CumInCAD is a Cumulative Index about publications in Computer Aided Architectural Design
supported by the sibling associations ACADIA, CAADRIA, eCAADe, SIGraDi, ASCAAD and CAAD futures

PDF papers
References

Hits 1 to 20 of 567

_id ecaade2023_317
id ecaade2023_317
authors Zamani, Alireza, Mohseni, Alale and Bertug Çapunaman, Özgüç
year 2023
title Reconfigurable Formwork System for Vision-Informed Conformal Robotic 3D Printing
source Dokonal, W, Hirschberg, U and Wurzer, G (eds.), Digital Design Reconsidered - Proceedings of the 41st Conference on Education and Research in Computer Aided Architectural Design in Europe (eCAADe 2023) - Volume 1, Graz, 20-22 September 2023, pp. 387–396
doi https://doi.org/10.52842/conf.ecaade.2023.1.387
summary Robotic additive manufacturing has garnered significant research and development interest due to its transformative potential in architecture, engineering, and construction as a cost-effective, material-efficient, and energy-saving fabrication method. However, despite its potential, conventional approaches heavily depend on meticulously optimized work environments, as robotic arms possess limited information regarding their immediate surroundings (Bechthold, 2010; Bechthold & King, 2013). Furthermore, such approaches are often restricted to planar build surfaces and slicing algorithms due to computational and physical practicality, which consequently limits the feasibility of robotic solutions in scenarios involving complex geometries and materials. Building on previous work (Çapunaman et al., 2022), this research investigates conformal 3D printing of clay using a 6 degrees-of-freedom robot arm and a vision-based sensing framework on parametrically reconfigurable tensile hyperbolic paraboloid (hypar) formwork. In this paper, we present the implementation details of the formwork system, share findings from preliminary testing of the proposed workflow, and demonstrate application feasibility through a design exercise that aims to fabricate unique components for a poly-hypar surface structure. The formwork system also offers parametric control over generating complex, non-planar tensile surfaces to be printed on. Within the scope of this workflow, the vision-based sensing framework is employed to generate a digital twin informing iterative tuning of the formwork geometry and conformal toolpath planning on scanned geometries. Additionally, we utilized the augmented fabrication framework to observe and analyze deformations in the printed clay body that occurs during air drying. The proposed workflow, in conjunction with the vision-based sensing framework and the reconfigurable formwork, aims to minimize time and material waste in custom formwork fabrication and printing support materials for complex geometric panels and shell structures.
keywords Robotic Fabrication, Conformal 3D Printing, Additive Manufacturing, Computer-Vision, Reconfigurable Formwork
series eCAADe
email
last changed 2023/12/10 10:49

_id ijac201310105
id ijac201310105
authors Agkathidis, Asterios and Andre_ Brown
year 2013
title Tree-Structure Canopy:A Case Study in Design and Fabrication of Complex Steel Structures using Digital Tools
source International Journal of Architectural Computing vol. 11 - no. 1, 87-104
summary This paper describes and reflects on the design and manufacturing process of the Tree-Structure canopy for the WestendGate Tower in Frankfurt upon Main, completed early 2011.The project investigated fabrication and assembly principles of complex steel structures as well as the integration of contemporary computational design, engineering, optimization and simulation techniques in a collaborative design approach. This paper focuses on the notion of modular standardization as opposed to non standard customized components. It also engages with issues relating to digital production tools and their impact on construction cost, material performance and tolerances. In addition it examines the reconfiguration of liability during a planning and construction process, an aspect which can be strongly determined by fabrication companies rather than the architect or designer.This paper is written as a reflection on the complete building process when contemporary digital tools are used from design through to fabrication. It studies both the generation of the steel structure as well the ETFE cushion skin. It reports on a collaborative project, where the main author was responsible for the canopies design, parameterization, digitalization and fabrication, as well as for the dissemination of the outcomes and findings during the design and realization process.As such it represents an example of research through design in a contemporary and evolving field.The canopy received a design award by the Hellenic Architecture Association.
series journal
last changed 2019/05/24 09:55

_id caadria2013_034
id caadria2013_034
authors Arenas, Ubaldo and José Manuel Falcón
year 2013
title ALOPS Constructive Systems – Towards the Design and Fabrication of Unsupervised Learning Construction Systems
source Open Systems: Proceedings of the 18th International Conference on Computer-Aided Architectural Design Research in Asia (CAADRIA 2013) / Singapore 15-18 May 2013, pp. 905-914
doi https://doi.org/10.52842/conf.caadria.2013.905
wos WOS:000351496100093
summary In this paper we explore the concept and design guidelines for an Autonomous Learning Oriented Proto System (ALOPS), a construction system designed to enhance its own performance through time. Our research has been focused on the fabrication of a prototype for a porous wall system which reacts to light intensities by closing or opening its apertures. Taking that aim, we used a combination of robotics, programing, and material behaviour to endow the system with the capacity to record reactions towards encountered sets of conditions during its active energy periods, allowing the system to use this knowledge database to evolve autonomously by feeding this information back into the computation process. This approach in construction systems opens up the architectural design processes to address the creation of digital memory structures rather than complex algorithms in order to operate specific functions. With this development, the architect could think of architectures constantly evolving by learning from their environments as well as of users forming symbiotic and behavioural bonds with the emergent spatial personalities, thus affecting the underpinning relationships between architecture, user and context.  
keywords erformance architecture, Unsupervised learning, Machine learning 
series CAADRIA
email
last changed 2022/06/07 07:54

_id ecaade2013_081
id ecaade2013_081
authors Baharlou, Ehsan and Menges, Achim
year 2013
title Generative Agent-Based Design Computation
source Stouffs, Rudi and Sariyildiz, Sevil (eds.), Computation and Performance – Proceedings of the 31st eCAADe Conference – Volume 2, Faculty of Architecture, Delft University of Technology, Delft, The Netherlands, 18-20 September 2013, pp. 165-174
doi https://doi.org/10.52842/conf.ecaade.2013.2.165
wos WOS:000340643600016
summary Agent-based systems have been widely investigated in simulation and modeling. In this paper, it is proposed that agent-based systems can also be developed as generative systems, in which different aspects of performative design can be defined as separate drivers in a proper computational framework. In this manner constrained generating procedures (CGP’s) are studied to integrate the discrete design processes into one system. Subsequently, this generative agent-based design tool is accompanied with generating and constraining mechanism which are informed by material characteristics and fabrication constraints, bringing to the forefront emergent complexity.
keywords Computational design; agent-based system; robotic fabrication; constrained generating procedures (CGP’s).
series eCAADe
email
last changed 2022/06/07 07:54

_id ecaade2013_115
id ecaade2013_115
authors Barczik, Günter
year 2013
title Continuous Oscillations
source Stouffs, Rudi and Sariyildiz, Sevil (eds.), Computation and Performance – Proceedings of the 31st eCAADe Conference – Volume 2, Faculty of Architecture, Delft University of Technology, Delft, The Netherlands, 18-20 September 2013, pp. 571-578
doi https://doi.org/10.52842/conf.ecaade.2013.2.571
wos WOS:000340643600058
summary We present and discuss a didactic for augmenting architectural design education with computational design techniques via integrative feedback loops and show examples of student projects. Our goal is to embed new technical skills into existing design abilities as quickly as possible, in order to enable our students to exploit and explore the extended capabilities of digital design techniques within the framework of architectural design projects. We instigate a process of continuous mutual feedback between different fields: on the one hand between technique-based exercises and design-related steps, and on the other hand between the digital and the physical. Through oscillation and feedback, the newly learned skills are directly interwoven with the existing ones. Special emphasis is put on the illuminative effects of transitions between different media and on issues of fabrication.
keywords Design curriculum; tools; shape studies.
series eCAADe
email
last changed 2022/06/07 07:54

_id cf2013_109
id cf2013_109
authors Brell-Cokcan, Sigrid and Johannes Braumann
year 2013
title Industrial Robots for Design Education: Robots as Open Interfaces beyond Fabrication
source Global Design and Local Materialization[Proceedings of the 15th International Conference on Computer Aided Architectural Design Futures / ISBN 978-3-642-38973-3] Shanghai, China, July 3-5, 2013, pp. 109-117.
summary For a long time, robotic arms have been a common sight in many industries. Now, robots are rapidly entering architectural education. Within the past few years, more than 20 architectural faculties throughout the world have set up experimental labs with one or more robotic arms. This paper will discuss the use of robots in education beyond the scope of CNC fabrication, as open interfaces that confront students with problem-solving, geometry, and programming.
keywords Design education, teaching robotics, robots in architecture, open interfaces, computer aided architectural design
series CAAD Futures
email
last changed 2014/03/24 07:08

_id acadia13_061
id acadia13_061
authors Bruscia, Nicholas; Romano, Christopher
year 2013
title Material Parameters and Digitally Informed Fabrication of Textured Metals
source ACADIA 13: Adaptive Architecture [Proceedings of the 33rd Annual Conference of the Association for Computer Aided Design in Architecture (ACADIA) ISBN 978-1-926724-22-5] Cambridge 24-26 October, 2013), pp. 61-68
doi https://doi.org/10.52842/conf.acadia.2013.061
summary The research represented in this paper proposes to reinvestigate the relationship between structure and appearance through a performative analysis of textured stainless steel, as verified through full-scale prototyping. The work takes a scientific design approach while incorporating a computational workflow that is informed by the material’s physical parameters, and draws a connection between the scales of molecular composition to large-scale geometric systems.Furthermore, the work attempts to provide evidence for thin-gauge textured metals as a high performance and adaptive material, by identifying structural rigidity and particular specular quality as inherent characteristics born from the texturing process. In addition, through close collaboration with the sponsoring manufacturer of textured stainless steel, we are able to gain access to material expertise and large-scale fabrication equipment not readily available to designers, thereby forging a mutually beneficial relationship surrounding the research.
keywords Next Generation Technology, Architecture and Manufacturing, Material Research, Material Science, Digital Fabrication, Rigidized Metal, Parametric Modeling
series ACADIA
type Normal Paper
email
last changed 2022/06/07 07:54

_id cf2013_176
id cf2013_176
authors Burry, Jane; Nicholas Williams, John Cherrey, and Brady Peters
year 2013
title Fabpod: Universal Digital Work_ow, Local Prototype Materialization
source Global Design and Local Materialization[Proceedings of the 15th International Conference on Computer Aided Architectural Design Futures / ISBN 978-3-642-38973-3] Shanghai, China, July 3-5, 2013, pp. 176-186.
summary This paper reports on a research project with the dual aims of 1) linking acoustic simulation to complex custom surface design and 2) realizing a full-scale prototype meeting room within an open knowledge work environment at a very high level of craft, engineering and material specification and differentiation. Here we report on the outcomes of the novel design and materialization processes.
keywords digital workflow, digital fabrication, acoustic performance, sound diffusion, material assemblies
series CAAD Futures
email
last changed 2014/03/24 07:08

_id cf2013_167
id cf2013_167
authors Carlow, Jason F. and Kristof Crolla
year 2013
title Shipping Complexity: Parametric Design for Remote Communities
source Global Design and Local Materialization[Proceedings of the 15th International Conference on Computer Aided Architectural Design Futures / ISBN 978-3-642-38973-3] Shanghai, China, July 3-5, 2013, pp. 167-175.
summary This paper presents a system for design and construction of a parametrically designed, structural shell for remote communities. It explains how, through the use of various digital software platforms, a single-layer, structural shell is designed and optimized and subsequently how a series of customized joints can be output for direct digital fabrication. As the customization is focused primary in the joints of the structure, standard dimension, locally sourced structural members can be used. By embedding assembly information onto the physical joints, the system has the capacity to simplify the construction of complex shell structures by workers with basic construction skills. Flat-packed joints can be shipped to remote sites without heavy structural members thereby reducing transportation costs and the overall embodied energy. By lowering cost and simplifying construction of large span structures, the project is intended to extend the benefits of digitally driven design to rural, remote or under-privileged communities.
keywords Parametric design, structural shell, remote communities, embedded intelligence, digital fabrication.
series CAAD Futures
email
last changed 2014/03/24 07:08

_id sigradi2013_205
id sigradi2013_205
authors Chiarella, Mauro; Luis Felipe González Böhme; Cristian Calvo Barentin
year 2013
title Robots: Automatización en Diseño y Construcción para la Enseñanza de Arquitectura [Robots: Automation in Design and Manufacturing for Teaching Architecture]
source SIGraDi 2013 [Proceedings of the 17th Conference of the Iberoamerican Society of Digital Graphics - ISBN: 978-956-7051-86-1] Chile - Valparaíso 20 - 22 November 2013, pp. 439 - 443
summary Industrial robots controlled by parametric design software and visual programming environments are gaining popularity in the research and use of non-conventional construction processes in architecture. Process automation which can be personalized through variable components promises to become an industry standard with similar cost structures to current pre-fabrication industrial processes. In order to incorporate competencies from non-serial variable architectural modular design, an initial teaching initiative (Advanced Architectural Design Studio – USM) was developed in Latin América. The strategy employed is based on incorporating concepts and instruments of Construction & Design Automation for CAD/CAM processes with a Six Axis Robotic Arm (KUKA KR125/2).
keywords Robotic fabrication; Parametric modeling, Teaching architecture
series SIGRADI
email
last changed 2016/03/10 09:48

_id caadria2013_256
id caadria2013_256
authors De Oliveira Barata, Eduardo; Dirk Anderson and Dagmar Reinhardt
year 2013
title A Minimal Tension Canopy – Through Investigations of Self-Organised Systems
source Open Systems: Proceedings of the 18th International Conference on Computer-Aided Architectural Design Research in Asia (CAADRIA 2013) / Singapore 15-18 May 2013, pp. 147-156
doi https://doi.org/10.52842/conf.caadria.2013.147
wos WOS:000351496100015
summary The dynamics of a physics-based algorithm which acquires its complex organization through a number of localised interactions applied over a prescribed network can be described as a self-organised system. This in turn has the capacity to define explicit form and space based upon behavioural computational processes with an embedded structural logic. This paper discusses the way in which physics based algorithms can be used to inform the organisation of a compressional structure in a case study. Its structure is based on Hooke’s law of elasticity; which establishes a three dimensional catenary logic through a number of localised interactions applied over an entire network. This is applied to a project with specific constraints to site, boundary conditions and maximising solar gain whilst maintaining structural rigidity. The methodological approach describes the design to assembly process in which the project has been developed. This includes the applied generative design tools in order to establish the self-organised logic, the form finding process, the techniques of design documentation, the fabrication process and the logistics of construction and assembly.  
keywords Digital fabrication and construction, Generative, Parametric, Simulation 
series CAADRIA
email
last changed 2022/06/07 07:55

_id cf2013_347
id cf2013_347
authors Dillenburger, Benjamin and Michael Hansmeyer
year 2013
title The Resolution of Architecture in the Digital Age
source Global Design and Local Materialization[Proceedings of the 15th International Conference on Computer Aided Architectural Design Futures / ISBN 978-3-642-38973-3] Shanghai, China, July 3-5, 2013, pp. 347-357.
summary The resolution of architecture is a measure of the spatial density of information inherent in a building. This paper demonstrates how the confluence of advances in computational design and additive manufacturing has recently led to a paradigm shift in potential architectural resolution. Buildings can now be designed and fabricated with elements at the threshold of human perception. This resolution can be used to replicate existing architectural styles ever more efficiently and accurately. Yet as with the introduction of other new technologies, architects must now explore the latent potentials and determine what kind of new architectures become conceivable. Specifically, what architectures can adequately express this enormous resolution and the unlimited geometric complexity within reach? With the project Digital Grotesque, we present the first human-scale, enclosed structure that truly exploits these opportunities. Algorithms are used to articulate and orchestrate the geometry from the macro scale down to 1mm small details. The structure is enriched with local information at a previously unseen resolution. A unique language of form is developed that transcends rationality and celebrates spatial expression: a digital exuberance.
keywords high resolution, additive manufacturing, 3d printing, digital fabrication, computational design, subdivision, mesh
series CAAD Futures
email
last changed 2014/03/24 07:08

_id sigradi2013_295
id sigradi2013_295
authors dos Santos Souto, Ivan C.; José Nieto Martínez; Matías Nieto Tolosa; José Wagner García
year 2013
title Aportaciones del Modelado Paramétrico a la Toma de Decisiones: Dos Estudios de Caso desde el Proyecto de Arquitectura [Contributions to Decision Making from Parametric Modeling: Two Case Studies from the Architectural Project]
source SIGraDi 2013 [Proceedings of the 17th Conference of the Iberoamerican Society of Digital Graphics - ISBN: 978-956-7051-86-1] Chile - Valparaíso 20 - 22 November 2013, pp. 249 - 252
summary Research progress about the contributions from parametric, generative design to the general decision-making process, specially to Design & Decision Support Systems, into the architecture project, by 2 specific case study on professional practice in Brazil. Proposed approach deal with some contributions that contemporary media of computer graphics could add to architectural practice in a context of progressive automation, simultaneity demands and a need for higher coordination among engineering offices, taking into consideration the adaptation of handmade, industrial traditional tasks through computer-automated design, participative interfaces and digital fabrication support.
series SIGRADI
email
last changed 2016/03/10 09:50

_id ecaade2013_011
id ecaade2013_011
authors Dritsas, Stylianos; Kalvo, Raul and Sevtsuk, Andres
year 2013
title Packing Optimization for Digital Fabrication
source Stouffs, Rudi and Sariyildiz, Sevil (eds.), Computation and Performance – Proceedings of the 31st eCAADe Conference – Volume 1, Faculty of Architecture, Delft University of Technology, Delft, The Netherlands, 18-20 September 2013, pp. 655-664
doi https://doi.org/10.52842/conf.ecaade.2013.1.655
wos WOS:000340635300068
summary We present a design-computation method of design-to-production automation and optimization in digital fabrication; an algorithmic process minimizing material use, reducing fabrication time and improving production costs of complex architectural form. Our system compacts structural elements of variable dimensions within fixed-size sheets of stock material, revisiting a classical challenge known as the two-dimensional bin-packing problem. We demonstrate improvements in performance using our heuristic metric, an approach with potential for a wider range of architectural and engineering design-built digital fabrication applications, and discuss the challenges of constructing free-form design efficiently using operational research methodologies.
keywords Design computation; digital fabrication; automation; optimization.
series eCAADe
email
last changed 2022/06/07 07:55

_id sigradi2013_389
id sigradi2013_389
authors Gelpi, Nick; Shahin Vassigh
year 2013
title Kinetic Forms of Knowledge
source SIGraDi 2013 [Proceedings of the 17th Conference of the Iberoamerican Society of Digital Graphics - ISBN: 978-956-7051-86-1] Chile - Valparaíso 20 - 22 November 2013, pp. 510 - 514
summary The introduction of Kinetic design processes, particularly through computer aided programming of input and output relationships has created a unique territory for design. This new design territory offers architects a unique opportunity to rethink discreet typological design by fostering more active engagements and interventions with design. Unlike discrete-typological design thinking, which may be transmitted by books or lectures, these new Kinetic interactions with design are taught by example and are learned by doing, representing new emergent forms of design knowledge which allow us to reengage and reinvent the process of design.
keywords Kinetic architecture; Personal fabrication; Action research; Constructivist learning theory; Computation
series SIGRADI
email
last changed 2016/03/10 09:52

_id acadia23_v2_340
id acadia23_v2_340
authors Huang, Lee-Su; Spaw, Gregory
year 2023
title Augmented Reality Assisted Robotic: Tube Bending
source ACADIA 2023: Habits of the Anthropocene: Scarcity and Abundance in a Post-Material Economy [Volume 2: Proceedings of the 43rd Annual Conference for the Association for Computer Aided Design in Architecture (ACADIA) ISBN 979-8-9860805-9-8]. Denver. 26-28 October 2023. edited by A. Crawford, N. Diniz, R. Beckett, J. Vanucchi, M. Swackhamer 340-349.
summary The intent of this research is to study potential improvements and optimizations in the context of robotic fabrication paired with Augmented Reality (AR), leveraging the technology in the fabrication of the individual part, as well as guiding the larger assembly process. AR applications within the Architecture, Engineering, and Construction (AEC) industry have seen constant research and development as designers, fabricators, and contractors seek methods to reduce errors, minimize waste, and optimize efficiency to lower costs (Chi, Kang, and Wang 2013). Recent advancements have made the technology very accessible and feasible for use in the field, as demonstrated by seminal projects such as the Steampunk Pavilion in Tallinn, Estonia (Jahn, Newnham, and Berg 2022). These types of projects typically improve manual craft processes. They often provide projective guidelines, and make possible complex geometries that would otherwise be painstakingly slow to complete and require decades of artisanal experience (Jahn et al. 2019). Building upon a previously developed robotic tube bending workflow, our research implements a custom AR interface to streamline the bending process for multiple, large, complex parts with many bends, providing a pre-visualization of the expected fabrication process for safety and part-verification purposes. We demonstrate the utility of this AR overlay in the part fabrication setting and in an inadvertent, human-robot, collaborative process when parts push the fabrication method past its limits. The AR technology is also used to facilitate the assembly process of a spatial installation exploring a unique aesthetic with subtle bends, loops, knots, bundles, and weaves utilizing a rigid tube material.
series ACADIA
type paper
email
last changed 2024/04/17 13:59

_id acadia13_419
id acadia13_419
authors Kaczynski, Maciej P.
year 2013
title Crease, Fold, Pour: Rethinking flexible formwork with digital fabrication and origami folding
source ACADIA 13: Adaptive Architecture [Proceedings of the 33rd Annual Conference of the Association for Computer Aided Design in Architecture (ACADIA) ISBN 978-1-926724-22-5] Cambridge 24-26 October, 2013), pp. 419-420
doi https://doi.org/10.52842/conf.acadia.2013.419
summary Crease, Fold, Pour is a line of research that proposes a new method of casting freeform reinforced concrete geometries with the use of folded thin-gauge plastics as semi-rigid formwork. The research seeks to expand the architectural discipline’s ongoing exploration of flexible formwork processes beyond the predominant membrane tectonic (non-rigid textiles) by incorporating methods of folding.
keywords flexible formwork, folded formwork, digital fabrication, variable concrete, site-cast concrete
series ACADIA
type Research Poster
email
last changed 2022/06/07 07:52

_id caadria2013_260
id caadria2013_260
authors Kaftan, Martin and Milena Stavric
year 2013
title Robotic Fabrication of Modular Form-Work – An Innovative Approach to Formwork Fabrication for Non-Standard  Concrete Structures
source Open Systems: Proceedings of the 18th International Conference on Computer-Aided Architectural Design Research in Asia (CAADRIA 2013) / Singapore 15-18 May 2013, pp. 75-84
doi https://doi.org/10.52842/conf.caadria.2013.075
wos WOS:000351496100008
summary In this work we address the fast and economical realization of complex formwork for concrete with the advantage of robotic fabrication. Under economical realization we mean reduction of production time and material efficiency. The complex form of individual formwork parts can be in our case double curved surface or complex mesh geometry. We propose the fabrication of the formwork by straight or shaped hot wire. We illustrate different approaches to mould production, where the proposed process demonstrates itself effective. In our approach we deal with the special kinds of modularity and specific symmetry of the formwork.  
keywords Robotic fabrication, Formwork, Non-standard structures 
series CAADRIA
email
last changed 2022/06/07 07:52

_id sigradi2013_405
id sigradi2013_405
authors Klinger, Kevin R.
year 2013
title Synchronizing Decisions: Design-through-Production Methodology
source SIGraDi 2013 [Proceedings of the 17th Conference of the Iberoamerican Society of Digital Graphics - ISBN: 978-956-7051-86-1] Chile - Valparaíso 20 - 22 November 2013, pp. 420 - 423
summary This paper demonstrates the process-oriented decision-making developed through multiple years of case studies developed in partnership with the Institute for Digital Fabrication at Ball State University in concert with industry partnerships. Crucial steps in the process of developing solutions will be used to illustrate potentials for informing new strategies for future projects. A catalogue of the diverse issues inherent in a design-through-production project will be included to serve as a road map, and enlighten the human decision-making factor in these technological processes.
keywords Digital fabrication; Design-through-production; Performance architecture; Industry collaboration; Digital exchange
series SIGRADI
email
last changed 2016/03/10 09:54

_id caadria2013_176
id caadria2013_176
authors Knapp, Chris
year 2013
title The Hand and the Machine: A Hybrid Approach to Complex Construction in a Work of Sir Peter Cook
source Open Systems: Proceedings of the 18th International Conference on Computer-Aided Architectural Design Research in Asia (CAADRIA 2013) / Singapore 15-18 May 2013, pp. 633-642
doi https://doi.org/10.52842/conf.caadria.2013.633
wos WOS:000351496100062
summary This paper describes and provides a critique of the design and implementation of the “scoops” – a set of bespoke multifunctioning architectural free-form concrete elements that are a highlight of the new Soheil Abedian School of Architecture by the office of Sir Peter Cook and Gavin Robotham (CRAB). The development includes the transfer of analogue design processes into digital 3D modelling, which is then analysed and rationalized via an exchange with consultants and procurement contractors. The complexity of the concrete works necessitated the use of digital fabrication to make their implementation affordable and within time constraints, with said complexity creating a variety of challenges for many aspects of the entire delivery team. The 3D model played a critical role in communicating intent and accuracy at all stages. The use of site-based craftsmanship combined with computer aided design and fabrication overlapped to realize the project.  
keywords In-situ concrete, 3D modelling, Rhinoceros, Peter cook, Digital fabrication 
series CAADRIA
email
last changed 2022/06/07 07:51

For more results click below:

this is page 0show page 1show page 2show page 3show page 4show page 5... show page 28HOMELOGIN (you are user _anon_638832 from group guest) CUMINCAD Papers Powered by SciX Open Publishing Services 1.002