CumInCAD is a Cumulative Index about publications in Computer Aided Architectural Design
supported by the sibling associations ACADIA, CAADRIA, eCAADe, SIGraDi, ASCAAD and CAAD futures

PDF papers
References

Hits 1 to 20 of 563

_id ecaade2013_081
id ecaade2013_081
authors Baharlou, Ehsan and Menges, Achim
year 2013
title Generative Agent-Based Design Computation
doi https://doi.org/10.52842/conf.ecaade.2013.2.165
source Stouffs, Rudi and Sariyildiz, Sevil (eds.), Computation and Performance – Proceedings of the 31st eCAADe Conference – Volume 2, Faculty of Architecture, Delft University of Technology, Delft, The Netherlands, 18-20 September 2013, pp. 165-174
wos WOS:000340643600016
summary Agent-based systems have been widely investigated in simulation and modeling. In this paper, it is proposed that agent-based systems can also be developed as generative systems, in which different aspects of performative design can be defined as separate drivers in a proper computational framework. In this manner constrained generating procedures (CGP’s) are studied to integrate the discrete design processes into one system. Subsequently, this generative agent-based design tool is accompanied with generating and constraining mechanism which are informed by material characteristics and fabrication constraints, bringing to the forefront emergent complexity.
keywords Computational design; agent-based system; robotic fabrication; constrained generating procedures (CGP’s).
series eCAADe
email
last changed 2022/06/07 07:54

_id ecaade2013_192
id ecaade2013_192
authors Erdine, Elif
year 2013
title Biomimetic Strategies in Tower Design
doi https://doi.org/10.52842/conf.ecaade.2013.1.559
source Stouffs, Rudi and Sariyildiz, Sevil (eds.), Computation and Performance – Proceedings of the 31st eCAADe Conference – Volume 1, Faculty of Architecture, Delft University of Technology, Delft, The Netherlands, 18-20 September 2013, pp. 559-568
wos WOS:000340635300058
summary The paper argues that the tower needs to respond to its environment by changing from a closed building typology towards a heterogeneous, differentiated open system that can adapt to the changing conditions within and around it. This argument is supported by focusing on the analogies and principles of specific biological examples in order to propose computationally-generated self-organizing systems. The goal of analyzing these models is to integrate their structural and geometrical characteristics with the aim of overcoming high lateral loading conditions in towers, as well as elaborating on the existence of multi-functionality and integration throughout the subsystems of the tower. A series of computational models which abstract the biological properties and articulate them with a generative approach through the use of agent-based systems are implemented according to designated evaluation criteria.
keywords Tower; biomimetics; integration; differentiation; generative algorithms.
series eCAADe
email
last changed 2022/06/07 07:55

_id acadia14_473
id acadia14_473
authors Cutellic, Pierre
year 2014
title Le Cube d'Après, Integrated Cognition for Iterative and generative Designs.
doi https://doi.org/10.52842/conf.acadia.2014.473
source ACADIA 14: Design Agency [Proceedings of the 34th Annual Conference of the Association for Computer Aided Design in Architecture (ACADIA) ISBN 9781926724478]Los Angeles 23-25 October, 2014), pp. 473-478
summary This paper describes the work in progress of a research on Neurodesign and a previously described process entitled Augmented Iterations [Cutellic and Lotte, 2013]. Within this broader field of research and design explorations, we will focus on describing and comment results obtained in the neuroselection of shapes among a continuously varying flow of visual stimuli. Eventually, these results will lead to the identification of a non-linear and non-convergent potential for the human-based computation of iterative and generative designs.
keywords Human Computer Interaction, Augmented Iteration, Neurodesign, Generative Design, Integrated Cognition, Evolutionary Computation, Design Computing and Cognition
series ACADIA
type Normal Paper
email
last changed 2022/06/07 07:56

_id ecaade2013_167
id ecaade2013_167
authors Gokmen, Sabri
year 2013
title A Morphogenetic Approach for Performative Building Envelope Systems Using Leaf Venetian Patterns
doi https://doi.org/10.52842/conf.ecaade.2013.1.497
source Stouffs, Rudi and Sariyildiz, Sevil (eds.), Computation and Performance – Proceedings of the 31st eCAADe Conference – Volume 1, Faculty of Architecture, Delft University of Technology, Delft, The Netherlands, 18-20 September 2013, pp. 497-506
wos WOS:000340635300052
summary Recent developments in theory and technology in performance based design show an interest towards generative systems. In this paper a morphogenetic approach will be introduced that looks at Goethean morphology and leaf venation patterns. To instrumentalize this approach an algorithm will be introduced to generate various leaf venation patterns on complex mesh surfaces. As a case study, the paper tests the applicability of such system as performative algorithms for building envelopes. The role of simulation is to generate self-organizing forms and provide a framework for design development. The overall approach is to consider performance as a direct input to guide the computation of form at an early design stage.
keywords Performative façades; growth; morphology; goethe; simulation.
series eCAADe
email
last changed 2022/06/07 07:51

_id caadria2014_000
id caadria2014_000
authors Gu, Ning; Shun Watanabe, Halil Erhan, Matthias Hank Haeusler, Weixin Huang and Ricardo Sosa (eds.)
year 2014
title Rethinking Comprehensive Design: Speculative Counterculture
doi https://doi.org/10.52842/conf.caadria.2014
source Proceedings of the 19th International Conference on Computer-Aided Architectural Design Research in Asia (CAADRIA 2014) / Kyoto 14-16 May 2014, 994 p.
summary Rethinking Comprehensive Design—the 19th International Conference on Computer-Aided Architectural Design Research in Asia (CAADRIA 2014)—emphasises a cross-disciplinary context to challenge the mainstream culture of computational design in architecture. It aims to (re)explore the potential of computational design methods and technologies in architecture from a holistic perspective. The conference provides an international forum where academics and practitioners share their novel research development and reflection for defining the future of computation in architectural design. Hosted by the Department of Design, Engineering and Management at the Kyoto Institute of Technology, CAADRIA 2014 presents 88 peer-reviewed full papers from all over the world. These high-quality research papers are complimented by 34 short work-in-progress papers submitted for the poster session of the conference. The conference proceedings were produced by a motivated team of volunteers from the CAADRIA community through an extensive collaboration. The 88 full papers rigorously double-blind reviewed by the dedicated International Review Committee (consisting of 74 experts), testify to CAADRIA’s highly respectable international standing. Call for abstracts sent out in July 2013 attracted 298 submissions. They were initially reviewed by the Paper Selection Committee who accepted 198 abstracts for further development. Of these, 118 full papers were eventually submitted in the final stage. Each submitted paper was then assessed by at least two members of the International Review Committee. Following the reviewers’ recommendations, 91 papers were accepted by the conference, of which 88 are included in this volume and for presentation in CAADRIA 2014. Collectively, these 88 papers define Rethinking Comprehensive Design in terms of the following research streams: Shape Studies; User Participation in Design; Human-Computer Interaction; Digital Fabrication and Construction; Computational Design Analysis; New Digital Design Concepts and Strategies; Practice-Based and Interdisciplinary Computational Design Research; Collaborative and Collective Design; Generative, Parametric and Evolutionary Design; Design Cognition and Creativity; Virtual / Augmented Reality and Interactive Environments; Computational Design Research and Education; and Theory, Philosophy and Methodology of Computational Design Research. In the following pages, you will find a wide range of scholarly papers organised under these streams that truly capture the quintessence of the research concepts. This volume will certainly inspire you and facilitate your journey in Rethinking Comprehensive Design.
series CAADRIA
last changed 2022/06/07 07:49

_id ecaade2013_197
id ecaade2013_197
authors Koenig, Reinhard; Treyer, Lukas and Schmitt, Gerhard
year 2013
title Graphical Smalltalk with My Optimization System for Urban Planning Tasks
doi https://doi.org/10.52842/conf.ecaade.2013.2.195
source Stouffs, Rudi and Sariyildiz, Sevil (eds.), Computation and Performance – Proceedings of the 31st eCAADe Conference – Volume 2, Faculty of Architecture, Delft University of Technology, Delft, The Netherlands, 18-20 September 2013, pp. 195-203
wos WOS:000340643600019
summary Based on the description of a conceptual framework for the representation of planning problems on various scales, we introduce an evolutionary design optimization system. This system is exemplified by means of the generation of street networks with locally defined properties for centrality. We show three different scenarios for planning requirements and evaluate the resulting structures with respect to the requirements of our framework. Finally the potentials and challenges of the presented approach are discussed in detail.
keywords Design optimization; interactive planning support system; generative system integration; evolutionary multi-criteria optimization.
series eCAADe
email
last changed 2022/06/07 07:51

_id acadia13_137
id acadia13_137
authors Kretzer, Manuel; In, Jessica; Letkemann, Joel; Jaskiewicz, Tomasz
year 2013
title Resinance: A (Smart) Material Ecology
doi https://doi.org/10.52842/conf.acadia.2013.137
source ACADIA 13: Adaptive Architecture [Proceedings of the 33rd Annual Conference of the Association for Computer Aided Design in Architecture (ACADIA) ISBN 978-1-926724-22-5] Cambridge 24-26 October, 2013), pp. 137-146
summary What if we had materials that weren’t solid and static like traditional building materials are? What if these materials could dynamically change and adapt to varying environmental situations and stimulations and evolve and learn over time? What if they were autonomous, self-sufficient and independent but could communicate with each other and exchange information? What would this “living matter” mean for architecture and the way we perceive the built environment? This paper looks briefly at current concepts and investigations in regards to programmable matter that occupy various areas of architectural research. It then goes into detail in describing the most recent smart material installation “Resinance” that was supervised by Manuel Kretzer and Benjamin Dillenburger and realized by the 2012/13 Master of Advanced Studies class as part of the materiability research at the Chair for CAAD, ETH Zürich in March 2013. The highly speculative sculpture links approaches in generative design, digital fabrication, physical/ubiquitous computing, distributed networks, swarm behavior and agent-based communication with bioinspiration and organic simulation in a responsive entity that reacts to user input and adapts its behavior over time.
keywords Smart Materials; Distributed Networks; Digital Fabrication; Physical Computing; Responsive Environment
series ACADIA
type Normal Paper
email
last changed 2022/06/07 07:51

_id ecaade2013_030
id ecaade2013_030
authors Marques, Rui and Eloy, Sara
year 2013
title Customized Cork Façade
doi https://doi.org/10.52842/conf.ecaade.2013.2.621
source Stouffs, Rudi and Sariyildiz, Sevil (eds.), Computation and Performance – Proceedings of the 31st eCAADe Conference – Volume 2, Faculty of Architecture, Delft University of Technology, Delft, The Netherlands, 18-20 September 2013, pp. 621-626
wos WOS:000340643600064
summary The propose paper presents an ongoing research which main goal is to use cork in a customized modular façade system. Cork is used due to its ecological value, renewable characteristic, insulation properties and aesthetic value. The modular system design is bio-inspired in the microscopic cork pattern and the study aims at reproducing in the façade some of the natural characteristics that enable cork to be suitable for the function it plays in construction. Façades are design by a generative design process based on a parametric shape grammar which encodes shape rules and an algorithm to guide the generation. The developed cork modules are part of a back-ventilated façade system which is assembled upon a substructure that reproduces the cork cell structure and enables both the assemblage of the modules to the support wall and the connection between them.
keywords Shape grammar; generative design; cork; façade; digital fabrication.
series eCAADe
email
last changed 2022/06/07 07:59

_id ecaade2013_180
id ecaade2013_180
authors Mueller, Volker and Strobbe, Tiemen
year 2013
title Cloud-Based Design Analysis and Optimization Framework
doi https://doi.org/10.52842/conf.ecaade.2013.2.185
source Stouffs, Rudi and Sariyildiz, Sevil (eds.), Computation and Performance – Proceedings of the 31st eCAADe Conference – Volume 2, Faculty of Architecture, Delft University of Technology, Delft, The Netherlands, 18-20 September 2013, pp. 185-194
wos WOS:000340643600018
summary Integration of analysis into early design phases in support of improved building performance has become increasingly important. It is considered a required response to demands on contemporary building design to meet environmental concerns. The goal is to assist designers in their decision making throughout the design of a building but with growing focus on the earlier phases in design during which design changes consume less effort than similar changes would in later design phases or during construction and occupation.Multi-disciplinary optimization has the potential of providing design teams with information about the potential trade-offs between various goals, some of which may be in conflict with each other. A commonly used class of optimization algorithms is the class of genetic algorithms which mimic the evolutionary process. For effective parallelization of the cascading processes occurring in the application of genetic algorithms in multi-disciplinary optimization we propose a cloud implementation and describe its architecture designed to handle the cascading tasks as efficiently as possible.
keywords Cloud computing; design analysis; optimization; generative design; building performance.
series eCAADe
email
last changed 2022/06/07 07:58

_id ecaade2013_272
id ecaade2013_272
authors Ozel, Filiz
year 2013
title SolarPierce: A Solar Path Based Generative System
doi https://doi.org/10.52842/conf.ecaade.2013.1.127
source Stouffs, Rudi and Sariyildiz, Sevil (eds.), Computation and Performance – Proceedings of the 31st eCAADe Conference – Volume 1, Faculty of Architecture, Delft University of Technology, Delft, The Netherlands, 18-20 September 2013, pp. 127-134
wos WOS:000340635300012
summary In hot and arid climates, limiting solar heat gain while also providing daylight into a structure is a major concern in building design. Building skin that gradually changes in porosity can help limit solar heat gain. Since solar heat gain is primarily a problem during summer, the path the sun follows during summer must be taken into account in determining opening sizes. In this paper, the researcher reports on a study where a generative system called SolarPierce was developed using AutoLISP, the scripting language of AutoCAD, to generate solid geometry for a building skin based on the sun’s path in a given geographical area. The system automatically punches different size openings in a given shell structure where openings facing the sun are the smallest and those fully facing away from the sun are the largest. Opening sizes gradually change from a given minimum to a given maximum depending on how much they face the sun.
keywords Solar; generative system; building skin; dome; shell structure.
series eCAADe
email
last changed 2022/06/07 08:00

_id ascaad2022_099
id ascaad2022_099
authors Sencan, Inanc
year 2022
title Progeny: A Grasshopper Plug-in that Augments Cellular Automata Algorithms for 3D Form Explorations
source Hybrid Spaces of the Metaverse - Architecture in the Age of the Metaverse: Opportunities and Potentials [10th ASCAAD Conference Proceedings] Debbieh (Lebanon) [Virtual Conference] 12-13 October 2022, pp. 377-391
summary Cellular automata (CA) is a well-known computation method introduced by John von Neumann and Stanislaw Ulam in the 1940s. Since then, it has been studied in various fields such as computer science, biology, physics, chemistry, and art. The Classic CA algorithm is a calculation of a grid of cells' binary states based on neighboring cells and a set of rules. With the variation of these parameters, the CA algorithm has evolved into alternative versions such as 3D CA, Multiple neighborhood CA, Multiple rules CA, and Stochastic CA (Url-1). As a rule-based generative algorithm, CA has been used as a bottom-up design approach in the architectural design process in the search for form (Frazer,1995; Dinçer et al., 2014), in simulating the displacement of individuals in space, and in revealing complex relations at the urban scale (Güzelci, 2013). There are implementations of CA tools in 3D design software for designers as additional scripts or plug-ins. However, these often have limited ability to create customized CA algorithms by the designer. This study aims to create a customizable framework for 3D CA algorithms to be used in 3D form explorations by designers. Grasshopper3D, which is a visual scripting environment in Rhinoceros 3D, is used to implement the framework. The main difference between this work and the current Grasshopper3D plug-ins for CA simulation is the customizability and the real-time control of the framework. The parameters that allow the CA algorithm to be customized are; the initial state of the 3D grid, neighborhood conditions, cell states and rules. CA algorithms are created for each customizable parameter using the framework. Those algorithms are evaluated based on the ability to generate form. A voxel-based approach is used to generate geometry from the points created by the 3D cellular automata. In future, forms generated using this framework can be used as a form generating tool for digital environments.
series ASCAAD
email
last changed 2024/02/16 13:38

_id ecaade2013_052
id ecaade2013_052
authors Strobbe, Tiemen; De Meyer, Ronald and Van Campenhout, Jan
year 2013
title A Generative Approach towards Performance-Based Design
doi https://doi.org/10.52842/conf.ecaade.2013.2.627
source Stouffs, Rudi and Sariyildiz, Sevil (eds.), Computation and Performance – Proceedings of the 31st eCAADe Conference – Volume 2, Faculty of Architecture, Delft University of Technology, Delft, The Netherlands, 18-20 September 2013, pp. 627-633
wos WOS:000340643600065
summary Due to a growing number of regulations and standards, building performance becomes equally important as traditional design drivers. Therefore, it is necessary to quickly explore design alternatives that meet these performance requirements. To support this complex design task, a rule-based design system is proposed that is founded on a shape grammar. This paper describes a graph-based implementation of this shape grammar that allows subshape detection, parametric rules and attributed shapes. The implementation described in this paper forms the basis to further investigate to what extent rule-based design systems can support a generative approach towards performance-based design.
keywords Shape grammar, evolutionary algorithm, performance-based design, implementation, generative design.
series eCAADe
email
last changed 2022/06/07 07:56

_id ecaade2013_136
id ecaade2013_136
authors Vasku, Michael
year 2013
title Generative Improvement of Street Networks Based on Space Syntax
doi https://doi.org/10.52842/conf.ecaade.2013.1.367
source Stouffs, Rudi and Sariyildiz, Sevil (eds.), Computation and Performance – Proceedings of the 31st eCAADe Conference – Volume 1, Faculty of Architecture, Delft University of Technology, Delft, The Netherlands, 18-20 September 2013, pp. 367-374
wos WOS:000340635300038
summary Space syntax is supposed to be an objective method for evaluating spatial configurations. Its contribution to a design process is dependent on the designer’s estimation. The paper describes a generative approach to finding particularly good interventions based on space syntax analyses of axial maps. More precisely, a case study was undertaken through applying such a strategy to improve and connect a segregated street network of an informal settlement to its neighbourhood. Controlling and redirecting movement in slums may cause positive effects. This research is based on and inspired by a consulting project by the company Space Syntax Limited for the Municipality of Jeddah, Saudi Arabia, in which the consulting company designed a regeneration program for declining informal settlements. (Karimi and Parham, 2012)
keywords Space syntax; slum upgrading; design computing; urban design.
series eCAADe
email
last changed 2022/06/07 07:58

_id ecaade2013_230
id ecaade2013_230
authors Parascho, Stefana; Baur, Marco; Knippers, Jan and Menges, Achim
year 2013
title Design Tools for Integrative Planning
doi https://doi.org/10.52842/conf.ecaade.2013.2.237
source Stouffs, Rudi and Sariyildiz, Sevil (eds.), Computation and Performance – Proceedings of the 31st eCAADe Conference – Volume 2, Faculty of Architecture, Delft University of Technology, Delft, The Netherlands, 18-20 September 2013, pp. 237-246
wos WOS:000340643600023
summary The performance of an architectural object is highly difficult to both define and measure in its complexity since it is integrating a constantly increasing amount of information, from concrete measurable characteristics to the subjective perception of individual users. The question arising though is how to predict the performance of a building and influence the design in order to increase it according to a significantly high number of criteria.The presented paper proposes two design tools, both developed and programmed in rhino python for the generation of freeform geometries. The tools are generated for specific tasks, but may be interpreted as exemplary for a way of defining and structuring a design program in order to increase its efficiency. Both tools rely on a computational core that is generally defined and may be fed with as many and different constraints and criteria as considered suitable for the defined task.
keywords Integrative design; evolutionary algorithm; agent-based system.
series eCAADe
email
last changed 2022/06/07 08:00

_id sigradi2013_215
id sigradi2013_215
authors Abdelmohsen, Sherif M.
year 2013
title Reconfiguring Architectural Space using Generative Design and Digital Fabrication: A Project Based Course
source SIGraDi 2013 [Proceedings of the 17th Conference of the Iberoamerican Society of Digital Graphics - ISBN: 978-956-7051-86-1] Chile - Valparaíso 20 - 22 November 2013, pp. 391 - 395
summary This paper discusses a course that addresses the integration between generative design and digital fabrication in the context of reconfiguring architectural space. The objective of the course, offered for 3rd year architecture students at the Department of Architecture, Ain Shams University, Egypt, was to design and fabricate interior design elements to be installed within the department lobby. Students worked in digital and physical environments to develop 8 group projects that featured concepts of shape grammars, L-systems, fractals and cellular automata. The potential of the realized projects is discussed in terms of 3D development of systems, contextual generative design, and pedagogical objectives.
keywords Contextual generative design; Rule-based systems; Self-organizing systems; Digital fabrication
series SIGRADI
email
last changed 2016/03/10 09:47

_id caadria2013_021
id caadria2013_021
authors Alhadidi, Suleiman
year 2013
title Generative Design Intervention: Creating a Computational Platform for Sensing Space
doi https://doi.org/10.52842/conf.caadria.2013.345
source Open Systems: Proceedings of the 18th International Conference on Computer-Aided Architectural Design Research in Asia (CAADRIA 2013) / Singapore 15-18 May 2013, pp. 345-354
wos WOS:000351496100034
summary This paper outlines some investigations from a project which utilizes computing and scripting of specific site components, spatio-temporal movement and behavioural patterns to explore how designer might understand people activities and formulate design interventions within public spaces. This research looks at how generative tools can facilitate designers to integrate the large volume of information received by hybrid data collection, and conventional data analysis directly into the design process. Through an examination of sensing urban space, this research proposes a method to track and record people’s movement patterns in order to implement them via generative design tool. To facilitate this, a scripting method is specified; which uses sensors and motion tracking devices to capture the use of a specific public space. This project proposes a methodology for developing designed spaces and optimal pathways generated from real-time data and feedback captured by sensors.  
keywords Real-time computation, Generative design, Sensing space, Design simulation  
series CAADRIA
email
last changed 2022/06/07 07:54

_id sigradi2013_390
id sigradi2013_390
authors Banda, Pablo; Juan Eduardo Subercaseaux
year 2013
title Meta-patrones Morfogenéticos: Propuesta de Framework para Arquitecturas Generativas Basadas en Desempeño [Morphogenetic Meta-Patterns: A framework proposal for Performance-Generated Architectures]
source SIGraDi 2013 [Proceedings of the 17th Conference of the Iberoamerican Society of Digital Graphics - ISBN: 978-956-7051-86-1] Chile - Valparaíso 20 - 22 November 2013, pp. 253 - 257
summary Architecture and Technology’s relationship nowadays has arrived to multi-disciplinary practices; they are growing exponentially while keeping away from to architectural discourse, are remarkable for its expressive power and the ability to solve complex problems. This opens the possibility for the generation of the organic, a path discarded by the Modern Movement in the past.Our approach explores three active premises called Morphogenetic Meta-Patterns: discrete processes (systemic guidelines) for the development of performance-based generative systems. These processes arise from Generative Design and their associated paradigms in the creation of a Framework between architecture and related disciplines.
keywords Design of parametric systems; Part-to-whole debate; Generative design
series SIGRADI
email
last changed 2016/03/10 09:47

_id ecaade2013_207
id ecaade2013_207
authors Bielik, Martin; Schneider, Sven; Geddert, Florian and Donath, Dirk
year 2013
title Addis Building Configurator
doi https://doi.org/10.52842/conf.ecaade.2013.1.109
source Stouffs, Rudi and Sariyildiz, Sevil (eds.), Computation and Performance – Proceedings of the 31st eCAADe Conference – Volume 1, Faculty of Architecture, Delft University of Technology, Delft, The Netherlands, 18-20 September 2013, pp. 109-116
wos WOS:000340635300010
summary The paper presents ongoing applied research on the development of a computational design tool addressing planning deficiencies in the city of Addis Ababa, Ethiopia. Because of increasing population pressure and a lack of planning resources, Addis Ababa is clearly in need of new efficient planning solutions. The tool proposed utilizes and combines different generative design methods in order to increase the efficiency of planning and construction processes. The paper discusses design goals and the implementation strategy involved.
keywords Design tool; evolutionary optimization; generative system; developing countries.
series eCAADe
email
last changed 2022/06/07 07:52

_id ijac201310103
id ijac201310103
authors Bollmann, Dietrich and Alvaro Bonfiglio
year 2013
title Design Constraint Systems - A Generative Approach to Architecture
source International Journal of Architectural Computing vol. 11 - no. 1, 37-63
summary Generative Architectural Design permits the automatic (or semiautomatic) generation of architectural objects for a wide range of applications, from archaeological research and reconstruction to digital sketching. In this paper the authors introduce design constraint systems (DCS), their approach to the generation of architectural design with the help of a simple example: The development of the necessary formalisms to generate a family of architectural designs, i.e. simple houses and pagodas. After explaining the formal system the authors introduce an approach for the generation of complex form based on the application of transformations and distortions.Architecture is bound by the constraints of physical reality: Gravitation and the properties of the used materials define the limits in which architectural design is possible. With the recent development of new materials and construction methods however, the ways in which form and physics go together get more complicated. As a result, the shapes of architecture gain more liberty, and more and more complex shapes and structures become possible.While these advances allow for new ways of architectural expression, they also make the design process much more challenging. For this reason new tools are necessary for making this complexity manageable for the architect and enable her to play and experiment with the new possibilities of complex shapes and structures. Design constraint systems can be used as tool for experimentation with complex form. Therefore, the authors dedicate the final part of this paper to a concise delineation of an approach for the generation of complex and irregular shapes and structures. While the examples used are simple, they give an idea of the generality of design constraint systems: By using a two-component approach to the generation of designs (the first component describes the abstract structure of the modelled objects while the second component interprets the structure and generates the actual geometric forms) and allowing the user to adjust both components freely, it can be adapted to all kind of different architectural styles, from historical to contemporary architecture.
series journal
last changed 2019/05/24 09:55

_id sigradi2013_345
id sigradi2013_345
authors Calixto, Victor; Charles C. Vincent
year 2013
title Arquitetura Algorítmica: Processos e Ferramentas [ Algorithmic Architecture: Processes and Tools]
source SIGraDi 2013 [Proceedings of the 17th Conference of the Iberoamerican Society of Digital Graphics - ISBN: 978-956-7051-86-1] Chile - Valparaíso 20 - 22 November 2013, pp. 362 - 365
summary This paper presents the results of an academic research in the field of parametric-generative design and through projective tests and processes using parametric tools and computational logic. Thus, five experiments for the region of the Terminal Bandeira Flag Square were set forth. From the urban guidelines and an object in common, it was a distinct possibility, where it was possible to analyze the advances and setbacks in the process of project development. The approach taken is an exploration of design processes that involve computational logic for formulating, exploring and creating architectural themes and its interfaces with other fields of knowledge: algorithmic architecture.
keywords Performance-based design; Parametric modeling; Simulation
series SIGRADI
email
last changed 2016/03/10 09:47

For more results click below:

this is page 0show page 1show page 2show page 3show page 4show page 5... show page 28HOMELOGIN (you are user _anon_162721 from group guest) CUMINCAD Papers Powered by SciX Open Publishing Services 1.002