CumInCAD is a Cumulative Index about publications in Computer Aided Architectural Design
supported by the sibling associations ACADIA, CAADRIA, eCAADe, SIGraDi, ASCAAD and CAAD futures

PDF papers
References

Hits 1 to 20 of 499

_id caadria2014_042
id caadria2014_042
authors Alam, Jack and Jeremy J. Ham
year 2014
title Towards a BIM-Based Energy Rating System
doi https://doi.org/10.52842/conf.caadria.2014.285
source Rethinking Comprehensive Design: Speculative Counterculture, Proceedings of the 19th International Conference on Computer-Aided Architectural Design Research in Asia (CAADRIA 2014) / Kyoto 14-16 May 2014, pp. 285–294
summary Governments in Australia are faced with policy implementation that mandates higher energy efficient housing (Foran, Lenzen & Dey 2005). To this effect, the National Construction Code (NCC) 2013 stipulates the minimum energy performance for residential buildings as 114MJ/m2 per annum or 6 stars on an energy rating scale. Compliance with this minimum is mandatory but there are several methods through which residential buildings can be rated to comply with the deemed to satisfy provisions outlined in the NCC. FirstRate5 is by far the most commonly used simulation software used in Victoria, Australia. Meanwhile, Building Information Modelling (BIM), using software such as ArchiCAD has gained a foothold in the industry. The energy simulation software within ArchiCAD, EcoDesigner, enables the reporting on the energy performance based on BIM elements that contain thermal information. This research is founded on a comparative study between FirstRate5 and EcoDesigner. Three building types were analysed and compared. The comparison finds significant differences between simulations, being, measured areas, thermal loads and potentially serious shortcomings within FirstRate5, that are discussed along with the future potential of a fully BIM-integrated model for energy rating certification in Victoria.
keywords Building Information Modelling, energy rating, FirstRate 5, ArchiCAD EcoDesigner, Building Energy Model
series CAADRIA
email
last changed 2022/06/07 07:54

_id acadia13_101
id acadia13_101
authors Rahmani Asl, Mohammad; Zarrinmehr, Saied; Yan, Wei
year 2013
title Towards BIM-based Parametric Building Energy Performance Optimization
doi https://doi.org/10.52842/conf.acadia.2013.101
source ACADIA 13: Adaptive Architecture [Proceedings of the 33rd Annual Conference of the Association for Computer Aided Design in Architecture (ACADIA) ISBN 978-1-926724-22-5] Cambridge 24-26 October, 2013), pp. 101-108
summary The demand for sustainable buildings with minimal environmental impact and efficient energy use is increasing. The most effective design decisions for sustainable design can be made in the early design phases, but appropriate tools to explore design alternatives and understand their impacts on building energy performance are not available at this stage of the project. The integration of Building Information Modeling (BIM) and parametric modeling is the new trend of building modeling, which can greatly benefit sustainable building design. This research introduces an innovative tool to facilitate integrated parametric BIM and to enhance its applications towards creative, sustainable building design through simulation and optimization. The created tool, Revit2GBSOpt, integrates parametric BIM and building energy performance simulation and enables designers to generate alternative options in BIM to explore the energy performance simulation results automatically. Finding the optimized solution, the BIM model will be updated.
keywords Tools and Interface, Building Information Modeling (BIM), Parametric Simulation, Performance-based Design, Sustainable Design
series ACADIA
type normal paper
email
last changed 2022/06/07 08:00

_id ecaade2023_317
id ecaade2023_317
authors Zamani, Alireza, Mohseni, Alale and Bertug Çapunaman, Özgüç
year 2023
title Reconfigurable Formwork System for Vision-Informed Conformal Robotic 3D Printing
doi https://doi.org/10.52842/conf.ecaade.2023.1.387
source Dokonal, W, Hirschberg, U and Wurzer, G (eds.), Digital Design Reconsidered - Proceedings of the 41st Conference on Education and Research in Computer Aided Architectural Design in Europe (eCAADe 2023) - Volume 1, Graz, 20-22 September 2023, pp. 387–396
summary Robotic additive manufacturing has garnered significant research and development interest due to its transformative potential in architecture, engineering, and construction as a cost-effective, material-efficient, and energy-saving fabrication method. However, despite its potential, conventional approaches heavily depend on meticulously optimized work environments, as robotic arms possess limited information regarding their immediate surroundings (Bechthold, 2010; Bechthold & King, 2013). Furthermore, such approaches are often restricted to planar build surfaces and slicing algorithms due to computational and physical practicality, which consequently limits the feasibility of robotic solutions in scenarios involving complex geometries and materials. Building on previous work (Çapunaman et al., 2022), this research investigates conformal 3D printing of clay using a 6 degrees-of-freedom robot arm and a vision-based sensing framework on parametrically reconfigurable tensile hyperbolic paraboloid (hypar) formwork. In this paper, we present the implementation details of the formwork system, share findings from preliminary testing of the proposed workflow, and demonstrate application feasibility through a design exercise that aims to fabricate unique components for a poly-hypar surface structure. The formwork system also offers parametric control over generating complex, non-planar tensile surfaces to be printed on. Within the scope of this workflow, the vision-based sensing framework is employed to generate a digital twin informing iterative tuning of the formwork geometry and conformal toolpath planning on scanned geometries. Additionally, we utilized the augmented fabrication framework to observe and analyze deformations in the printed clay body that occurs during air drying. The proposed workflow, in conjunction with the vision-based sensing framework and the reconfigurable formwork, aims to minimize time and material waste in custom formwork fabrication and printing support materials for complex geometric panels and shell structures.
keywords Robotic Fabrication, Conformal 3D Printing, Additive Manufacturing, Computer-Vision, Reconfigurable Formwork
series eCAADe
email
last changed 2023/12/10 10:49

_id caadria2013_034
id caadria2013_034
authors Arenas, Ubaldo and José Manuel Falcón
year 2013
title ALOPS Constructive Systems – Towards the Design and Fabrication of Unsupervised Learning Construction Systems
doi https://doi.org/10.52842/conf.caadria.2013.905
source Open Systems: Proceedings of the 18th International Conference on Computer-Aided Architectural Design Research in Asia (CAADRIA 2013) / Singapore 15-18 May 2013, pp. 905-914
summary In this paper we explore the concept and design guidelines for an Autonomous Learning Oriented Proto System (ALOPS), a construction system designed to enhance its own performance through time. Our research has been focused on the fabrication of a prototype for a porous wall system which reacts to light intensities by closing or opening its apertures. Taking that aim, we used a combination of robotics, programing, and material behaviour to endow the system with the capacity to record reactions towards encountered sets of conditions during its active energy periods, allowing the system to use this knowledge database to evolve autonomously by feeding this information back into the computation process. This approach in construction systems opens up the architectural design processes to address the creation of digital memory structures rather than complex algorithms in order to operate specific functions. With this development, the architect could think of architectures constantly evolving by learning from their environments as well as of users forming symbiotic and behavioural bonds with the emergent spatial personalities, thus affecting the underpinning relationships between architecture, user and context.  
wos WOS:000351496100093
keywords erformance architecture, Unsupervised learning, Machine learning 
series CAADRIA
email
last changed 2022/06/07 07:54

_id ecaade2013_003
id ecaade2013_003
authors Attia, Shady
year 2013
title Achieving Informed Decision-Making using Building Performance Simulation
doi https://doi.org/10.52842/conf.ecaade.2013.1.021
source Stouffs, Rudi and Sariyildiz, Sevil (eds.), Computation and Performance – Proceedings of the 31st eCAADe Conference – Volume 1, Faculty of Architecture, Delft University of Technology, Delft, The Netherlands, 18-20 September 2013, pp. 21-30
summary Building performance simulation (BPS) is the basis for informed decision-making of Net Zero Energy Buildings (NZEBs) design. This paper aims to investigate the use of building performance simulation tools as a method of informing the design decision of NZEBs. The aim of this study is to evaluate the effect of a simulation-based decision aid, ZEBO, on informed decision-making using sensitivity analysis. The objective is to assess the effect of ZEBO and other building performance simulation (BPS) tools on three specific outcomes: (i) knowledge and satisfaction when using simulation for NZEB design; (ii) users’ decision-making attitudes and patterns, and (iii) performance robustness based on an energy analysis. The paper utilizes three design case studies comprising a framework to test the use of BPS tools. The paper provides results that shed light on the effectiveness of sensitivity analysis as an approach for informing the design decisions of NZEBs.
wos WOS:000340635300001
keywords Decision support; early stage; design; simulation; architects
series eCAADe
email
last changed 2022/06/07 07:54

_id caadria2013_183
id caadria2013_183
authors Choo Thian Siong and Patrick Janssen
year 2013
title Semi-Transparent Building Integrated Photovoltaic Facades – Maximise Energy Savings Using Evolutionary Multi-Objective Optimisation
doi https://doi.org/10.52842/conf.caadria.2013.127
source Open Systems: Proceedings of the 18th International Conference on Computer-Aided Architectural Design Research in Asia (CAADRIA 2013) / Singapore 15-18 May 2013, pp. 127-136
summary The optimisation of semi-transparent building integrated photovoltaic facades can be challenging when finding an overall balanced performance between conflicting performance criteria. This paper proposes a design optimisation method that maximises overall energy savings generated by these types of facades by simulating the combined impact of electricity generation, cooling load, and daylight autonomy. A proof-of-concept demonstration of the proposed method is presented for a typical office facade.  
wos WOS:000351496100013
keywords Multi-objective optimisation, Semi-transparent building integrated photovoltaic 
series CAADRIA
email
last changed 2022/06/07 07:56

_id ecaade2013_027
id ecaade2013_027
authors Etman, Omar; Tolba, Osama and Ezzeldin, Sherif
year 2013
title Double-Skin Façades in Egypt between Parametric and Climatic Approaches
doi https://doi.org/10.52842/conf.ecaade.2013.1.459
source Stouffs, Rudi and Sariyildiz, Sevil (eds.), Computation and Performance – Proceedings of the 31st eCAADe Conference – Volume 1, Faculty of Architecture, Delft University of Technology, Delft, The Netherlands, 18-20 September 2013, pp. 459-465
summary Daylight is a crucial element for indoor environment quality. Office buildings commonly use fully glazed façades to reflect a luxurious appearance and to maximize natural light at the expenses of high energy consumption due to cooling/heating. Double-skin façades are one of the solutions that improve the building efficiency while maintaining good natural lighting. This paper studies the impact of various perforated outer skins for non-sealed double-skin facades on light quality in prototypical office space in Egypt using parametric design. A traditional solution for light such as the Mashrabiya is taken as an inspiration for this study to generate different forms of perforated screens. The cases were analysed using light simulation tool and sorted by a genetic algorithm to show best 30 solutions offered by the design criteria. A methodology to achieve these objectives was suggested in this paper to reach better light quality in indoor spaces.
wos WOS:000340635300048
keywords Double-skin façades; parametric design; mashrabiya; genetic algorithms; illumination.
series eCAADe
email
last changed 2022/06/07 07:55

_id ecaade2013_129
id ecaade2013_129
authors Janusz, Jan
year 2013
title Learning from Parametric Manipulation of Architectural Volume
doi https://doi.org/10.52842/conf.ecaade.2013.1.091
source Stouffs, Rudi and Sariyildiz, Sevil (eds.), Computation and Performance – Proceedings of the 31st eCAADe Conference – Volume 1, Faculty of Architecture, Delft University of Technology, Delft, The Netherlands, 18-20 September 2013, pp. 91-100
summary This study is concerned with the building thermal performance education in the context of computer application. The project contains the original script coded in Maxscript for use in Autodesk 3ds Max. The tool workflow and functionality focus on the thermal calculations connected with sculpturing manipulation of architectural volume in pre-conception project stages, when detailed project solutions are undefined. The algorithm is based on the manual methods included in the curriculum. The paper also presents a study of software analyzing thermal performance as a justification for the script vision and educational implementation. The script is rather an addition than alternative for existing software, so it does not assume any resignation from more sophisticated products.
wos WOS:000340635300008
keywords Parametric design; thermal optimization; sustainable design education; Maxscript; energy estimation.
series eCAADe
email
last changed 2022/06/07 07:52

_id acadia13_079
id acadia13_079
authors Jason Gerber, David; Eve Lin, Shih-Hsin; Amber Ma, Xinyue
year 2013
title Designing-In Performance: A Case Study of Applying Evolutionary Energy-Performance Feedback for Design (EEPFD)
doi https://doi.org/10.52842/conf.acadia.2013.079
source ACADIA 13: Adaptive Architecture [Proceedings of the 33rd Annual Conference of the Association for Computer Aided Design in Architecture (ACADIA) ISBN 978-1-926724-22-5] Cambridge 24-26 October, 2013), pp. 79-86
summary This paper explores the application of a novel Multi-disciplinary Design Optimization (MDO) framework to the early stage design process, through a case study where the designer serves as the primary user and driver. MDO methods have drawn attention from the building design industry as a potential means of overcoming obstacles between design and building performance feedback to support design decision-making. However, precedents exploring MDOs in application to the building design have previously been limited to driving use by engineers or research teams,thereby leaving the incorporation of MDO into a design process by designers largely unexplored. In order to investigate whether MDO can enable the ability to design in a performance environment during the conceptual design stage, a MDO design framework entitled Evolutionary Energy-Performance Feedback for Design (EEPFD) was developed. This paper explores the designer as the primary user by conducting a case study where the application of EEPFD to a single family residential housing unit is incorporated. Through this case study EEPFD demonstrates an ability to assist the designer in identifying higher performing design options while meeting the designer’s aesthetic preferences. In addition the benefits, limitations, concerns and lessons learned in the application of EEPFD are also discussed.
keywords conceptual energy-performance feedback; design decision support; parametric design; multi-disciplinary design optimization; genetic algorithm
series ACADIA
type Normal Paper
email
last changed 2022/06/07 07:52

_id acadia13_087
id acadia13_087
authors Jeong, WoonSeong; Kim, Jong Bum; Clayton, Mark J.; Haberl, Jeff S.; Yan, Wei
year 2013
title Visualization of Building Energy Performance in Building Information Models
doi https://doi.org/10.52842/conf.acadia.2013.087
source ACADIA 13: Adaptive Architecture [Proceedings of the 33rd Annual Conference of the Association for Computer Aided Design in Architecture (ACADIA) ISBN 978-1-926724-22-5] Cambridge 24-26 October, 2013), pp. 87-92
summary This paper presents the results of research and development of Building Energy Simulation (BES) visualization methods. In this effort the authors used Building Information Modeling (BIM) Authoring Tools’ Application Programming Interface (API) to visualize BES results in BIM. We also used an external database to store and manage the object-based simulation results from a BES tool. Based on these methods, we created a prototype: Building Energy Performance Visualization (BEPV), which translates information from the result database to the Energy Performance Indicator (EPI) parameter in BIM. Using the prototype, when BIM models are created for building design, the building energy performance can be expressed visually as color-coding on the BIM, allowing users to see energy flows directly. The developed prototype lets architects use BIM as a common user interface for building design and performance visualization, and may improve their designs in early stages.
keywords building information model, information visualization, interdisciplinary design, performance based design, simulation
series ACADIA
type Normal Paper
email
last changed 2022/06/07 07:52

_id ecaade2013_072
id ecaade2013_072
authors Kos, Jose Ripper; Angeloni, Guilherme and Brito, Thiago Mello
year 2013
title Connecting Dwellers to Building Performance and Weather Data through Sustainable Automation Systems
doi https://doi.org/10.52842/conf.ecaade.2013.1.157
source Stouffs, Rudi and Sariyildiz, Sevil (eds.), Computation and Performance – Proceedings of the 31st eCAADe Conference – Volume 1, Faculty of Architecture, Delft University of Technology, Delft, The Netherlands, 18-20 September 2013, pp. 157-165
summary The paper presents a prototype for a Home Automation and Information Systems (HAIS) applied to an existing dwelling, the Florianopolis House, with the potential to address building performance and user behavior towards a more sustainable way of living. Home information and automation systems based on a great variety of sensors, associated with local weather stations and climate forecast databases can significantly impact the construction of more sustainable habits in home dwellers. Monitoring the weather variations, building’s performance and the impact each resident’s activity in energy and water consumption is a powerful tool for the dwellers’ awareness and can provide a significant impact on residents’ reconnection with the natural cycles. The development of the graphic interface is highlighted as a critical issue for the communication of building performance, weather data and actuators control.
wos WOS:000340635300015
keywords Home automation system; user behavior; weather data; graphic interface; building performance.
series eCAADe
email
last changed 2022/06/07 07:51

_id ecaade2013_114
id ecaade2013_114
authors Lin, Shih-Hsin Eve and Gerber, David
year 2013
title Evolutionary Energy Performance Feedback for Design (EEPFD)
doi https://doi.org/10.52842/conf.ecaade.2013.2.175
source Stouffs, Rudi and Sariyildiz, Sevil (eds.), Computation and Performance – Proceedings of the 31st eCAADe Conference – Volume 2, Faculty of Architecture, Delft University of Technology, Delft, The Netherlands, 18-20 September 2013, pp. 175-184
summary In order to understand the applicability of multidisciplinary design optimization (MDO) to the building design process, a MDO framework, titled Evolutionary Energy Performance Feedback for Design (EEPFD), along with the prototype tool, H.D.S. Beagle, were developed to support designers with the incorporation of partially automated performance feedback during the early stages of design. This paper presents 2 experimental case studies, one from the design profession and the other from a design studio, that evaluate the applicability and impact of EEPFD on the early stage design process. Through these two case studies two different interaction and automation approaches for applying EEPFD are explored as part of the framework validation. Observed benefits, challenges and suggestions of EEPFD’s implementation are then presented and discussed.
wos WOS:000340643600017
keywords Conceptual energy performance feedback; design decision support; performance-based design; multidisciplinary design optimization; genetic algorithm.
series eCAADe
email
last changed 2022/06/07 07:59

_id sigradi2013_271
id sigradi2013_271
authors Lobos, Danny; Gerth Wandersleben; Lorena Silva Castillo
year 2013
title Mapeo de Interoperabilidad entre BIM y software de Simulación Energética para Chile [Mapping the Interoperability between BIM and Energy Simulation Software for Chile]
source SIGraDi 2013 [Proceedings of the 17th Conference of the Iberoamerican Society of Digital Graphics - ISBN: 978-956-7051-86-1] Chile - Valparaíso 20 - 22 November 2013, pp. 378 - 382
summary The Research focuses on possible links between (Building Information Modeling), the Building Energy Performance Requirements and BPS software (Building Performance Simulation). It is expected to establish critical paths within the interoperability processes between BIM and BPS to support architects and energy consultants to choose the most appropriated workflow for the analyzed buildings to fulfill the performance requirements given by the Chilean laws. Several study cases in interoperability and the state-of-the-art are presented and discussed. Finally a novel map of relation between these three areas is presented.
keywords Building information modeling; Building performance simulation; Building performance standards; Architectural design, Interoperability
series SIGRADI
email
last changed 2016/03/10 09:55

_id ecaade2023_227
id ecaade2023_227
authors Moorhouse, Jon and Freeman, Tim
year 2023
title Towards a Genome for Zero Carbon Retrofit of UK Housing
doi https://doi.org/10.52842/conf.ecaade.2023.2.197
source Dokonal, W, Hirschberg, U and Wurzer, G (eds.), Digital Design Reconsidered - Proceedings of the 41st Conference on Education and Research in Computer Aided Architectural Design in Europe (eCAADe 2023) - Volume 2, Graz, 20-22 September 2023, pp. 197–206
summary The United Kingdom has some of the worst insulated housing stock in Northern Europe. This is in part due to the age of housing in the UK, with over 90% being built before 1990 [McCrone 2017, Piddington 2020]. Moreover, 85% of current UK housing will still be in use in 2050 by which stage their Government are targeting Net Carbon Zero [Eyre 2019]. Domestic energy use accounts for around 25% of UK carbon emissions. The UK will need to retrofit 20 million dwellings in order to meet this target. If this delivery were evenly spread, it would equate to over 2,000 retrofit completions each day. Government-funded initiatives are stimulating the market, with upwards of 60,000 social housing retrofits planned for 2023, but it is clear that a system must be developed to enable the design and implementation of housing-stock improvement at a large scale.This paper charts the 20-year development of a digital approach to the design for low-carbon domestic retrofit by architects Constructive Thinking Studio Limited and thence documents the emergence of a collaborative approach to retrofit patterns on a National scale. The author has led the Research and Development stream of this practice, developing a Building Information Modelling methodology and integrated Energy Modelling techniques to optimise design for housing retrofit [Georgiadou 2019, Ben 2020], and then inform a growing palette of details and a database of validated solutions [Moorhouse 2013] that can grow and be used to predict options for future projects [D’Angelo 2022]. The data is augmented by monitoring energy and environmental performance, enabling a growing body of knowledge that can be aligned with existing big data to simulate the benefits of nationwide stock improvement. The paper outlines incremental case studies and collaborative methods pivotal in developing this work The proposed outcome of the work is a Retrofit Genome that is available at a national level.
keywords Retrofit, Housing, Zero-Carbon, BIM, Big Data, Design Genome
series eCAADe
email
last changed 2023/12/10 10:49

_id ijac201311401
id ijac201311401
authors Moreno-De-Luca, Leonardo; Oscar Javier Begambre Carrillo
year 2013
title Multi-Objective Heuristic Computation Applied To Architectural And Structural Design: A Review
source International Journal of Architectural Computing vol. 11 - no. 4, 363-392
summary Heuristic computation techniques have been used in a wide range of fields, demonstrating their capacity to solve highly complex optimization problems. This article presents the most common techniques and their extension into the multi-objective optimization field, and emphasizes in the application of them in structural and architectural design by presenting examples within topics like: topological, shape and dimensional optimization of truss structures, roof optimization for sunlight conditions and area minimization, grid structures, façade design, life cycle cost and environmental impact, energy efficiency and construction costs, morphogenetic structural optimization for shell structures, acoustical optimization, evolutionary architectural design, architectural layout design optimization, RC frames optimization, and land use zoning, within others. Finally, the conclusion leads to the recognition of heuristic computation not only as an optimization tool, but also as an important component of a design methodology for creating innovative, creative, efficient, well performing, and aesthetically pleasant architectural/engineering objects.
series journal
last changed 2019/05/24 09:55

_id sigradi2013_326
id sigradi2013_326
authors Nome, Carlos A.; Natália Queiroz
year 2013
title Performance do Edifício: Produtos e Processo para Integração no Projeto Arquitetônico [Building Performance: Products and a Process for Architectural Design Integration]
source SIGraDi 2013 [Proceedings of the 17th Conference of the Iberoamerican Society of Digital Graphics - ISBN: 978-956-7051-86-1] Chile - Valparaíso 20 - 22 November 2013, pp. 357 - 361
summary The paper presents a case study on BIM supported design processes and its intersections with discussions about sustainability and energy efficiency simulations. The objective of the study is to identify different levels of detail for BIM models that are compatible with sustainability and energy efficiency simulations. As a result an integrated design, model and simulation process is proposed and validated.
series SIGRADI
email
last changed 2016/03/10 09:56

_id caadria2013_195
id caadria2013_195
authors Park, Jihyun; Azizan Aziz, Kevin Li and Carl Covington
year 2013
title Energy Performance Modeling of an Office Building and Its Evaluation – Post-Occupancy Evaluation and Energy Efficiency of the Building
doi https://doi.org/10.52842/conf.caadria.2013.209
source Open Systems: Proceedings of the 18th International Conference on Computer-Aided Architectural Design Research in Asia (CAADRIA 2013) / Singapore 15-18 May 2013, pp. 209-218
summary Energy performance modelling can provide insights into the efficiency and sustainability of commercial buildings, and also the achievement of certification standards such as USGBC LEED. However, the results from the modelling must be validated via a post-construction evaluation, which quantifies any discrepancies between the predicted energy usage and the actual energy consumed. In this study, an existing office building was examined to test how well the model predicts energy usage. The results from the model were compared with the actual usage of gas and electricity over two years (2010-2011). Our study showed a 123% higher gas usage,and a 36% lower electricity, compared with the simulation. This difference presents that occupant behaviour and building construction practices have significant impact on the energy usage of a building. For instance, the large discrepancy among gas usage is due to the office building’s thermal envelope, which identifies the spots at which heat leaks out of the building, thereby forcing the heating unit to work more. Additionally, the post occupancy evaluation study identified that indoor environmental conditions impact on energy consumption of the building. 
wos WOS:000351496100021
keywords Building performance evaluation, Energy modelling, Energy usage, User behaviour, Post occupancy evaluation
series CAADRIA
email
last changed 2022/06/07 08:00

_id acadia13_217
id acadia13_217
authors Steinfeld, Kyle; Levitt, Brendon
year 2013
title Dhour:A bioclimatic information design prototyping toolkit
doi https://doi.org/10.52842/conf.acadia.2013.217
source ACADIA 13: Adaptive Architecture [Proceedings of the 33rd Annual Conference of the Association for Computer Aided Design in Architecture (ACADIA) ISBN 978-1-926724-22-5] Cambridge 24-26 October, 2013), pp. 217-226
summary The qualification of predicted building performance through quantitative methods is as challenging as it is crucial to the meeting of the mandate to design buildings better adapted to their bioclimatic conditions. Methods for the visualization of building performance data that have found success in the past struggle in the contemporary context of large computational data sets. While application of building performance simulation to architectural design is highly context-sensitive, existing approaches to the visualization of simulation results are generalized and provide the designer with a preconfigured battery of visualizations that are, by definition, not calibrated to specific questions or contexts. This paper presents a new prototyping visualization toolkit, developed for the Grasshopper (Rutten 2013) visual programming environment, which enables the situational development of information graphics. By enabling more nuanced and customizable views of complex data, the software described here offers designers an exploratory framework in contrast to the highly directed tools currently available. Two case studies of the application of this toolkit are then presented, the results of which suggest that a more open framework for the production of visualization graphics can more effectively assist in the design of buildings responsive to their bioclimatic environments.
keywords tools and interfaces, energy and performance, modeling and analysis, simulation tools, data visualization, information design
series ACADIA
type Normal Paper
email
last changed 2022/06/07 07:56

_id ecaade2013_000
id ecaade2013_000
authors Stouffs, Rudi and Sariyildiz, Sevil (eds.)
year 2013
title Computation and Performance, Volume 1
doi https://doi.org/10.52842/conf.ecaade.2013.2
source Proceedings of the 31st International Conference on Education and research in Computer Aided Architectural Design in Europe, Faculty of Architecture, Delft University of Technology, Delft, The Netherlands, 18-20 September 2013, 726 p.
summary This is the first volume of the conference proceedings of the 31st eCAADe conference, held from 18-20 September 2013 at the Faculty of Architecture of Delft University of Technology in Delft, the Netherlands. Both volumes together contain 150 papers that were submitted and accepted to this conference.The theme of the 31st eCAADe conference is the role of computation in the consideration of performance in planning and design. Since long, a building no longer simply serves to shelter human activity from the natural environment. It must not just defy natural forces, carry its own weight, its occupants and their possessions, it should also functionally facilitate its occupants’ activities, be aesthetically pleasing, be economical in building and maintenance costs, provide temperature, humidity, lighting and acoustical comfort, be sustainable with respect to material, energy and other resources, and so forth. Considering all these performance aspects in building design is far from straightforward and their integration into the design process further increases complexity, interdisciplinarity and the need for computational support.One of the roles of computation in planning and design is the measurement and prediction of the performances of buildings and cities, where performance denotes the ability of buildings and cities to meet various technical and non-technical requirements (physical as well as psychological) placed upon them by owners, users and society at large.This first volume contains 75 papers grouped under eleven subthemes that vary from Design Decision-Making over Spatial Performance and Space Syntax to Digital Fabrication.
series eCAADe
email
last changed 2022/06/07 07:49

_id ecaade2013_001
id ecaade2013_001
authors Stouffs, Rudi and Sariyildiz, Sevil (eds.)
year 2013
title Computation and Performance, Volume 2
doi https://doi.org/10.52842/conf.ecaade.2013.1
source Proceedings of the 31st International Conference on Education and research in Computer Aided Architectural Design in Europe, Faculty of Architecture, Delft University of Technology, Delft, The Netherlands, 18-20 September 2013, 738 p.
summary This is the second volume of the conference proceedings of the 31st eCAADe conference, held from 18-20 September 2013 at the Faculty of Architecture of Delft University of Technology in Delft, the Netherlands. Both volumes together contain 150 papers that were submitted and accepted to this conference.The theme of the 31st eCAADe conference is the role of computation in the consideration of performance in planning and design. Since long, a building no longer simply serves to shelter human activity from the natural environment. It must not just defy natural forces, carry its own weight, its occupants and their possessions, it should also functionally facilitate its occupants’ activities, be aesthetically pleasing, be economical in building and maintenance costs, provide temperature, humidity, lighting and acoustical comfort, be sustainable with respect to material, energy and other resources, and so forth. Considering all these performance aspects in building design is far from straightforward and their integration into the design process further increases complexity, interdisciplinarity and the need for computational support.One of the roles of computation in planning and design is the measurement and prediction of the performances of buildings and cities, where performance denotes the ability of buildings and cities to meet various technical and non-technical requirements (physical as well as psychological) placed upon them by owners, users and society at large.This second volume contains 75 papers grouped under eleven subthemes that vary from Simulation, Prediction and Evaluation over Models of Computation: Human Factors to Languages of Design.
series eCAADe
email
last changed 2022/06/07 07:49

For more results click below:

this is page 0show page 1show page 2show page 3show page 4show page 5... show page 24HOMELOGIN (you are user _anon_804857 from group guest) CUMINCAD Papers Powered by SciX Open Publishing Services 1.002