CumInCAD is a Cumulative Index about publications in Computer Aided Architectural Design
supported by the sibling associations ACADIA, CAADRIA, eCAADe, SIGraDi, ASCAAD and CAAD futures

PDF papers
References

Hits 1 to 20 of 609

_id ecaade2013_027
id ecaade2013_027
authors Etman, Omar; Tolba, Osama and Ezzeldin, Sherif
year 2013
title Double-Skin Façades in Egypt between Parametric and Climatic Approaches
doi https://doi.org/10.52842/conf.ecaade.2013.1.459
source Stouffs, Rudi and Sariyildiz, Sevil (eds.), Computation and Performance – Proceedings of the 31st eCAADe Conference – Volume 1, Faculty of Architecture, Delft University of Technology, Delft, The Netherlands, 18-20 September 2013, pp. 459-465
wos WOS:000340635300048
summary Daylight is a crucial element for indoor environment quality. Office buildings commonly use fully glazed façades to reflect a luxurious appearance and to maximize natural light at the expenses of high energy consumption due to cooling/heating. Double-skin façades are one of the solutions that improve the building efficiency while maintaining good natural lighting. This paper studies the impact of various perforated outer skins for non-sealed double-skin facades on light quality in prototypical office space in Egypt using parametric design. A traditional solution for light such as the Mashrabiya is taken as an inspiration for this study to generate different forms of perforated screens. The cases were analysed using light simulation tool and sorted by a genetic algorithm to show best 30 solutions offered by the design criteria. A methodology to achieve these objectives was suggested in this paper to reach better light quality in indoor spaces.
keywords Double-skin façades; parametric design; mashrabiya; genetic algorithms; illumination.
series eCAADe
email
last changed 2022/06/07 07:55

_id ijac201311301
id ijac201311301
authors Hack, Norman; Willi Lauer, Silke Langenberg, Fabio Gramazio, Matthias Kohler
year 2013
title Overcoming Repetition: Robotic fabrication processes at a large scale
source International Journal of Architectural Computing vol. 11 - no. 3, 285-300
summary In the context of the Future Cities Laboratory (FCL) of ETH Zurich, the Professorship for Architecture and Digital Fabrication of Fabio Gramazio and Matthias Kohler has set up a robotic laboratory to investigate the potentials of non-standard robotic fabrication for high rise constructions in Singapore. The high degree of industrialisation of this dominant building typology implies standardisation, simplification and repetition and accounts for the increasing monotony evident in many Asian metropolises. The aim of this research on material systems for robotic construction is to develop a new and competitive construction method that makes full use of the malleable potential of concrete as a building material. A novel, spatial, robotic "weaving" method of a tensile active material that simultaneously acts as the form defining mould, folds two separate aspects of concrete-reinforcement and formwork-into one single robotic fabrication process (see Figure 1). This in-situ process could permit the fabrication of structurally differentiated, spatially articulated and material efficient buildings.
series journal
last changed 2019/05/24 09:55

_id ecaade2013_030
id ecaade2013_030
authors Marques, Rui and Eloy, Sara
year 2013
title Customized Cork Façade
doi https://doi.org/10.52842/conf.ecaade.2013.2.621
source Stouffs, Rudi and Sariyildiz, Sevil (eds.), Computation and Performance – Proceedings of the 31st eCAADe Conference – Volume 2, Faculty of Architecture, Delft University of Technology, Delft, The Netherlands, 18-20 September 2013, pp. 621-626
wos WOS:000340643600064
summary The propose paper presents an ongoing research which main goal is to use cork in a customized modular façade system. Cork is used due to its ecological value, renewable characteristic, insulation properties and aesthetic value. The modular system design is bio-inspired in the microscopic cork pattern and the study aims at reproducing in the façade some of the natural characteristics that enable cork to be suitable for the function it plays in construction. Façades are design by a generative design process based on a parametric shape grammar which encodes shape rules and an algorithm to guide the generation. The developed cork modules are part of a back-ventilated façade system which is assembled upon a substructure that reproduces the cork cell structure and enables both the assemblage of the modules to the support wall and the connection between them.
keywords Shape grammar; generative design; cork; façade; digital fabrication.
series eCAADe
email
last changed 2022/06/07 07:59

_id sigradi2013_370
id sigradi2013_370
authors Nardelli, Eduardo Sampaio; João Tales Oliveira
year 2013
title BIM e Desempenho no Programa Minha Casa Minha Vida - PMCMV [BIM and Performance in the Brazilian Dwelling Program “My Home My Life”]
source SIGraDi 2013 [Proceedings of the 17th Conference of the Iberoamerican Society of Digital Graphics - ISBN: 978-956-7051-86-1] Chile - Valparaíso 20 - 22 November 2013, pp. 312 - 316
summary This paper describes the current stage of an ongoing research developed at Mackenzie Presbyterian University, with support of FINEP, to use information and communication technologies (ICT) for the production of affordable houses in Brazil, focusing on the government’s program “Minha Casa Minha Vida” (My Home My Life – MCMV). Here we highlight the specific issue of adapting and extending the current BIM library of components provided by the Ministry of Development, Industry and Trade (MDIC), since the validity of the standard NBR 15575/13, which as of 2013, will guide the production of buildings in Brazil through strict performance requirements. We make a brief summary of the MCMV program, the terms of the standard and the structure of that library and then present guidelines for adapting and extending the existing components, taking into account international examples and the requirements from the new standard. As a result, we expect the revised components will facilitate the work of professionals in the building industry when designing and planning buildings.
keywords BIM components; Performance standard; Affordable housing
series SIGRADI
email
last changed 2016/03/10 09:55

_id cf2013_286
id cf2013_286
authors Pang, Lei; Xiaodong Song, and Chengyu Sun
year 2013
title Computer Aided Simulation for Compact Residential Regulatory Plan
source Global Design and Local Materialization[Proceedings of the 15th International Conference on Computer Aided Architectural Design Futures / ISBN 978-3-642-38973-3] Shanghai, China, July 3-5, 2013, pp. 286-294.
summary Residential land development requires compact and intelligent growth in order to conserve land, especially in countries such as China with a large population but little usable land for built environment. This should not be done at the expense of public green space. Living density is an important issue that cannot be avoided in the urbanization process. This research uses Spatial Form Compact as the goal of trying to support the residential regulatory plan. A prototype site has been chosen to optimize the layout. Suppose the type of residential building had been decided and FAR is given as a premise. This method allows the arrangement of residential buildings to be compact and leads to more available space for concentrated green area, for example parks or other facilities. The BL-based method of genetic algorithm and VB program is used for the optimization and calculation of the prototype. The arrangement of residential buildings which is done by computer in this period is only used to explore the relationship between FAR and reasonable building layout. In order to guide the real construction of the building, the site plan should be done further elaborately under the guidance of regulatory plan by the developer and urban planner.
keywords Compact, Residential area, FAR, Concentrated Green Space
series CAAD Futures
email
last changed 2014/03/24 07:08

_id caadria2013_072
id caadria2013_072
authors Christopher, Hannah; Srinivas Tadeppalli and G. Subbaiyan
year 2013
title Computer Aided Modular Geometric Modeling,to Study the Perception of Safety – Natural Surveillance for Perceived Personal Security
doi https://doi.org/10.52842/conf.caadria.2013.761
source Open Systems: Proceedings of the 18th International Conference on Computer-Aided Architectural Design Research in Asia (CAADRIA 2013) / Singapore 15-18 May 2013, pp. 761-770
wos WOS:000351496100079
summary Natural surveillance is one key factor proposed, in the approach to decrease fear of crime. Building fenestrations and outdoor spaces like terrace, balconies and verandas that extend the interior spaces and the indoor activities, beyond the closed external shell of the buildings, are proposed by CPTED, in their place specific policy guidelines, to help design out fear and crime. In this background, this study on natural surveillance opportunities, explores typological variations of these component outdoor spaces of buildings, in line with variations in size and location. The affordances considered for this study specifically focus on the ways in which these spaces structure the visual fields for the external observer. This paper thus reports the survey of visual preferences exploring the spatial affordances of building spaces and their association with fear of crime.  
keywords Natural surveillance, Typology, Fear of crime, Visibility analysis 
series CAADRIA
email
last changed 2022/06/07 07:56

_id cf2013_347
id cf2013_347
authors Dillenburger, Benjamin and Michael Hansmeyer
year 2013
title The Resolution of Architecture in the Digital Age
source Global Design and Local Materialization[Proceedings of the 15th International Conference on Computer Aided Architectural Design Futures / ISBN 978-3-642-38973-3] Shanghai, China, July 3-5, 2013, pp. 347-357.
summary The resolution of architecture is a measure of the spatial density of information inherent in a building. This paper demonstrates how the confluence of advances in computational design and additive manufacturing has recently led to a paradigm shift in potential architectural resolution. Buildings can now be designed and fabricated with elements at the threshold of human perception. This resolution can be used to replicate existing architectural styles ever more efficiently and accurately. Yet as with the introduction of other new technologies, architects must now explore the latent potentials and determine what kind of new architectures become conceivable. Specifically, what architectures can adequately express this enormous resolution and the unlimited geometric complexity within reach? With the project Digital Grotesque, we present the first human-scale, enclosed structure that truly exploits these opportunities. Algorithms are used to articulate and orchestrate the geometry from the macro scale down to 1mm small details. The structure is enriched with local information at a previously unseen resolution. A unique language of form is developed that transcends rationality and celebrates spatial expression: a digital exuberance.
keywords high resolution, additive manufacturing, 3d printing, digital fabrication, computational design, subdivision, mesh
series CAAD Futures
email
last changed 2014/03/24 07:08

_id caadria2013_240
id caadria2013_240
authors Fok, Wendy W.
year 2013
title 3 Scales of Repurposed Disposability – Diversion of Construction, Renovation and Demolition (CRD)
doi https://doi.org/10.52842/conf.caadria.2013.811
source Open Systems: Proceedings of the 18th International Conference on Computer-Aided Architectural Design Research in Asia (CAADRIA 2013) / Singapore 15-18 May 2013, pp. 811-820
wos WOS:000351496100074
summary Project managers and construction contractors have long recognized the importance of reducing waste and salvaging high value construction and demolition materials such as copper and other metals. Contractors are usually careful about the quantity of materials ordered, how materials are used and how to carefully deconstruct valuable materials. In most cases however, materials that are more difficult to separate and that are worth less per unit weight are still going to landfill, even when they are present in large quantities. This represents an inefficient use of natural resources and uses up landfill capacity unnecessarily. Unfortunately, some contractors do not realize that there are new opportunities for waste minimization, while others are reluctant to implement environmental practices because they believe these practices will increase their project costs. Most contractors are concerned about the cost of the labour that is needed to deconstruct materials for reuse or recycling. However, it has been shown that effective waste management during CRD projects not only helps protect the environment, but can also generate significant economic savings. Various projects from within our practice and within our academic curriculum will be brought into the attention of this paper. Specifics of modularity, form/fit/analysis, fabrication, and off-site production, will be demonstrated within the larger discussion through the focus onto three case studies.  
keywords Construction alternatives, Waste management, Offsite production, Fabrication, Form/Fit/Analysis, Modularity 
series CAADRIA
email
last changed 2022/06/07 07:51

_id ecaade2013_298
id ecaade2013_298
authors Gadelhak, Mahmoud
year 2013
title Integrating Computational and Building Performance Simulation Techniques for Optimized Facade Designs
doi https://doi.org/10.52842/conf.ecaade.2013.2.261
source Stouffs, Rudi and Sariyildiz, Sevil (eds.), Computation and Performance – Proceedings of the 31st eCAADe Conference – Volume 2, Faculty of Architecture, Delft University of Technology, Delft, The Netherlands, 18-20 September 2013, pp. 261-269
wos WOS:000340643600026
summary This paper investigates the integration of Building Performance Simulation (BPS) and optimization tools to provide high performance solutions. An office room in Cairo, Egypt was chosen as a base testing case, where a Genetic Algorithm (GA) was used for optimizing the annual daylighting performance of two parametrically modeled daylighting systems. In the first case, a combination of a redirecting system (light shelf) and shading system (solar screen) was studied. While in the second, a free-form “gills surface” was also optimized to provide acceptable daylighting performance. Results highlight the promising future of using computational techniques along with simulation tools, and provide a methodology for integrating optimization and performance simulation techniques at early design stages.
keywords High performance facade; daylighting simulation; optimization; form finding; genetic algorithm.
series eCAADe
email
last changed 2022/06/07 07:50

_id cf2013_267
id cf2013_267
authors Kim, Kyoung-Hee and Seung-Hoon Han
year 2013
title Integrated Design Process: Sustainable Fa¸cade Fabrication
source Global Design and Local Materialization[Proceedings of the 15th International Conference on Computer Aided Architectural Design Futures / ISBN 978-3-642-38973-3] Shanghai, China, July 3-5, 2013, pp. 267-273.
summary Interoperability and integration between design, analysis and fabrication in architectural practice allow building façade systems to be increasingly complex and non-standard. As customized building façade systems increase in contemporary buildings, it is important to adopt the integrated design process that aids problem solving and design-making in façade design. The primary goal of this study is to explore the integrated design process that incorporates building information modeling and parametric performance analysis tools in order to understand sustainability opportunities in sustainable façade fabrication. The integration of building information modeling (BIM) and parametric performance analysis tools poses a unique design process whose resolution has the potential to improve sustainability in built environment and façade fabrication efficiency. This paper uses an academic design research project, the Reading Pavilion located in the UNC Charlotte campus, as a case study to investigate the integrated design process of a building façade system, which was supported by quantitative data using BIM, parametric performance analysis, and rapid prototyping tools.
keywords Integrated design process, building information modeling, parametric performance analysis, high performance façade.
series CAAD Futures
email
last changed 2014/03/24 07:08

_id sigradi2013_42
id sigradi2013_42
authors Kotsopoulos, Sotirios D.; François Guermeur; Federico Casalegno
year 2013
title Using Computational Fluid Dynamics to Assess Natural Airflow in a Prototype House-Interior
source SIGraDi 2013 [Proceedings of the 17th Conference of the Iberoamerican Society of Digital Graphics - ISBN: 978-956-7051-86-1] Chile - Valparaíso 20 - 22 November 2013, pp. 373 - 377
summary This paper presents an airflow study with Computational Fluid Dynamic (CFD) software that was used to model the natural ventilation attributes at the interior of a prototype house. This study informed the design development phase of the house and guided the design of a dynamic curtain wall involving a matrix of 3 x 9 openable windows for its south façade. Alternative ways of modeling the building geometry were employed and different possible states of the house were examined to determine how change in the orientation and the basic dimensions of the envelope, and modifications in the number, distribution and angle of the open windows affect natural ventilation.
keywords Performance-based design; Airflow; Computational fluid dynamics; Simulation
series SIGRADI
email
last changed 2016/03/10 09:54

_id caadria2013_056
id caadria2013_056
authors Lim, Jason; Fabio Gramazio and Matthias Kohler
year 2013
title A Software Environment for Designing Through Robotic Fabrication – Developing a Graphical Programming Toolkit for the Digital Design and Scaled Robotic Fabrication of High Rises
doi https://doi.org/10.52842/conf.caadria.2013.045
source Open Systems: Proceedings of the 18th International Conference on Computer-Aided Architectural Design Research in Asia (CAADRIA 2013) / Singapore 15-18 May 2013, pp. 45-54
wos WOS:000351496100005
summary The term “robot” was born from a play written almost a century ago. Today robotic fabrication has become an emerging topic in architectural research. As architects work with these technologies, they are challenged with writing a different kind of play: here robots are the actors and the physical materialization of a design is their performance. However current Computer Aided Design (CAD) packages do not provide native robot programming functionalities which architects require to plan and orchestrate these fabrication process. To address this limitation, a Python library for robot programming is written. It is referenced by a toolkit of custom components developed to extend a graphical programming environment commonly used for architectural design. The empirical development of these software tools takes place in the context of a design studio investigating the subject of the high rise. The tools are tested in a workflow that involves the digital design and scaled robotic fabrication of high-rise housing. This paper discusses the considerations underlying the toolkit’s design, the outcomes of its use in the studio, and its impact on the creative design process. 
keywords Robotic fabrication, Architectural model, Software tools, High rise design, Creative computational design 
series CAADRIA
email
last changed 2022/06/07 07:59

_id ijac201311302
id ijac201311302
authors Meagher, Mark; David van der Maas, Christian Abegg, Jeffrey Huang
year 2013
title Dynamic ornament: An investigation of responsive thermochromic surfaces in architecture
source International Journal of Architectural Computing vol. 11 - no. 3, 301-318
summary This paper describes the use of environmental sensor data as a basis for the design of architectural ornament that takes on a distinctive appearance in response to the atmospheric conditions where it is located. Among the goals of the project were the identification of inexpensive fabrication methods that could be used to build responsive surfaces at the scale of a room, and the identification of material and tectonic strategies for integrating dynamic information displays in buildings. A series of prototypes were constructed to explore the benefits and limitations of thermochromic ink as a material for visualizing dynamic data, and a method is proposed for building thermochromic surfaces based on printed circuit boards (PCB's) that is cost-effective and allows the fabrication of large surfaces through tiling. The limitations of this method include high power consumption, a short lifespan and difficulties in controlling the surface temperature.
series journal
last changed 2019/05/24 09:55

_id acadia13_043
id acadia13_043
authors Michalatos, Panagiotis; Payne, Andrew O.
year 2013
title Working with Multi-scale Material Distributions
doi https://doi.org/10.52842/conf.acadia.2013.043
source ACADIA 13: Adaptive Architecture [Proceedings of the 33rd Annual Conference of the Association for Computer Aided Design in Architecture (ACADIA) ISBN 978-1-926724-22-5] Cambridge 24-26 October, 2013), pp. 43-50
summary At present, computer aided design (CAD) software has proven ill equipped to manage the spatial variations in material properties. Most digital design packages employ a surface modeling paradigm where a solid object is that which is enclosed by a set of boundaries (known as boundary representations or “B-rep” for short). In surface models, material representations are often treated as homogenous and discrete. Yet, natural materials are capable of structures where the variability of material within a volume is defined at a multiplicity of scales and according to various functional criteria. With the advent of new 3D printing techniques, a new possibility emerges—allowing new multi-material composite objects to be fabricated in a single build volume with a high degree of dimensional accuracy and repeatability. However, a big limitation facing complex high resolution digital fabrication comes from the software’s inability to represent or handle material variability. This paper proposes a new digital interface for working with multi-material distributions at a variety of scales using a rasterization process. Beyond the immediate benefit of precise graduated control over the material distribution within a 3D printed volume, our interface opens new creative opportunities by enabling the use of existing image processing techniques (such as filtering, mapping, etc.) which can be applied to three-dimensional voxel fields. Examples are provided which explore the potential of multi-scale material distributions.
keywords next generation technology, multi-material 3D printing, digital interfaces, voxel fields, rasterization
series ACADIA
type Normal Paper
email
last changed 2022/06/07 07:58

_id acadia20_574
id acadia20_574
authors Nguyen, John; Peters, Brady
year 2020
title Computational Fluid Dynamics in Building Design Practice
doi https://doi.org/10.52842/conf.acadia.2020.1.574
source ACADIA 2020: Distributed Proximities / Volume I: Technical Papers [Proceedings of the 40th Annual Conference of the Association of Computer Aided Design in Architecture (ACADIA) ISBN 978-0-578-95213-0]. Online and Global. 24-30 October 2020. edited by B. Slocum, V. Ago, S. Doyle, A. Marcus, M. Yablonina, and M. del Campo. 574-583.
summary This paper provides a state-of-the-art of computational fluid dynamics (CFD) in the building industry. Two methods were used to find this new knowledge: a series of interviews with leading architecture, engineering, and software professionals; and a series of tests in which CFD software was evaluated using comparable criteria. The paper reports findings in technology, workflows, projects, current unmet needs, and future directions. In buildings, airflow is fundamental for heating and cooling, as well as occupant comfort and productivity. Despite its importance, the design of airflow systems is outside the realm of much of architectural design practice; but with advances in digital tools, it is now possible for architects to integrate air flow into their building design workflows (Peters and Peters 2018). As Chen (2009) states, “In order to regulate the indoor air parameters, it is essential to have suitable tools to predict ventilation performance in buildings.” By enabling scientific data to be conveyed in a visual process that provides useful analytical information to designers (Hartog and Koutamanis 2000), computer performance simulations have opened up new territories for design “by introducing environments in which we can manipulate and observe” (Kaijima et al. 2013). Beyond comfort and productivity, in recent months it has emerged that air flow may also be a matter of life and death. With the current global pandemic of SARS-CoV-2, it is indoor environments where infections most often happen (Qian et al. 2020). To design architecture in a post-COVID-19 environment will require an in-depth understanding of how air flows through space.
series ACADIA
type paper
email
last changed 2023/10/22 12:06

_id caadria2013_195
id caadria2013_195
authors Park, Jihyun; Azizan Aziz, Kevin Li and Carl Covington
year 2013
title Energy Performance Modeling of an Office Building and Its Evaluation – Post-Occupancy Evaluation and Energy Efficiency of the Building
doi https://doi.org/10.52842/conf.caadria.2013.209
source Open Systems: Proceedings of the 18th International Conference on Computer-Aided Architectural Design Research in Asia (CAADRIA 2013) / Singapore 15-18 May 2013, pp. 209-218
wos WOS:000351496100021
summary Energy performance modelling can provide insights into the efficiency and sustainability of commercial buildings, and also the achievement of certification standards such as USGBC LEED. However, the results from the modelling must be validated via a post-construction evaluation, which quantifies any discrepancies between the predicted energy usage and the actual energy consumed. In this study, an existing office building was examined to test how well the model predicts energy usage. The results from the model were compared with the actual usage of gas and electricity over two years (2010-2011). Our study showed a 123% higher gas usage,and a 36% lower electricity, compared with the simulation. This difference presents that occupant behaviour and building construction practices have significant impact on the energy usage of a building. For instance, the large discrepancy among gas usage is due to the office building’s thermal envelope, which identifies the spots at which heat leaks out of the building, thereby forcing the heating unit to work more. Additionally, the post occupancy evaluation study identified that indoor environmental conditions impact on energy consumption of the building. 
keywords Building performance evaluation, Energy modelling, Energy usage, User behaviour, Post occupancy evaluation
series CAADRIA
email
last changed 2022/06/07 08:00

_id acadia13_347
id acadia13_347
authors Sabin, Jenny E.
year 2013
title myThread Pavilion: Generative Fabrication in Knitting Processes
doi https://doi.org/10.52842/conf.acadia.2013.347
source ACADIA 13: Adaptive Architecture [Proceedings of the 33rd Annual Conference of the Association for Computer Aided Design in Architecture (ACADIA) ISBN 978-1-926724-22-5] Cambridge 24-26 October, 2013), pp. 347-354
summary Advancements in weaving, knitting and braiding technologies have brought to surface high-tech and high- performance composite fabrics. These products have historically infiltrated the aerospace, automobile, sports and marine industries, but architecture has not yet fully benefitted from these lightweight freeform surface structures. myThread, a commission from the Nike FlyKnit Collective, features knitted textile structures at the scale of a pavilion. The evolution of digital tools in architecture has prompted new techniques of fabrication alongside new understandings in the organization of material through its properties and potential for assemblage. No longer privileging column, beam and arch, our definition of architectural tectonics has broadened alongside advancements made in computational design. Internal geometries inherent to natural forms, whose complexity could not be computed with the human mind alone, may now be explored synthetically through mathematics and generative systems. Textiles offer architecture a robust design process whereby computational techniques, pattern manipulation, material production and fabrication are explored as an interconnected loop that may feed back upon itself in no particular linear fashion. The myThread Pavilion integrates emerging technologies in design through the materialization of dynamic data sets generated by the human body engaged in sport and movement activities in the city.
keywords next generation technology, textiles, responsive material, knitting, data visualization, generative design, bio-data
series ACADIA
type Normal Paper
email
last changed 2022/06/07 07:59

_id acadia23_v1_110
id acadia23_v1_110
authors Scelsa, Jonathan; Sheward, Gregory; Birkeland, Jennifer; Liu, Jemma; Lin, Yun Jou
year 2023
title Centripetal Clay Printing : Six-Axis Prints for Habitat Column
source ACADIA 2023: Habits of the Anthropocene: Scarcity and Abundance in a Post-Material Economy [Volume 1: Projects Catalog of the 43rd Annual Conference of the Association of Computer Aided Design in Architecture (ACADIA) ISBN 979-8-9860805-8-1]. Denver. 26-28 October 2023. edited by A. Crawford, N. Diniz, R. Beckett, J. Vanucchi, M. Swackhamer 110-115.
summary Gottfried Semper, in his 1851 text The Four Elements of Architecture, famously classifies architecture into four elemental parts: the hearth, the roof, the enclosure, and the mound, describing the role of the last three to be the “defenders of the hearth’s flame against the three hostile elements of nature (Semper 2011).” Modernity has witnessed the role of enclosure evolve to that of a sealed envelope, or one which meticulously separates the ‘natural environment,’ from the internally regulated environment as part of modern comfort. The post-modern advent of the rain-screen has further separated the layer of exteriorized cultural expression from the structuring envelope, removing the ornamental aspect of Semper’s enclosure, from the enclosing layer. This habit of casting the natural processes out of our building envelopes has resulted in the rapid depletion of space for biodiversity within our cities. Joyce Hwang in her essay “Living Among Pests,” has suggested that the needed reconnection of biodiversity with our urban buildings will force a re-examination of “facade articulation to take on more responsibilities. Ornament will become performative” (Hwang 2013).
series ACADIA
type project
email
last changed 2024/04/17 13:58

_id sigradi2013_44
id sigradi2013_44
authors Silvano Costa, Márcia; Evangelos D. Christakou; Lenildo S. Da Silva; Antônio A. Nepomuceno
year 2013
title Identificação de Danos em Fachadas de Edificações: Geração de Mosaicos Fotográficos Obtidos por Plataforma Robótica [Identification of damage on facades of buildings: Generating Mosaics Photographic obtained by Robotics Platform]
source SIGraDi 2013 [Proceedings of the 17th Conference of the Iberoamerican Society of Digital Graphics - ISBN: 978-956-7051-86-1] Chile - Valparaíso 20 - 22 November 2013, pp. 161 - 165
summary Damage in façades rendering is a problem that has been much discussed currently since such damage is important to the degradation process of building. There are many techniques to verify damages in façades and in other external parts of buildings; however, some techniques have restrictions regarding their practical applications. This work deals with the application of the remote sensing (RM) technique. Such technique derives from the need to identify, locate and scale, quickly, accurately and without human risk, the existing damage or potential damages that may appear in the façades of buildings. Moreover, the RM technique may help to detect damages not visible at long distance or in location of difficult access. This technique is performed by corrected high-resolution panoramic images generated from a mosaic of pictures taken with a standard digital camera coupled in a robotic platform. The Itamaraty Palace, a government building, located in Brasília - DF (Brazil), is the object of the present study. The correction of the Itamaraty Palace panoramic image was carried out so that the identification, quantification and mapping of the Palace façade damages were performed using specific softwares such as GigaPan Stitch, AutoCAD and ArcGIS.
keywords Pathologies of Buildings; Panoramic Mosaics; Robotics Platform; Photos rectified and ArcGis
series SIGRADI
email
last changed 2016/03/10 10:00

_id ecaade2013_001
id ecaade2013_001
authors Stouffs, Rudi and Sariyildiz, Sevil (eds.)
year 2013
title Computation and Performance, Volume 2
doi https://doi.org/10.52842/conf.ecaade.2013.1
source Proceedings of the 31st International Conference on Education and research in Computer Aided Architectural Design in Europe, Faculty of Architecture, Delft University of Technology, Delft, The Netherlands, 18-20 September 2013, 738 p.
summary This is the second volume of the conference proceedings of the 31st eCAADe conference, held from 18-20 September 2013 at the Faculty of Architecture of Delft University of Technology in Delft, the Netherlands. Both volumes together contain 150 papers that were submitted and accepted to this conference.The theme of the 31st eCAADe conference is the role of computation in the consideration of performance in planning and design. Since long, a building no longer simply serves to shelter human activity from the natural environment. It must not just defy natural forces, carry its own weight, its occupants and their possessions, it should also functionally facilitate its occupants’ activities, be aesthetically pleasing, be economical in building and maintenance costs, provide temperature, humidity, lighting and acoustical comfort, be sustainable with respect to material, energy and other resources, and so forth. Considering all these performance aspects in building design is far from straightforward and their integration into the design process further increases complexity, interdisciplinarity and the need for computational support.One of the roles of computation in planning and design is the measurement and prediction of the performances of buildings and cities, where performance denotes the ability of buildings and cities to meet various technical and non-technical requirements (physical as well as psychological) placed upon them by owners, users and society at large.This second volume contains 75 papers grouped under eleven subthemes that vary from Simulation, Prediction and Evaluation over Models of Computation: Human Factors to Languages of Design.
series eCAADe
email
last changed 2022/06/07 07:49

For more results click below:

this is page 0show page 1show page 2show page 3show page 4show page 5... show page 30HOMELOGIN (you are user _anon_136843 from group guest) CUMINCAD Papers Powered by SciX Open Publishing Services 1.002