CumInCAD is a Cumulative Index about publications in Computer Aided Architectural Design
supported by the sibling associations ACADIA, CAADRIA, eCAADe, SIGraDi, ASCAAD and CAAD futures

PDF papers
References

Hits 1 to 20 of 611

_id cf2013_084
id cf2013_084
authors Herr, Christiane M. and Thomas Fischer
year 2013
title Generative Column and Beam Layout for Reinforced Concrete Structures in China
source Global Design and Local Materialization[Proceedings of the 15th International Conference on Computer Aided Architectural Design Futures / ISBN 978-3-642-38973-3] Shanghai, China, July 3-5, 2013, pp. 84-95.
summary This paper outlines generative strategies for the design of structural layout patterns of columns and beams in reinforced concrete structures based on contemporary local construction practice in China. Following an introduction to constraints and opportunities of this new potential context for generative design application, possible generative strategies are proposed and discussed, with a view to their viability within the local context. The proposed strategies are illustrated in terms of geometry, generative sequence and plausibility of construction and discussed in terms of visual and overall structural merit.
keywords generative design, algorithmic design, structural design, visual thinking, reinforced concrete structures, China
series CAAD Futures
email
last changed 2014/03/24 07:08

_id ecaade2013_087
id ecaade2013_087
authors Mostafavi, Sina; Morales Beltran, Mauricio and Biloria, Nimish
year 2013
title Performance Driven Design and Design Information Exchange
source Stouffs, Rudi and Sariyildiz, Sevil (eds.), Computation and Performance – Proceedings of the 31st eCAADe Conference – Volume 2, Faculty of Architecture, Delft University of Technology, Delft, The Netherlands, 18-20 September 2013, pp. 117-126
doi https://doi.org/10.52842/conf.ecaade.2013.2.117
wos WOS:000340643600011
summary This paper presents a performance driven computational design methodology through introducing a case on parametric structural design. The paper describes the process of design technology development and frames a design methodology through which engineering, -in this case structural- aspects of architectural design could become more understandable, traceable and implementable by designers for dynamic and valid performance measurements and estimations. The research further embeds and customizes the process of topology optimization for specific design problems, in this case applied to the design of truss structures, for testing how the discretized results of Finite Elements Analysis in topology optimization can become the inputs for designing optimal trussed beams or cantilevers alternatives. The procedures of design information exchange between generative, simulative and evaluative modules for approaching the abovementioned engineering and design deliverables are developed and discussed in this paper.
keywords Performance driven design; design information; design technology; topology optimization; parametric design.
series eCAADe
email
last changed 2022/06/07 07:58

_id caadria2013_258
id caadria2013_258
authors Reinhardt, Dagmar; William Martens and Luis Miranda
year 2013
title Sonic Domes – Solving Acoustic Performance of Curved Surfaces by Interfacing Parametric Design, Structural Engineering and Acoustic Analysis
source Open Systems: Proceedings of the 18th International Conference on Computer-Aided Architectural Design Research in Asia (CAADRIA 2013) / Singapore 15-18 May 2013, pp. 529-538
doi https://doi.org/10.52842/conf.caadria.2013.529
wos WOS:000351496100052
summary This paper addresses the acoustic performance of complex curved surface geometries that are commonly known to pose problems of sound concentration, thus affecting speech intelligibility and audience experience in spaces of temporal arts performance. It reviews an open system of design research in which parametric design process, structural analysis and acoustic analysis are deployed to improve the sound of ellipsoidal structures in relation to sound source and audience positions, by adapting the height, dimension and centre point of a dome structure, consequently improving the acoustic behaviour of the performance space. The paper discusses an iterative design, analysis and optimization processes, in which a number of generative form variations were developed in Grasshopper, and reworked in McNeel Rhino, tested in engineering software (Strand7), and evaluated in acoustic simulation (ODEON). This allowed an interdisciplinary team to develop, test and evolve a design proposal that shows one solution for avoiding sound concentration and consequently improving acoustic performance in complex intersecting and curved geometries of a multifunctional building.  
keywords Parametric design, Sound concentration, Curved surfaces, Structural engineering, Acoustic simulation  
series CAADRIA
email
last changed 2022/06/07 08:00

_id acadia13_379
id acadia13_379
authors Tamke, Martin; Stasiuk, David; Ramsgard Thomsen, Mette
year 2013
title The Rise – Material Behaviour in Generative Design
source ACADIA 13: Adaptive Architecture [Proceedings of the 33rd Annual Conference of the Association for Computer Aided Design in Architecture (ACADIA) ISBN 978-1-926724-22-5] Cambridge 24-26 October, 2013), pp. 379-388
doi https://doi.org/10.52842/conf.acadia.2013.379
summary The research-based installation, The Rise, is led by the concept of a growing architecture able to sense and dynamically adapt to its environment as it grows into form while continuously reacting to its own material performance and behavioural constraints. This process is enabled through the careful integration of digital simulation techniques with multi-hierarchical generative design approaches. Aggregations of variably sized bundles of rattan core multiply, bend, branch and recombine into a distributed assembly that manifests an alternative to traditional structural systems. The hybrid approach links a material system with simulation and the iterative generation of geometry through a process of calibration at different stages of design. The project leverages emerging computational strategies for growth in a model for an architectural practice that engages the complexity and interdependencies that characterise a contemporary design practice.
keywords complex systems, material behaviour, simulation, generative design, growth patterns, environmental aware design systems
series ACADIA
type Normal Paper
email
last changed 2022/06/07 07:56

_id acadia13_421
id acadia13_421
authors Lee, Dave
year 2013
title Self-Organizing Origami Structures
source ACADIA 13: Adaptive Architecture [Proceedings of the 33rd Annual Conference of the Association for Computer Aided Design in Architecture (ACADIA) ISBN 978-1-926724-22-5] Cambridge 24-26 October, 2013), pp. 421-422
doi https://doi.org/10.52842/conf.acadia.2013.421
summary This research investigates the use of shape memory alloy to actuate the folding of origami patterns into stable structural formations.
keywords Next Generation Technology, responsive, computation, programmable matter, origami, self-organization, kinetic
series ACADIA
type Research Poster
email
last changed 2022/06/07 07:51

_id caadria2013_178
id caadria2013_178
authors Stavric, Milena and Albert Wiltsche
year 2013
title Investigations on Quadrilateral Patterns for Rigid Folding Structures – Folding Strategies - Rigid and Curved Folding
source Open Systems: Proceedings of the 18th International Conference on Computer-Aided Architectural Design Research in Asia (CAADRIA 2013) / Singapore 15-18 May 2013, pp. 893-902
doi https://doi.org/10.52842/conf.caadria.2013.893
wos WOS:000351496100092
summary A rigid spatial structure represents a three-dimensional structural system in which the size of the singular planar elements is very small related to the whole construction. In this paper we will do investigations of quadrilateral patterns and we will propose an analytical method for designing structural rigid folding with quadrilateral patterns following geometrical surfaces of different topology. Our method offers folding structures with four fold lines meeting in one node which allows a simpler solution of join connections and assembling of the whole spatial and structural system. As the physical characteristics of paper can lead to all kinds of wrong conclusions it is necessary to use CAD tools in addition to scale models, where the entire folding element is reconstructed and its geometric characteristics are controlled. This kind of control reflects on the scale model. Models are then adjusted, examined and built to reach certain conclusions that are once more tested in CAD software.  
keywords Rigid and curved folding, Quadrilateral folding pattern 
series CAADRIA
email
last changed 2022/06/07 07:56

_id cf2013_167
id cf2013_167
authors Carlow, Jason F. and Kristof Crolla
year 2013
title Shipping Complexity: Parametric Design for Remote Communities
source Global Design and Local Materialization[Proceedings of the 15th International Conference on Computer Aided Architectural Design Futures / ISBN 978-3-642-38973-3] Shanghai, China, July 3-5, 2013, pp. 167-175.
summary This paper presents a system for design and construction of a parametrically designed, structural shell for remote communities. It explains how, through the use of various digital software platforms, a single-layer, structural shell is designed and optimized and subsequently how a series of customized joints can be output for direct digital fabrication. As the customization is focused primary in the joints of the structure, standard dimension, locally sourced structural members can be used. By embedding assembly information onto the physical joints, the system has the capacity to simplify the construction of complex shell structures by workers with basic construction skills. Flat-packed joints can be shipped to remote sites without heavy structural members thereby reducing transportation costs and the overall embodied energy. By lowering cost and simplifying construction of large span structures, the project is intended to extend the benefits of digitally driven design to rural, remote or under-privileged communities.
keywords Parametric design, structural shell, remote communities, embedded intelligence, digital fabrication.
series CAAD Futures
email
last changed 2014/03/24 07:08

_id caadria2013_071
id caadria2013_071
authors Lloret Kristensen, Ena; Fabio Gramazio, Matthias Kohler and Silke Langenberg
year 2013
title Complex Concrete Constructions – Merging Existing Casting Techniques with Digital Fabrication
source Open Systems: Proceedings of the 18th International Conference on Computer-Aided Architectural Design Research in Asia (CAADRIA 2013) / Singapore 15-18 May 2013, pp. 613-622
doi https://doi.org/10.52842/conf.caadria.2013.613
wos WOS:000351496100060
summary In the course of the 20th century, architectural construction has gone through intense innovation in its material, engineering and design, radically transforming the way buildings were and are conceived. Technological and industrial advances enabled and challenged architects, engineers and constructors to build increasingly complex architectural structures from concrete. Computer-Aided Design and Manufacturing (CAD/CAM) techniques have, more recently, rejuvenated and increased the possibilities of realising ever more complex geometries. Reinforced concrete is often chosen for such structures since almost any shape can be achieve when poured into a formwork. However, designs generated with digital tools tend to have limited relation to the efficient modes of production typically used in contemporary concrete construction. A large gap has emerged between the technology in architectural design and the building industry, so that few efficient solutions exist for the production of geometrically complex structures in concrete. This paper focuses on the capabilities and efficiency of existing casting techniques both with static and dynamic formwork which, when combined with digital fabrication, allow innovative fabrication approaches to be taken. Particular focus is placed on slipforming, an approved and efficient construction technique, which until now is unexplored in conjunction with digital fabrication. 
keywords Complex concrete structures, Casting techniques, Formwork, Slipforming, Digital fabrication, Smart dynamic casting 
series CAADRIA
email
last changed 2022/06/07 07:59

_id ecaade2013_151
id ecaade2013_151
authors Weigele, Jakob; Schloz, Manuel; Schwinn, Tobias; Reichert, Steffen; LaMagna, Riccardo; Waimer, Frédéric; Knippers, Jan and Menges, Achim
year 2013
title Fibrous Morphologies
source Stouffs, Rudi and Sariyildiz, Sevil (eds.), Computation and Performance – Proceedings of the 31st eCAADe Conference – Volume 1, Faculty of Architecture, Delft University of Technology, Delft, The Netherlands, 18-20 September 2013, pp. 549-558
doi https://doi.org/10.52842/conf.ecaade.2013.1.549
wos WOS:000340635300057
summary Living organisms have evolved effective structural solutions in response to the inherent constraints of their respective environments through a process of morphological adaptation. Given the fact that the majority of natural load bearing materials are fibrous composites, the authors suggest the analysis of appropriate biological role models as a promising strategy for informing the application of fibre reinforced polymers (FRP) in architecture. In this paper the authors present a biomimetic design methodology for seamless large-scale FRP structures involving the analysis of the exoskeletons of Arthropoda with regards to structural performance criteria, the development of a custom robotic filament winding process, and the translation of biological and fabricational principles into the architectural domain through physical prototyping and the development of custom digital tools. The resulting performative material system is evaluated in a full-scale research pavilion.
keywords Biomimetics; computational design; fibre-reinforced composites; prototyping; robotic fabrication.
series eCAADe
email
last changed 2022/06/07 07:58

_id caadria2013_021
id caadria2013_021
authors Alhadidi, Suleiman
year 2013
title Generative Design Intervention: Creating a Computational Platform for Sensing Space
source Open Systems: Proceedings of the 18th International Conference on Computer-Aided Architectural Design Research in Asia (CAADRIA 2013) / Singapore 15-18 May 2013, pp. 345-354
doi https://doi.org/10.52842/conf.caadria.2013.345
wos WOS:000351496100034
summary This paper outlines some investigations from a project which utilizes computing and scripting of specific site components, spatio-temporal movement and behavioural patterns to explore how designer might understand people activities and formulate design interventions within public spaces. This research looks at how generative tools can facilitate designers to integrate the large volume of information received by hybrid data collection, and conventional data analysis directly into the design process. Through an examination of sensing urban space, this research proposes a method to track and record people’s movement patterns in order to implement them via generative design tool. To facilitate this, a scripting method is specified; which uses sensors and motion tracking devices to capture the use of a specific public space. This project proposes a methodology for developing designed spaces and optimal pathways generated from real-time data and feedback captured by sensors.  
keywords Real-time computation, Generative design, Sensing space, Design simulation  
series CAADRIA
email
last changed 2022/06/07 07:54

_id sigradi2013_390
id sigradi2013_390
authors Banda, Pablo; Juan Eduardo Subercaseaux
year 2013
title Meta-patrones Morfogenéticos: Propuesta de Framework para Arquitecturas Generativas Basadas en Desempeño [Morphogenetic Meta-Patterns: A framework proposal for Performance-Generated Architectures]
source SIGraDi 2013 [Proceedings of the 17th Conference of the Iberoamerican Society of Digital Graphics - ISBN: 978-956-7051-86-1] Chile - Valparaíso 20 - 22 November 2013, pp. 253 - 257
summary Architecture and Technology’s relationship nowadays has arrived to multi-disciplinary practices; they are growing exponentially while keeping away from to architectural discourse, are remarkable for its expressive power and the ability to solve complex problems. This opens the possibility for the generation of the organic, a path discarded by the Modern Movement in the past.Our approach explores three active premises called Morphogenetic Meta-Patterns: discrete processes (systemic guidelines) for the development of performance-based generative systems. These processes arise from Generative Design and their associated paradigms in the creation of a Framework between architecture and related disciplines.
keywords Design of parametric systems; Part-to-whole debate; Generative design
series SIGRADI
email
last changed 2016/03/10 09:47

_id ijac201310103
id ijac201310103
authors Bollmann, Dietrich and Alvaro Bonfiglio
year 2013
title Design Constraint Systems - A Generative Approach to Architecture
source International Journal of Architectural Computing vol. 11 - no. 1, 37-63
summary Generative Architectural Design permits the automatic (or semiautomatic) generation of architectural objects for a wide range of applications, from archaeological research and reconstruction to digital sketching. In this paper the authors introduce design constraint systems (DCS), their approach to the generation of architectural design with the help of a simple example: The development of the necessary formalisms to generate a family of architectural designs, i.e. simple houses and pagodas. After explaining the formal system the authors introduce an approach for the generation of complex form based on the application of transformations and distortions.Architecture is bound by the constraints of physical reality: Gravitation and the properties of the used materials define the limits in which architectural design is possible. With the recent development of new materials and construction methods however, the ways in which form and physics go together get more complicated. As a result, the shapes of architecture gain more liberty, and more and more complex shapes and structures become possible.While these advances allow for new ways of architectural expression, they also make the design process much more challenging. For this reason new tools are necessary for making this complexity manageable for the architect and enable her to play and experiment with the new possibilities of complex shapes and structures. Design constraint systems can be used as tool for experimentation with complex form. Therefore, the authors dedicate the final part of this paper to a concise delineation of an approach for the generation of complex and irregular shapes and structures. While the examples used are simple, they give an idea of the generality of design constraint systems: By using a two-component approach to the generation of designs (the first component describes the abstract structure of the modelled objects while the second component interprets the structure and generates the actual geometric forms) and allowing the user to adjust both components freely, it can be adapted to all kind of different architectural styles, from historical to contemporary architecture.
series journal
last changed 2019/05/24 09:55

_id caadria2013_198
id caadria2013_198
authors Chee Zong Jie and Patrick Janssen
year 2013
title Exploration of Urban Street Patterns – Multi-Criteria Evolutionary Optimisation Using Axial Line Analysis
source Open Systems: Proceedings of the 18th International Conference on Computer-Aided Architectural Design Research in Asia (CAADRIA 2013) / Singapore 15-18 May 2013, pp. 695-704
doi https://doi.org/10.52842/conf.caadria.2013.695
wos WOS:000351496100068
summary In urban design, researchers have developed techniques to automate both the generation and evaluation of urban street patterns. In most cases, these approaches are investigated in isolation from one another. Recently, a number of researchers have attempted to couple these approaches, in order to enable larger numbers of street patterns to be generated and evaluated in an iterative loop. However, to date, the possibility of fully automating the generative-evaluative loop using optimisation algorithms has not been explored. This research proposes an explorative design method in which urban street patterns can be optimised for multiple conflicting performance criteria. The optimisation process uses evolutionary algorithms to evolve populations of design variants by iteratively applying three key procedures: development, evaluation, and feedback. For development, a generative technique is proposed for constructing street patterns. For evaluation, various performance measures are used, including in particular Space Syntax based Axial Line analysis. For feedback, a Pareto-ranking algorithm is used that ranks street patterns according to multiple criteria. The proposed method is demonstrated using an abstract scenario in which orthogonal street patterns are evolved for a small urban area.  
keywords Axial line analysis, Generative modelling, Evolutionary algorithms, Decision chain encoding, Urban street patterns 
series CAADRIA
email
last changed 2022/06/07 07:55

_id ecaade2013_167
id ecaade2013_167
authors Gokmen, Sabri
year 2013
title A Morphogenetic Approach for Performative Building Envelope Systems Using Leaf Venetian Patterns
source Stouffs, Rudi and Sariyildiz, Sevil (eds.), Computation and Performance – Proceedings of the 31st eCAADe Conference – Volume 1, Faculty of Architecture, Delft University of Technology, Delft, The Netherlands, 18-20 September 2013, pp. 497-506
doi https://doi.org/10.52842/conf.ecaade.2013.1.497
wos WOS:000340635300052
summary Recent developments in theory and technology in performance based design show an interest towards generative systems. In this paper a morphogenetic approach will be introduced that looks at Goethean morphology and leaf venation patterns. To instrumentalize this approach an algorithm will be introduced to generate various leaf venation patterns on complex mesh surfaces. As a case study, the paper tests the applicability of such system as performative algorithms for building envelopes. The role of simulation is to generate self-organizing forms and provide a framework for design development. The overall approach is to consider performance as a direct input to guide the computation of form at an early design stage.
keywords Performative façades; growth; morphology; goethe; simulation.
series eCAADe
email
last changed 2022/06/07 07:51

_id ecaade2014_057
id ecaade2014_057
authors Ivo Vrouwe and Burak Pak
year 2014
title Framing Parametric and Generative Structures - A Novel Framework for Analysis and Education
source Thompson, Emine Mine (ed.), Fusion - Proceedings of the 32nd eCAADe Conference - Volume 1, Department of Architecture and Built Environment, Faculty of Engineering and Environment, Newcastle upon Tyne, England, UK, 10-12 September 2014, pp. 365-371
doi https://doi.org/10.52842/conf.ecaade.2014.1.365
wos WOS:000361384700036
summary In this paper we aimed at the development of a novel tool to facilitate the structured analysis of architectural construction principles, materials and production methods in digital design and fabrication practices. In order to assist the understanding and teaching of these subjects, we employed a taxonomy of spatial design construction (Vrouwe 2013). By using the taxonomy, we analysed and categorised 34 parametric structures published in the IJAC Journal (2002-2014). Informed by this study, we aligned the initial taxonomy using various framing strategies. As a result we developed a new framework for spatial design construction specifically customised for the design and fabrication of parametric structures which can potentially serve as a constructive tool to create a novel design learning environment and integrated teaching strategies.
keywords Digital fabrication; parametric design; education; framing; pedagogy
series eCAADe
email
last changed 2022/06/07 07:50

_id ecaade2013_197
id ecaade2013_197
authors Koenig, Reinhard; Treyer, Lukas and Schmitt, Gerhard
year 2013
title Graphical Smalltalk with My Optimization System for Urban Planning Tasks
source Stouffs, Rudi and Sariyildiz, Sevil (eds.), Computation and Performance – Proceedings of the 31st eCAADe Conference – Volume 2, Faculty of Architecture, Delft University of Technology, Delft, The Netherlands, 18-20 September 2013, pp. 195-203
doi https://doi.org/10.52842/conf.ecaade.2013.2.195
wos WOS:000340643600019
summary Based on the description of a conceptual framework for the representation of planning problems on various scales, we introduce an evolutionary design optimization system. This system is exemplified by means of the generation of street networks with locally defined properties for centrality. We show three different scenarios for planning requirements and evaluate the resulting structures with respect to the requirements of our framework. Finally the potentials and challenges of the presented approach are discussed in detail.
keywords Design optimization; interactive planning support system; generative system integration; evolutionary multi-criteria optimization.
series eCAADe
email
last changed 2022/06/07 07:51

_id cf2013_038
id cf2013_038
authors Lee, Ju Hyun; Ning Gu, Michael J. Ostwald, and Julie Jupp
year 2013
title Understanding Cognitive Activities in Parametric Design
source Global Design and Local Materialization[Proceedings of the 15th International Conference on Computer Aided Architectural Design Futures / ISBN 978-3-642-38973-3] Shanghai, China, July 3-5, 2013, pp. 38-49.
summary Parametric design offers a new paradigm in the field of ComputerAided Design; a paradigm focused on the potential for producing design variations. However, despite this potential, the cognitive activities associated with parametric design are not well understood. The authors of this paper present a formal method for capturing cognitive activities via protocol analysis. To support the interpretation of this method, this paper evaluates creativity implicit in design products by way of a consensual assessment technique. The findings identify two cognitive activities (‘making generation’ and ‘changing existing parameters’) as potential critical to divergent thinking and the restructuring of design components. These activities facilitate the generative aspects of parametric design. The paper concludes with a discussion of three cognitive levels (physical, perceptual and conceptual) that support an understanding of cognitive activities in parametric design.
keywords Parametric design, CAD, Cognitive activity, Protocol analysis, Consensual assessment technique
series CAAD Futures
email
last changed 2014/03/24 07:08

_id ecaade2013_118
id ecaade2013_118
authors Narahara, Taro
year 2013
title A Generative Approach to Robotic Fabrication
source Stouffs, Rudi and Sariyildiz, Sevil (eds.), Computation and Performance – Proceedings of the 31st eCAADe Conference – Volume 1, Faculty of Architecture, Delft University of Technology, Delft, The Netherlands, 18-20 September 2013, pp. 673-681
doi https://doi.org/10.52842/conf.ecaade.2013.1.673
wos WOS:000340635300070
summary This paper studies computational methods for adaptive growth seen in human design processes through a relatively simple yet explicit example in the context of robotic fabrication. The proposed experiment uses an industrial robot arm to produce structures by stacking unit bricks without hard-coded instructions (“blueprints”) from the outset. The paper further explores how such implementations can be applied to architectural design and speculates as to the possibilities of open frameworks for design using computational methods.
keywords Adaptable growth; robotic fabrication; generative design.
series eCAADe
email
last changed 2022/06/07 07:58

_id caadria2013_207
id caadria2013_207
authors Narahara, Taro
year 2013
title Adaptive Growth Using Robotic Fabrication
source Open Systems: Proceedings of the 18th International Conference on Computer-Aided Architectural Design Research in Asia (CAADRIA 2013) / Singapore 15-18 May 2013, pp. 65-74
doi https://doi.org/10.52842/conf.caadria.2013.065
wos WOS:000351496100007
summary This paper studies computational methods for adaptive growth seen in human design processes, such as development of spontaneous settlements, by highlighting the contrast with conventional plan execution approaches. The paper speculates as to the possibilities of open frameworks for design using computational methods through a relatively simple yet explicit example in the context of robotic fabrication. The proposed experiment uses an industrial robot arm to pro-duce structures by stacking unit bricks without hard-coded instructions (“blueprints”) from the outset. The paper further speculates about how such implementations can be applied to architectural design.  
keywords Generative design, Robotic fabrication, Adaptable design 
series CAADRIA
email
last changed 2022/06/07 07:58

_id ecaade2013r_009
id ecaade2013r_009
authors Orsi, Francesco; Fiorito, Stefano
year 2013
title Learning from vernacular
source FUTURE TRADITIONS [1st eCAADe Regional International Workshop Proceedings / ISBN 978-989-8527-03-5], University of Porto, Faculty of Architecture (Portugal), 4-5 April 2013, pp. 115-120
summary By looking at time-tested recurrent design patterns drawn from Portuguese vernacular settlements, the present research tries to address the problem of developing sustainable urban solutions for scattered low density territories throughout Portugal. The research departs from the hypothesis that Portuguese vernacular settlements contain morphological characteristics that can be captured and reused in new designs: this may be particularly useful for rethinking extensive suburban territories’ densification conditions, in order to enhance both their consistency and sustainability. Urban sprawl and uncontrolled space consumption have often hastened the problem of territorial sustainability, that’s the reason why completing, restructuring and enhancing dispersed built environments is of paramount importance in order to foster both cultural and economical sustainability in contemporary Portugal. This project ultimately aims at contributing towards the definition of design procedures and planning tools for the re-urbanization of extensive urban fabrics. One of the major objectives is developing a decision making support tool for generating meaningful and coherent interventions in dispersed urban fabrics which could foster connectivity, integration and quality of life, by doing so this work tries to propose a novel methodology that could prove to be valuable in different contexts, even outside Portugal.
keywords Generative patterns; Vernacular urbanism; Bottom-up processes; Re-urbanization; Territorial sustainability
email
last changed 2013/10/07 19:08

For more results click below:

this is page 0show page 1show page 2show page 3show page 4show page 5... show page 30HOMELOGIN (you are user _anon_695905 from group guest) CUMINCAD Papers Powered by SciX Open Publishing Services 1.002