CumInCAD is a Cumulative Index about publications in Computer Aided Architectural Design
supported by the sibling associations ACADIA, CAADRIA, eCAADe, SIGraDi, ASCAAD and CAAD futures

PDF papers
References

Hits 1 to 20 of 611

_id ecaade2013_002
id ecaade2013_002
authors Hanzl, Ma_gorzata
year 2013
title Modelling of Public Spaces
doi https://doi.org/10.52842/conf.ecaade.2013.1.319
source Stouffs, Rudi and Sariyildiz, Sevil (eds.), Computation and Performance – Proceedings of the 31st eCAADe Conference – Volume 1, Faculty of Architecture, Delft University of Technology, Delft, The Netherlands, 18-20 September 2013, pp. 319-327
summary The relationship between the material settings and situational belonging to a more general notion of the culture of a given community remains the subject of inquiry of at least two scientific disciplines: anthropology and urban morphology studies. In this study an assessment of the various modelling platforms is performed with the objective of finding the most efficient method which allows the description of the semiotic features of urbanscapes. The ideal system should link the parametric definition of urban geometry with the high flexibility of data input and easy manipulation. In order to enable culture related analyses of urbanscapes, analyses should be performed which refers to the semiotics of morphological structures in the detailed scale of urban enclosure, which are streets or squares. Some elements of the proposed method of index key analyses are explained as one possible solution for the problems posed.
wos WOS:000340635300033
keywords Urban design; urban morphology; anthropology; parametric modelling; outdoor space.
series eCAADe
email
last changed 2022/06/07 07:49

_id cf2013_295
id cf2013_295
authors Markova, Stanimira; Christoph Langenhan, Peter Russell, and Frank Petzold
year 2013
title Building Elements Re-usability Optimization - Design Decision Support Using a Case-Base of Building Information Models and Semantic Fingerprints
source Global Design and Local Materialization[Proceedings of the 15th International Conference on Computer Aided Architectural Design Futures / ISBN 978-3-642-38973-3] Shanghai, China, July 3-5, 2013, pp. 295-305.
summary The complexity of the requirements on buildings is continuously increasing and thus, often confronting designers with interdisciplinary problems, reaching far beyond the traditional challenges and methods of architecture and engineering. Moreover, designers are often required to take decisions, when most of the information and knowledge is still missing or to be generated. In the context of sustainable building design, the re-usability of building elements and the optimisation for exchangeability is crucial for the achievement of two of the main goals: efficient use of material resources and waste reduction. The scope of this work in progress is describing requirements for case-based decision support in order to optimise building element re-usability, create an analysis of explicit re-usability indicators (e.g. “connection liberation”, “modularity” or “life span collision”) and to identify retrieval strategies. A proposal to support decision making processes by retrieving existing design solutions graph representations as well as the use of building information models are also described.
keywords case-based reasoning, sustainable design, early design stage support, building information modelling
series CAAD Futures
email
last changed 2014/03/24 07:08

_id ecaade2013_164
id ecaade2013_164
authors Nicknam, Mahsa; Bernal, Marcelo and Haymaker, John
year 2013
title A Case Study in Teaching Construction of Building Design Spaces
doi https://doi.org/10.52842/conf.ecaade.2013.2.595
source Stouffs, Rudi and Sariyildiz, Sevil (eds.), Computation and Performance – Proceedings of the 31st eCAADe Conference – Volume 2, Faculty of Architecture, Delft University of Technology, Delft, The Netherlands, 18-20 September 2013, pp. 595-604
summary Until recently, design teams were constrained by tools and schedule to only be able to generate a few alternatives, and analyze these from just a few perspectives. The rapid emergence of performance-based design, analysis, and optimization tools gives design teams the ability to construct and analyze far larger design spaces more quickly. This creates new opportunities and challenges in the ways we teach and design. Students and professionals now need to learn to formulate and execute design spaces in efficient and effective ways. This paper describes curriculum that was taught in a course “8803 Multidisciplinary Analysis and Optimization” taught by the authors at Schools of Architecture and Building Construction at Georgia Tech in spring 2013. We approach design as a multidisciplinary design space formulation and search process that seeks maximum value. To explore design spaces, student designers need to execute several iterative processes of problem formulation, generate alternative, analyze them, visualize trade space, and address decision-making. The paper first describes students design space exploration experiences, and concludes with our observations of the current challenges and opportunities.
wos WOS:000340643600061
keywords Design space exploration; teaching; multidisciplinary; optimization; analysis.
series eCAADe
email
last changed 2022/06/07 07:58

_id acadia13_337
id acadia13_337
authors Rippmann, Matthias; Block, Philippe
year 2013
title Funicular Shell Design Exploration
doi https://doi.org/10.52842/conf.acadia.2013.337
source ACADIA 13: Adaptive Architecture [Proceedings of the 33rd Annual Conference of the Association for Computer Aided Design in Architecture (ACADIA) ISBN 978-1-926724-22-5] Cambridge 24-26 October, 2013), pp. 337-346
summary This paper discusses the design exploration of funicular shell structures based on Thrust Network Analysis (TNA) The presented graphical form finding approach and its interactive, digital-tool implementation target to foster the understanding of the relation between form and force in compression curved surface structures in an intuitive and playful way. Based on this understanding, the designer can fully take advantage of the presented method and digital tools to adapt the efficient structural system to the specific needs of different architectural applications. The paper focuses on simple examples to visualize the graphical concept of various modification techniques used for this form finding approach. Key operations and modifications have been identified and demonstrate the surprisingly flexible and manifold design space of funicular form. This variety of shapes and spatial articulation of funicular form is further investigated by discussing several built prototypes.
keywords funicular design; structural form finding; thrust network analysis; real-time structural design tools; interactive; compression shells
series ACADIA
type Normal Paper
email
last changed 2022/06/07 07:56

_id caadria2014_124
id caadria2014_124
authors Williams, Nicholas; Sascha Bohnenberger and John Cherrey
year 2014
title A System for Collaborative Design on Timber Gridshells
doi https://doi.org/10.52842/conf.caadria.2014.441
source Rethinking Comprehensive Design: Speculative Counterculture, Proceedings of the 19th International Conference on Computer-Aided Architectural Design Research in Asia (CAADRIA 2014) / Kyoto 14-16 May 2014, pp. 441–450
summary The bent timber laths of the Sound Bites gridshell create two types of performance space over an area of almost 100 m2. Such postformed gridshells are a wellestablished design solution for creating curved forms from linear elements. Extending principles developed since the 1970s, contemporary digital tools have been utilised to drive a renewed interest in them, primarily through so-called form-finding techniques which connect digital and material models through a simulation of shape under bending loads (Nettlebladt, 2013) and the definition of efficient structural geometry acting under compression loads only (Hernandez et. al., 2012). This paper describes the workflow conceived and implemented for the Sound Bites structure. A central challenge of the research was for such a workflow to allow for the principles of gridshell design to be engaged in parallel to other tight constraints and design drivers. As such it needed to facilitate close collaboration between architectural, engineering and fabrication experts. This workflow was tested in the design and realisation of the full-scale structure within a six-week period. The gridshell design was developed through the manipulation of the shape of two edge profiles and the shell form spanning between these. Architectural and fabrication constraints were met and the workflow allowed for a sufficient level of structural analysis to be fed back to inform the design.
keywords Digital Workflow; Collaborative Design; Digital Formfinding; Digital Fabrication
series CAADRIA
email
last changed 2022/06/07 07:57

_id caadria2021_044
id caadria2021_044
authors Wu, Shaoji
year 2021
title 3D Space Resilience Analysis of Commercial Complex - Beijing APM as an Example
doi https://doi.org/10.52842/conf.caadria.2021.2.457
source A. Globa, J. van Ameijde, A. Fingrut, N. Kim, T.T.S. Lo (eds.), PROJECTIONS - Proceedings of the 26th CAADRIA Conference - Volume 2, The Chinese University of Hong Kong and Online, Hong Kong, 29 March - 1 April 2021, pp. 457-466
summary Commercial complexes have played an increasingly important role in contemporary cities. Due to the occurrence of crowded people or equipment overhauls, some paths in a commercial complex may become impassable, which can be seen as disruptions to its spatial system. This paper provides a practical method to quantify the spatial resilience of a commercial complex taking Beijing APM as an example. This study can be divided into the following three steps. First, transforming the realistic spatial path system to a directed network model. Second, using topological, metric, and angular distance as edge weight to calculate the centrality and present its distribution. Third, using two disruption processes, randomized and attractor-guided strategy, evaluates the spatial networks resilience. There are three conclusions from this study. The first one is the process of disruption is non-linear, and there is a phase transition process when it reaches the critical threshold. The second one is the most efficient disruption method is the topological BC attractor-guided strategy. The last one is the resilience of a commercial complex, whose 3D spatial networks resilience is lower than the 2D spatial networks resilience by comparison with Duan and Lus (2013) study.
keywords Resilience; Robustness; Network Secience; Commercial Complex
series CAADRIA
email
last changed 2022/06/07 07:57

_id ecaade2013_136
id ecaade2013_136
authors Vasku, Michael
year 2013
title Generative Improvement of Street Networks Based on Space Syntax
doi https://doi.org/10.52842/conf.ecaade.2013.1.367
source Stouffs, Rudi and Sariyildiz, Sevil (eds.), Computation and Performance – Proceedings of the 31st eCAADe Conference – Volume 1, Faculty of Architecture, Delft University of Technology, Delft, The Netherlands, 18-20 September 2013, pp. 367-374
summary Space syntax is supposed to be an objective method for evaluating spatial configurations. Its contribution to a design process is dependent on the designer’s estimation. The paper describes a generative approach to finding particularly good interventions based on space syntax analyses of axial maps. More precisely, a case study was undertaken through applying such a strategy to improve and connect a segregated street network of an informal settlement to its neighbourhood. Controlling and redirecting movement in slums may cause positive effects. This research is based on and inspired by a consulting project by the company Space Syntax Limited for the Municipality of Jeddah, Saudi Arabia, in which the consulting company designed a regeneration program for declining informal settlements. (Karimi and Parham, 2012)
wos WOS:000340635300038
keywords Space syntax; slum upgrading; design computing; urban design.
series eCAADe
email
last changed 2022/06/07 07:58

_id acadia20_688
id acadia20_688
authors del Campo, Matias; Carlson, Alexandra; Manninger, Sandra
year 2020
title 3D Graph Convolutional Neural Networks in Architecture Design
doi https://doi.org/10.52842/conf.acadia.2020.1.688
source ACADIA 2020: Distributed Proximities / Volume I: Technical Papers [Proceedings of the 40th Annual Conference of the Association of Computer Aided Design in Architecture (ACADIA) ISBN 978-0-578-95213-0]. Online and Global. 24-30 October 2020. edited by B. Slocum, V. Ago, S. Doyle, A. Marcus, M. Yablonina, and M. del Campo. 688-696.
summary The nature of the architectural design process can be described along the lines of the following representational devices: the plan and the model. Plans can be considered one of the oldest methods to represent spatial and aesthetic information in an abstract, 2D space. However, to be used in the design process of 3D architectural solutions, these representations are inherently limited by the loss of rich information that occurs when compressing the three-dimensional world into a two-dimensional representation. During the first Digital Turn (Carpo 2013), the sheer amount and availability of models increased dramatically, as it became viable to create vast amounts of model variations to explore project alternatives among a much larger range of different physical and creative dimensions. 3D models show how the design object appears in real life, and can include a wider array of object information that is more easily understandable by nonexperts, as exemplified in techniques such as building information modeling and parametric modeling. Therefore, the ground condition of this paper considers that the inherent nature of architectural design and sensibility lies in the negotiation of 3D space coupled with the organization of voids and spatial components resulting in spatial sequences based on programmatic relationships, resulting in an assemblage (DeLanda 2016). These conditions constitute objects representing a material culture (the built environment) embedded in a symbolic and aesthetic culture (DeLanda 2016) that is created by the designer and captures their sensibilities.
series ACADIA
type paper
email
last changed 2023/10/22 12:06

_id ecaade2013_043
id ecaade2013_043
authors Rua, Helena; Falcão, Ana Paula and Roxo, Ana Filipa
year 2013
title Digital Models – Proposal for the Interactive Representation of Urban Centres
doi https://doi.org/10.52842/conf.ecaade.2013.1.265
source Stouffs, Rudi and Sariyildiz, Sevil (eds.), Computation and Performance – Proceedings of the 31st eCAADe Conference – Volume 1, Faculty of Architecture, Delft University of Technology, Delft, The Netherlands, 18-20 September 2013, pp. 265-273
summary The idea of ‘city’ has now surpassed its physical concept. The emergence of the Internet and the growing development of information and communication technologies (ICT) have changed the behaviour of our society in the past decade and revolutionised the traditional ways of representing space. The classic 2D (floor plans, sections and elevations) and 3D representations have been gradually replaced by 3D digital models that can reproduce buildings and places in a virtual environment.3D digital models are tools that enable a wide range of applications in urban planning and management, especially in architectural and data documentation where they allow the analysis of theoretical scenarios such as: 1) representation of the past, considering the procedures needed to restore the heritage; 2) visualisation of the present, to enable dissemination and communication of the city as it is; and, 3) simulation of the future, with the model being used to visualise and experiment with architectural objects, even those at a design stage. The main contribution of this work is to present an urban application developed into a GeoBIM tool, ESRI City Engine Software (CE), that integrates GIS (Geographic Information Systems) and BIM (Building Information Modelling) concepts. Finally, to enhance its potential, three spatial analyses were conducted.
wos WOS:000340635300027
keywords 3D model; GIS – Geographic Information System; BIM – Building Information Modelling; shape grammars; spatial analysis.
series eCAADe
email
last changed 2022/06/07 07:56

_id caadria2013_039
id caadria2013_039
authors Schrems. Maximilian J. and Toni Kotnik
year 2013
title Statically Motivated Form Finding Based on Extended  Graphical Statics (EGS)
doi https://doi.org/10.52842/conf.caadria.2013.843
source Open Systems: Proceedings of the 18th International Conference on Computer-Aided Architectural Design Research in Asia (CAADRIA 2013) / Singapore 15-18 May 2013, pp. 843-852
summary In the 19th century it was common to use graphical methods for study the relationship between form and force. The central element of all drawing methods for representing the inner flow of forces was the investigation of the dependence of equilibrium and force polygons, as well as their representation in two geometrically dependent diagrams with different units. This research is part of an on going project to extend the methods of ‘graphical statics’ of Carl Culmann (1866) to the third dimension in order to overcome some of the 2D-limitations of this approach. It is focused on the construction of resulting force within 3D and the utilization within discrete space frames (tetrahedrons) in equilibrium. The objective of the EGS is to focus on constructing in contrast to calculating. That means that the logic of the inner force flow leads to a process-oriented and visible approach of design, which gets computationally accessible. With the use of digital tools and increasing importance of performative methods of form-finding a renewed interest in these vector-based geometric methods of construction of force flow has occurred. This may be will give the possibility to get an alternative to the common form finding methods by relaxation processes and analysis by FEM.  
wos WOS:000351496100087
keywords Graphical statics, 3D equilibrium, Form finding method 
series CAADRIA
email
last changed 2022/06/07 07:57

_id caadria2014_042
id caadria2014_042
authors Alam, Jack and Jeremy J. Ham
year 2014
title Towards a BIM-Based Energy Rating System
doi https://doi.org/10.52842/conf.caadria.2014.285
source Rethinking Comprehensive Design: Speculative Counterculture, Proceedings of the 19th International Conference on Computer-Aided Architectural Design Research in Asia (CAADRIA 2014) / Kyoto 14-16 May 2014, pp. 285–294
summary Governments in Australia are faced with policy implementation that mandates higher energy efficient housing (Foran, Lenzen & Dey 2005). To this effect, the National Construction Code (NCC) 2013 stipulates the minimum energy performance for residential buildings as 114MJ/m2 per annum or 6 stars on an energy rating scale. Compliance with this minimum is mandatory but there are several methods through which residential buildings can be rated to comply with the deemed to satisfy provisions outlined in the NCC. FirstRate5 is by far the most commonly used simulation software used in Victoria, Australia. Meanwhile, Building Information Modelling (BIM), using software such as ArchiCAD has gained a foothold in the industry. The energy simulation software within ArchiCAD, EcoDesigner, enables the reporting on the energy performance based on BIM elements that contain thermal information. This research is founded on a comparative study between FirstRate5 and EcoDesigner. Three building types were analysed and compared. The comparison finds significant differences between simulations, being, measured areas, thermal loads and potentially serious shortcomings within FirstRate5, that are discussed along with the future potential of a fully BIM-integrated model for energy rating certification in Victoria.
keywords Building Information Modelling, energy rating, FirstRate 5, ArchiCAD EcoDesigner, Building Energy Model
series CAADRIA
email
last changed 2022/06/07 07:54

_id ecaade2013_249
id ecaade2013_249
authors Araya, Sergio; Zolotovsky, Ekaterina; Veliz, Felipe; Song, Juha; Reichert, Steffen; Boyce, Mary and Ortiz, Christine
year 2013
title Bioinformed Performative Composite Structures
doi https://doi.org/10.52842/conf.ecaade.2013.1.575
source Stouffs, Rudi and Sariyildiz, Sevil (eds.), Computation and Performance – Proceedings of the 31st eCAADe Conference – Volume 1, Faculty of Architecture, Delft University of Technology, Delft, The Netherlands, 18-20 September 2013, pp. 575-584
summary This ongoing investigation aims to learn from nature novel material organizations and structural systems in order to develop innovative architectural system. We developed a multidisciplinary approach, using scientific analysis and design research and prototyping. We focus on the study of a “living fossil” fish, whose armor system is so efficient it has remained almost unchanged for millions of years. We investigate its morphological characteristics, its structural properties, the assembly mechanisms and the underlying material properties in order to derive new principles to design new enhanced structural systems. We use micro computerized tomography and scanning electron microscopy to observe microstructures, parametric design to reconstruct the data into digital models and then several 3D printing technologies to prototype systems with high flexibility and adaptive capabilities, proposing new gradual material interfaces and transitions to embed performative capabilities and multifunctional potentials.
wos WOS:000340635300060
keywords Bioinformed; multi-material; composite; parametrics; performative design.
series eCAADe
type normal paper
email
last changed 2022/06/07 07:54

_id sigradi2013_226
id sigradi2013_226
authors Baerlecken, Daniel; Sabri Gokmen
year 2013
title Gemming: Architectonics of Facets
source SIGraDi 2013 [Proceedings of the 17th Conference of the Iberoamerican Society of Digital Graphics - ISBN: 978-956-7051-86-1] Chile - Valparaíso 20 - 22 November 2013, pp. 225 - 229
summary This paper will articulate on how the intrinsic principles of gem making could be applied in architectural form finding. It will speculate that the technical accumulation of expertise and knowledge in this crafty technique could be implemented algorithmically. This robust and efficient process could provide solutions for architectural design problems. It will conclude that faceting, as we can observe it in jewelry making and lamp design, produces facets that are not just reacting to an underlying geometry, but also add expression and articulation to an object.
keywords Planar facets, Tiffany lamps, Color, Digital design
series SIGRADI
email
last changed 2016/03/10 09:47

_id sigradi2013_000
id sigradi2013_000
authors Bernal, Marcelo & Paula Gómez (Eds.)
year 2013
title Knowledge-based Design
source SIGraDi 2013 [Proceedings of the 17th Conference of the Iberoamerican Society of Digital Graphics - ISBN: 978-956-7051-86-1] Chile - Valparaíso 20 - 22 November 2013
summary Knowledge based design is acquired through one's exposure to a large number of projects and establishes a set of patterns regarding organizations, techniques, procedures, heuristics, priorities and preferences. Over time, designers develop a distinctive set of principles that represent their own individual methods of addressing design problems. Creative designers not only design the solutions, they also design the problems. Although their repertoire of resources includes explicit declarations regarding recognizable problem types, physical components, design rules, or evaluation methods of different aspects, design decisions are also driven by vast amounts of tacit considerations derived from professional experience. Designers make such decisions balancing design intent and technical requirements in a very efficient and synthetic manner. We designers know what we do, but it is not so clear how we do it. This conference is an invitation to engage in a dialogue concerning how Design Knowledge can be represented and manipulated within digital environments.
series other
type normal paper
email
more https://www.dropbox.com/s/nl70a4rz9wh7c03/SIGRADI_2013.pdf
last changed 2014/07/02 08:00

_id ecaade2013_207
id ecaade2013_207
authors Bielik, Martin; Schneider, Sven; Geddert, Florian and Donath, Dirk
year 2013
title Addis Building Configurator
doi https://doi.org/10.52842/conf.ecaade.2013.1.109
source Stouffs, Rudi and Sariyildiz, Sevil (eds.), Computation and Performance – Proceedings of the 31st eCAADe Conference – Volume 1, Faculty of Architecture, Delft University of Technology, Delft, The Netherlands, 18-20 September 2013, pp. 109-116
summary The paper presents ongoing applied research on the development of a computational design tool addressing planning deficiencies in the city of Addis Ababa, Ethiopia. Because of increasing population pressure and a lack of planning resources, Addis Ababa is clearly in need of new efficient planning solutions. The tool proposed utilizes and combines different generative design methods in order to increase the efficiency of planning and construction processes. The paper discusses design goals and the implementation strategy involved.
wos WOS:000340635300010
keywords Design tool; evolutionary optimization; generative system; developing countries.
series eCAADe
email
last changed 2022/06/07 07:52

_id ijac201311301
id ijac201311301
authors Hack, Norman; Willi Lauer, Silke Langenberg, Fabio Gramazio, Matthias Kohler
year 2013
title Overcoming Repetition: Robotic fabrication processes at a large scale
source International Journal of Architectural Computing vol. 11 - no. 3, 285-300
summary In the context of the Future Cities Laboratory (FCL) of ETH Zurich, the Professorship for Architecture and Digital Fabrication of Fabio Gramazio and Matthias Kohler has set up a robotic laboratory to investigate the potentials of non-standard robotic fabrication for high rise constructions in Singapore. The high degree of industrialisation of this dominant building typology implies standardisation, simplification and repetition and accounts for the increasing monotony evident in many Asian metropolises. The aim of this research on material systems for robotic construction is to develop a new and competitive construction method that makes full use of the malleable potential of concrete as a building material. A novel, spatial, robotic "weaving" method of a tensile active material that simultaneously acts as the form defining mould, folds two separate aspects of concrete-reinforcement and formwork-into one single robotic fabrication process (see Figure 1). This in-situ process could permit the fabrication of structurally differentiated, spatially articulated and material efficient buildings.
series journal
last changed 2019/05/24 09:55

_id ecaade2013_143
id ecaade2013_143
authors Kurilla, Lukáš; Achten, Henri and Florián, Miloš
year 2013
title Scripting Design Supported by Feedback Loop from Structural Analysis
doi https://doi.org/10.52842/conf.ecaade.2013.1.051
source Stouffs, Rudi and Sariyildiz, Sevil (eds.), Computation and Performance – Proceedings of the 31st eCAADe Conference – Volume 1, Faculty of Architecture, Delft University of Technology, Delft, The Netherlands, 18-20 September 2013, pp. 51-59
summary In order to support an architect’s decision to evaluate and choose more efficient structural solutions in the concept design, it is necessary to establish an interactive feedback loop between structural solver and geometry modeller which would allow one to analyse a great number of solutions generated in the scripting design process. Defining a cross-disciplinary data structure as an analytical model, the communication between existing structural solver (OOFEM) and geometry modeller (Grasshopper) was established. Automation of the entire analysis process was done by the bridging tools MIDAS and Donkey, which have been developed. This paper presents the method of creation of an analytical model by Donkey, and deals with how to visualize, interpret and use the result values from the structural analysis.
wos WOS:000340635300004
keywords design tool development; computing design; decision-making support methods; finite element method; cross-disciplinary cooperation.
series eCAADe
email
last changed 2022/06/07 07:52

_id caadria2013_071
id caadria2013_071
authors Lloret Kristensen, Ena; Fabio Gramazio, Matthias Kohler and Silke Langenberg
year 2013
title Complex Concrete Constructions – Merging Existing Casting Techniques with Digital Fabrication
doi https://doi.org/10.52842/conf.caadria.2013.613
source Open Systems: Proceedings of the 18th International Conference on Computer-Aided Architectural Design Research in Asia (CAADRIA 2013) / Singapore 15-18 May 2013, pp. 613-622
summary In the course of the 20th century, architectural construction has gone through intense innovation in its material, engineering and design, radically transforming the way buildings were and are conceived. Technological and industrial advances enabled and challenged architects, engineers and constructors to build increasingly complex architectural structures from concrete. Computer-Aided Design and Manufacturing (CAD/CAM) techniques have, more recently, rejuvenated and increased the possibilities of realising ever more complex geometries. Reinforced concrete is often chosen for such structures since almost any shape can be achieve when poured into a formwork. However, designs generated with digital tools tend to have limited relation to the efficient modes of production typically used in contemporary concrete construction. A large gap has emerged between the technology in architectural design and the building industry, so that few efficient solutions exist for the production of geometrically complex structures in concrete. This paper focuses on the capabilities and efficiency of existing casting techniques both with static and dynamic formwork which, when combined with digital fabrication, allow innovative fabrication approaches to be taken. Particular focus is placed on slipforming, an approved and efficient construction technique, which until now is unexplored in conjunction with digital fabrication. 
wos WOS:000351496100060
keywords Complex concrete structures, Casting techniques, Formwork, Slipforming, Digital fabrication, Smart dynamic casting 
series CAADRIA
email
last changed 2022/06/07 07:59

_id ecaade2013_258
id ecaade2013_258
authors Makris, Michael; Gerber, David; Carlson, Anders and Noble, Doug
year 2013
title Informing Design through Parametric Integrated Structural Simulation
doi https://doi.org/10.52842/conf.ecaade.2013.1.069
source Stouffs, Rudi and Sariyildiz, Sevil (eds.), Computation and Performance – Proceedings of the 31st eCAADe Conference – Volume 1, Faculty of Architecture, Delft University of Technology, Delft, The Netherlands, 18-20 September 2013, pp. 69-77
summary The paper describes the development, testing, and initial findings of a design tool that generates parametrically defined, semi-automatically analyzed, and visualized structural performance of specific truss designs. The prototypical design tool provides structural truss solutions for spans of uniform to non-uniform surface curvatures. Real-time visual structural performance feedback enables the designer to more rapidly develop viable and potentially more efficient designs under user defined load conditions. The research methodology is an example of reinforcing structural learning and intuition within the design process. The research presents findings of the impact of iterative and interactive structural feedback through the development of a parametrically integrated structural truss analysis tool for aiding in design decision support.
wos WOS:000340635300006
keywords Design decision support; structural analysis; parametric design; design optimization; structural design.
series eCAADe
email
last changed 2022/06/07 07:59

_id caadria2013_063
id caadria2013_063
authors Markova, Stanimira; Andreas Dieckmann and Peter Russell
year 2013
title Custom IFC Material Extension – Extending IFC for Parametric Sustainable Building Design
doi https://doi.org/10.52842/conf.caadria.2013.013
source Open Systems: Proceedings of the 18th International Conference on Computer-Aided Architectural Design Research in Asia (CAADRIA 2013) / Singapore 15-18 May 2013, pp. 13-22
summary The enormous variety of design systems and data formats utilised by the actors in the building design process has been recognised as a significant challenge for information exchange and project management. The introduction of the Industry Foundation Classes (IFC) data standard as a paradigm shift has opened a first time opportunity for smooth data and information exchange over the full range of design related parameters and processes, reaching beyond the classical constructional, economic and safety-related requirements. Moreover, IFC allows for the extension of the standard in further areas, corresponding to the specific design, project or client requirements. These user-driven extensions often close an important gap of the IFC standard and can subsequently be imbedded in new releases of the IFC data standard. This paper is focused on the extension of IFC for the purposes of controlling and managing material use, increasing material efficiency and closing material cycles over the life cycle of a building. Material efficiency is defined by the design scopes of material recyclability, element reusability and waste reduction. The practical implications of the data format extension and design-check performance are examined on the level of the data model and, subsequently, on the level of proprietary Building Information Modelling (BIM) software, based on a pre-defined case.  
wos WOS:000351496100002
keywords Material efficient building design, IFC, Parametric design, Semantic design, BIM 
series CAADRIA
email
last changed 2022/06/07 07:59

For more results click below:

this is page 0show page 1show page 2show page 3show page 4show page 5... show page 30HOMELOGIN (you are user _anon_92486 from group guest) CUMINCAD Papers Powered by SciX Open Publishing Services 1.002