and mass-customization. The proposed workflow threads form-finding, structural analysis, geometric definition, CNC code generation and digital fabrication within the same open-source computational environment. In this way, this innovative procedure aims to increase design freedom while ensuring fabrication feasibility. This paper describes background research, concept, form-finding, construction process, methodology, results and conclusions.  
wos WOS:000351496100006
keywords Parametric design, Digital fabrication and construction, Integrated design and fabrication, Mass-customization, Miguel fisac bones system 
series CAADRIA
email
last changed 2022/06/07 08:00

_id caadria2013_039
id caadria2013_039
authors Schrems. Maximilian J. and Toni Kotnik
year 2013
title Statically Motivated Form Finding Based on Extended  Graphical Statics (EGS)
doi https://doi.org/10.52842/conf.caadria.2013.843
source Open Systems: Proceedings of the 18th International Conference on Computer-Aided Architectural Design Research in Asia (CAADRIA 2013) / Singapore 15-18 May 2013, pp. 843-852
summary In the 19th century it was common to use graphical methods for study the relationship between form and force. The central element of all drawing methods for representing the inner flow of forces was the investigation of the dependence of equilibrium and force polygons, as well as their representation in two geometrically dependent diagrams with different units. This research is part of an on going project to extend the methods of ‘graphical statics’ of Carl Culmann (1866) to the third dimension in order to overcome some of the 2D-limitations of this approach. It is focused on the construction of resulting force within 3D and the utilization within discrete space frames (tetrahedrons) in equilibrium. The objective of the EGS is to focus on constructing in contrast to calculating. That means that the logic of the inner force flow leads to a process-oriented and visible approach of design, which gets computationally accessible. With the use of digital tools and increasing importance of performative methods of form-finding a renewed interest in these vector-based geometric methods of construction of force flow has occurred. This may be will give the possibility to get an alternative to the common form finding methods by relaxation processes and analysis by FEM.  
wos WOS:000351496100087
keywords Graphical statics, 3D equilibrium, Form finding method 
series CAADRIA
email
last changed 2022/06/07 07:57

_id caadria2013_111
id caadria2013_111
authors Zarzycki, Andrzej
year 2013
title Learning with Digital and Physical Mock-ups Using BIM
doi https://doi.org/10.52842/conf.caadria.2013.323
source Open Systems: Proceedings of the 18th International Conference on Computer-Aided Architectural Design Research in Asia (CAADRIA 2013) / Singapore 15-18 May 2013, pp. 323-332
summary Computer-based tools have changed the focus and modes of design thinking in architecture. While often criticized for its overemphasis on formal expressions and its pursuit of the spectacular, digital creativity has begun to take into account a multiplicity of design factors that define architecture. These factors relate to performance simulation and analysis, constructability, and Building Information Modelling (BIM). This paper discusses the use of physical and digital mock-ups in the context of building technology courses. It uses these mock-ups as an important vehicle that provides students with a feedback mechanism regarding often digitally idealized creative thinking.  
wos WOS:000351496100032
keywords BIM, Building information modelling, Parametric construction details, Construction assemblies 
series CAADRIA
email
last changed 2022/06/07 07:57

_id sigradi2013_337
id sigradi2013_337
authors Al-Haddad, Tristan; Keyan Rahimzadeh; Jill Fredrickson
year 2013
title Concrete Continuum: Concept, Calculus, & Construction Connected Through Parametric Representation
source SIGraDi 2013 [Proceedings of the 17th Conference of the Iberoamerican Society of Digital Graphics - ISBN: 978-956-7051-86-1] Chile - Valparaíso 20 - 22 November 2013, pp. 230 - 234
summary This paper outlines a custom-built suite of scripts that automate the processes of reinforced concrete design and is directly linked to the parametric design model of the architect. The workflow creates a design and engineering feedback loop for early phase schematic design. Using this system, the design geometry is generated and then deconstructed into a Finite Element model. The workflow executes a static analysis then calculates rebar size and placement, and finally generates fabrication drawings. This methodology allows architectural intent and engineering analysis to be collapsed into a single non-linear design process.
keywords Parametric design; Digital fabrication; Reinforced concrete; Production automation; Design feedback proces
series SIGRADI
email
last changed 2016/03/10 09:47

_id ascaad2014_016
id ascaad2014_016
authors Al-Ratrout, Samer A. and Rana Zureikat
year 2014
title Pedagogic Approach in the Age of Parametric Architecture: Experimental method for teaching architectural design studio to 3rd year level students
source Digital Crafting [7th International Conference Proceedings of the Arab Society for Computer Aided Architectural Design (ASCAAD 2014 / ISBN 978-603-90142-5-6], Jeddah (Kingdom of Saudi Arabia), 31 March - 3 April 2014, pp. 211-226
summary In this era, Architectural Design Practice is faced with a paradigm shift in its conventional approaches towards computational methods. In this regard, it is considered a pedagogic challenge to boost up knowledge and skills of architectural students’ towards an advanced approach of architectural design that emphasizes the potentials and complexity of computational environments and parametric tools for design problem solving. For introducing the concept of Parametric Oriented Design Methods to 3rd year level architectural students, an experimental pedagogic course was designed in the scholastic year of 2012-2013 at German Jordanian University GJU (School of Architecture and Built Environment SABE) to approach this concept. In the preparation phase, the experimental course was designed to incorporate structured instructing and training method to be consecutively performed within experimental lab environment to target predetermined learning outcomes and goals. The involved students were intentionally classified into three levels of previous involvement associated with the related software operating skills and computational design exposure. In the implementation phase, the predetermined instructing and training procedures were performed in the controlled environment according to the planned tasks and time intervals. Preceded tactics were prepared to be executed to resolve various anticipated complication. In this phase also, students’ performance and comprehension capacity were observed and recorded. In data analysis phase, the observed results were verified and correlations were recognized. In the final phase, conclusions were established and recommendations for further related pedagogic experiments were introduced.
series ASCAAD
email
last changed 2016/02/15 13:09

_id sigradi2013_243
id sigradi2013_243
authors Andia, Alfredo
year 2013
title Automated Architecture: Why CAD, Parametrics and Fabrication are Really old News
source SIGraDi 2013 [Proceedings of the 17th Conference of the Iberoamerican Society of Digital Graphics - ISBN: 978-956-7051-86-1] Chile - Valparaíso 20 - 22 November 2013, pp. 83 - 87
summary Automation is transforming a significant number of industries today. This paper discusses how the Design and Construction industry is also entering into a new era of automation. In the paper I observe that designers are automating by using parametric tools (BIM, scripting, etc.) while contractors are moving into pre-fabrication and modularization. Both conceptualizations are incomplete. The paper presents how we are in the first steps of creating learning algorithms that develop specific intelligence in design synthesis and how the design field will became even more sophisticated as a second generation of multi-material 3D printing techniques produce new materials.
keywords Automation; Architectural design; Artificial intelligence; Learning algorithms; Multi-material printers
series SIGRADI
email
last changed 2016/03/10 09:47

_id sigradi2014_192
id sigradi2014_192
authors Angulo, Antonieta H.; Guillermo P. Vasquez de Velasco
year 2014
title Immersive Simulation in Instructional Design Studios
source SIGraDi 2014 [Proceedings of the 18th Conference of the Iberoamerican Society of Digital Graphics - ISBN: 978-9974-99-655-7] Uruguay- Montevideo 12,13,14 November 2014, pp. 236-240
summary The paper describes the implementation of “immersive simulation studios” at Ball State University and their impact on architectural design education. This implementation is part of our on-going research efforts aimed to expand conventionally available digital design tools by including state-of-the-art virtual reality (VR) technology in design studios. Two consecutive immersive simulation studios were held during the academic year 2013-2014; we tested teaching/learning methodologies for effectively using the VR simulation to support the students in the design of architectural spaces. The results make reference to the learning outcomes from these implementations and the level of satisfaction of students using the tool.
keywords Architectural Education; Design Studios; Virtual Reality; Immersive Simulation; Head-Mounted Display
series SIGRADI
email
last changed 2016/03/10 09:47

_id caadria2013_034
id caadria2013_034
authors Arenas, Ubaldo and José Manuel Falcón
year 2013
title ALOPS Constructive Systems – Towards the Design and Fabrication of Unsupervised Learning Construction Systems
doi https://doi.org/10.52842/conf.caadria.2013.905
source Open Systems: Proceedings of the 18th International Conference on Computer-Aided Architectural Design Research in Asia (CAADRIA 2013) / Singapore 15-18 May 2013, pp. 905-914
summary In this paper we explore the concept and design guidelines for an Autonomous Learning Oriented Proto System (ALOPS), a construction system designed to enhance its own performance through time. Our research has been focused on the fabrication of a prototype for a porous wall system which reacts to light intensities by closing or opening its apertures. Taking that aim, we used a combination of robotics, programing, and material behaviour to endow the system with the capacity to record reactions towards encountered sets of conditions during its active energy periods, allowing the system to use this knowledge database to evolve autonomously by feeding this information back into the computation process. This approach in construction systems opens up the architectural design processes to address the creation of digital memory structures rather than complex algorithms in order to operate specific functions. With this development, the architect could think of architectures constantly evolving by learning from their environments as well as of users forming symbiotic and behavioural bonds with the emergent spatial personalities, thus affecting the underpinning relationships between architecture, user and context.  
wos WOS:000351496100093
keywords erformance architecture, Unsupervised learning, Machine learning 
series CAADRIA
email
last changed 2022/06/07 07:54

_id ecaade2013_115
id ecaade2013_115
authors Barczik, Günter
year 2013
title Continuous Oscillations
doi https://doi.org/10.52842/conf.ecaade.2013.2.571
source Stouffs, Rudi and Sariyildiz, Sevil (eds.), Computation and Performance – Proceedings of the 31st eCAADe Conference – Volume 2, Faculty of Architecture, Delft University of Technology, Delft, The Netherlands, 18-20 September 2013, pp. 571-578
summary We present and discuss a didactic for augmenting architectural design education with computational design techniques via integrative feedback loops and show examples of student projects. Our goal is to embed new technical skills into existing design abilities as quickly as possible, in order to enable our students to exploit and explore the extended capabilities of digital design techniques within the framework of architectural design projects. We instigate a process of continuous mutual feedback between different fields: on the one hand between technique-based exercises and design-related steps, and on the other hand between the digital and the physical. Through oscillation and feedback, the newly learned skills are directly interwoven with the existing ones. Special emphasis is put on the illuminative effects of transitions between different media and on issues of fabrication.
wos WOS:000340643600058
keywords Design curriculum; tools; shape studies.
series eCAADe
email
last changed 2022/06/07 07:54

For more results click below:

this is page 0show page 1show page 2show page 3show page 4show page 5... show page 30HOMELOGIN (you are user _anon_74924 from group guest) CUMINCAD Papers Powered by SciX Open Publishing Services 1.002