CumInCAD is a Cumulative Index about publications in Computer Aided Architectural Design
supported by the sibling associations ACADIA, CAADRIA, eCAADe, SIGraDi, ASCAAD and CAAD futures

PDF papers
References

Hits 1 to 20 of 613

_id acadia23_v3_71
id acadia23_v3_71
authors Vassigh, Shahin; Bogosian, Biayna
year 2023
title Envisioning an Open Knowledge Network (OKN) for AEC Roboticists
source ACADIA 2023: Habits of the Anthropocene: Scarcity and Abundance in a Post-Material Economy [Volume 3: Proceedings of the 43rd Annual Conference for the Association for Computer Aided Design in Architecture (ACADIA) ISBN 979-8-9891764-1-0]. Denver. 26-28 October 2023. edited by A. Crawford, N. Diniz, R. Beckett, J. Vanucchi, M. Swackhamer 24-32.
summary The construction industry faces numerous challenges related to productivity, sustainability, and meeting global demands (Hatoum and Nassereddine 2020; Carra et al. 2018; Barbosa, Woetzel, and Mischke 2017; Bock 2015; Linner 2013). In response, the automation of design and construction has emerged as a promising solution. In the past three decades, researchers and innovators in the Architecture, Engineering, and Construction (AEC) fields have made significant strides in automating various aspects of building construction, utilizing computational design and robotic fabrication processes (Dubor et al. 2019). However, synthesizing innovation in automation encounters several obstacles. First, there is a lack of an established venue for information sharing, making it difficult to build upon the knowledge of peers. First, the absence of a well-established platform for information sharing hinders the ability to effectively capitalize on the knowledge of peers. Consequently, much of the research remains isolated, impeding the rapid dissemination of knowledge within the field (Mahbub 2015). Second, the absence of a standardized and unified process for automating design and construction leads to the individual development of standards, workflows, and terminologies. This lack of standardization presents a significant obstacle to research and learning within the field. Lastly, insufficient training materials hinder the acquisition of skills necessary to effectively utilize automation. Traditional in-person robotics training is resource-intensive, expensive, and designed for specific platforms (Peterson et al. 2021; Thomas 2013).
series ACADIA
type field note
email
last changed 2024/04/17 13:59

_id sigradi2014_292
id sigradi2014_292
authors Nardelli, Eduardo Sampaio; Lais Guerle Tonso
year 2014
title BIM – Barreiras institucionais para a sua implantação no Brasil [BIM - Institutional barriers to its implementation in Brazil]
source SiGraDi 2014 [Proceedings of the 18th Conference of the Iberoamerican Society of Digital Graphics - ISBN: 978-9974-99-655-7] Uruguay - Montevideo 12 - 14 November 2014, pp. 408-411
summary This paper presents the current state of art of BIM implementation in Brazil and evaluates its maturity level using the framework of Succar (2013), following analyzes institutional barriers that hinder the advancement of this process in Brazilian construction chain and points out about future possibilities to increase it.
keywords BIM; Maturity of BIM; BIM in Brazil; Brazilian productivity in construction chain; Barriers to BIM in Brazil
series SIGRADI
email
last changed 2016/03/10 09:56

_id acadia20_574
id acadia20_574
authors Nguyen, John; Peters, Brady
year 2020
title Computational Fluid Dynamics in Building Design Practice
doi https://doi.org/10.52842/conf.acadia.2020.1.574
source ACADIA 2020: Distributed Proximities / Volume I: Technical Papers [Proceedings of the 40th Annual Conference of the Association of Computer Aided Design in Architecture (ACADIA) ISBN 978-0-578-95213-0]. Online and Global. 24-30 October 2020. edited by B. Slocum, V. Ago, S. Doyle, A. Marcus, M. Yablonina, and M. del Campo. 574-583.
summary This paper provides a state-of-the-art of computational fluid dynamics (CFD) in the building industry. Two methods were used to find this new knowledge: a series of interviews with leading architecture, engineering, and software professionals; and a series of tests in which CFD software was evaluated using comparable criteria. The paper reports findings in technology, workflows, projects, current unmet needs, and future directions. In buildings, airflow is fundamental for heating and cooling, as well as occupant comfort and productivity. Despite its importance, the design of airflow systems is outside the realm of much of architectural design practice; but with advances in digital tools, it is now possible for architects to integrate air flow into their building design workflows (Peters and Peters 2018). As Chen (2009) states, “In order to regulate the indoor air parameters, it is essential to have suitable tools to predict ventilation performance in buildings.” By enabling scientific data to be conveyed in a visual process that provides useful analytical information to designers (Hartog and Koutamanis 2000), computer performance simulations have opened up new territories for design “by introducing environments in which we can manipulate and observe” (Kaijima et al. 2013). Beyond comfort and productivity, in recent months it has emerged that air flow may also be a matter of life and death. With the current global pandemic of SARS-CoV-2, it is indoor environments where infections most often happen (Qian et al. 2020). To design architecture in a post-COVID-19 environment will require an in-depth understanding of how air flows through space.
series ACADIA
type paper
email
last changed 2023/10/22 12:06

_id caadria2014_042
id caadria2014_042
authors Alam, Jack and Jeremy J. Ham
year 2014
title Towards a BIM-Based Energy Rating System
doi https://doi.org/10.52842/conf.caadria.2014.285
source Rethinking Comprehensive Design: Speculative Counterculture, Proceedings of the 19th International Conference on Computer-Aided Architectural Design Research in Asia (CAADRIA 2014) / Kyoto 14-16 May 2014, pp. 285–294
summary Governments in Australia are faced with policy implementation that mandates higher energy efficient housing (Foran, Lenzen & Dey 2005). To this effect, the National Construction Code (NCC) 2013 stipulates the minimum energy performance for residential buildings as 114MJ/m2 per annum or 6 stars on an energy rating scale. Compliance with this minimum is mandatory but there are several methods through which residential buildings can be rated to comply with the deemed to satisfy provisions outlined in the NCC. FirstRate5 is by far the most commonly used simulation software used in Victoria, Australia. Meanwhile, Building Information Modelling (BIM), using software such as ArchiCAD has gained a foothold in the industry. The energy simulation software within ArchiCAD, EcoDesigner, enables the reporting on the energy performance based on BIM elements that contain thermal information. This research is founded on a comparative study between FirstRate5 and EcoDesigner. Three building types were analysed and compared. The comparison finds significant differences between simulations, being, measured areas, thermal loads and potentially serious shortcomings within FirstRate5, that are discussed along with the future potential of a fully BIM-integrated model for energy rating certification in Victoria.
keywords Building Information Modelling, energy rating, FirstRate 5, ArchiCAD EcoDesigner, Building Energy Model
series CAADRIA
email
last changed 2022/06/07 07:54

_id sigradi2013_243
id sigradi2013_243
authors Andia, Alfredo
year 2013
title Automated Architecture: Why CAD, Parametrics and Fabrication are Really old News
source SIGraDi 2013 [Proceedings of the 17th Conference of the Iberoamerican Society of Digital Graphics - ISBN: 978-956-7051-86-1] Chile - Valparaíso 20 - 22 November 2013, pp. 83 - 87
summary Automation is transforming a significant number of industries today. This paper discusses how the Design and Construction industry is also entering into a new era of automation. In the paper I observe that designers are automating by using parametric tools (BIM, scripting, etc.) while contractors are moving into pre-fabrication and modularization. Both conceptualizations are incomplete. The paper presents how we are in the first steps of creating learning algorithms that develop specific intelligence in design synthesis and how the design field will became even more sophisticated as a second generation of multi-material 3D printing techniques produce new materials.
keywords Automation; Architectural design; Artificial intelligence; Learning algorithms; Multi-material printers
series SIGRADI
email
last changed 2016/03/10 09:47

_id acadia13_121
id acadia13_121
authors Beites, Steven
year 2013
title Morphological Behavior of Shape Memory Polymers Toward a Deployable, Adaptive Architecture
doi https://doi.org/10.52842/conf.acadia.2013.121
source ACADIA 13: Adaptive Architecture [Proceedings of the 33rd Annual Conference of the Association for Computer Aided Design in Architecture (ACADIA) ISBN 978-1-926724-22-5] Cambridge 24-26 October, 2013), pp. 121-128
summary Shape-memory polymers (SMPs) are an emerging class of “smart materials” that have dual-shape capability. They are able to undergo significant deformation when exposed to an external stimulus such as heat or light. SMPs have been widely investigated within the biomedicine and aerospace industries; however, their potential has yet to be explored within an architectural framework. The research presented in this paper begins an investigation into the morphological behavior ofSMPs toward a deployable, adaptive architecture. The structure’s ease of assembly, compact storage, transportability and configurable properties offer promising applications in emergency and disaster relief shelters, lightweight recreational structures and a variety of other applications in the temporary construction and aerospace industry. This paper explores the use of SMPs through the development of a dynamic actuator that links a series of interconnected panels creating overall form to a self-standing structure. The shape-shifting behavior of the SMP allows the dynamic actuator to become flexible when storage and transportability are required. Alternatively, when exposed to the appropriate temperature range, the actuator is capable of returning to its memorized state for on-site deployment. Through a series ofprototypes, this paper will provide a fundamental understanding of the SMP’s thermo-mechanicalproperties toward deployable, adaptive architecture.
keywords next-generation technology, smart materials, shape-memory polymers, material analysis, smart assemblies, dynamic actuator, soft architecture
series ACADIA
type Normal Paper
email
last changed 2022/06/07 07:54

_id ecaade2013r_001
id ecaade2013r_001
authors Carreiro, Miguel; Pinto, Pedro
year 2013
title The evolution of representation in architecture
source FUTURE TRADITIONS [1st eCAADe Regional International Workshop Proceedings / ISBN 978-989-8527-03-5], University of Porto, Faculty of Architecture (Portugal), 4-5 April 2013, pp. 27-38
summary This paper proposes an overview on the relation between representation, technology and architecture methodologies. Focusing on disposable digital tools, it reaches the new tools of virtual immersive 3D architectural environments. It also addresses the concepts of operative 3D, augmented reality and robotic manufacturing, thus introducing a system of digital tools that enables users to step inside a 3D virtual reality environment, built as a virtual building prototype, and to use all data instructions directly with the construction industry. This paper questions therefore the traditional processes and perceptions in architecture and draw present and future advanced state-of-the-arts methodologies. As a result, future and tradition in architectural design methods are challenged. Recognizing the permanent tensions between traditional and innovative processes, possible methodological changes are put in perspective, namely the fields of technical representation, building construction and design processes.
keywords Architecture; Representation; Technology; 3D; Methodology
email
last changed 2013/10/07 19:08

_id sigradi2013_205
id sigradi2013_205
authors Chiarella, Mauro; Luis Felipe González Böhme; Cristian Calvo Barentin
year 2013
title Robots: Automatización en Diseño y Construcción para la Enseñanza de Arquitectura [Robots: Automation in Design and Manufacturing for Teaching Architecture]
source SIGraDi 2013 [Proceedings of the 17th Conference of the Iberoamerican Society of Digital Graphics - ISBN: 978-956-7051-86-1] Chile - Valparaíso 20 - 22 November 2013, pp. 439 - 443
summary Industrial robots controlled by parametric design software and visual programming environments are gaining popularity in the research and use of non-conventional construction processes in architecture. Process automation which can be personalized through variable components promises to become an industry standard with similar cost structures to current pre-fabrication industrial processes. In order to incorporate competencies from non-serial variable architectural modular design, an initial teaching initiative (Advanced Architectural Design Studio – USM) was developed in Latin América. The strategy employed is based on incorporating concepts and instruments of Construction & Design Automation for CAD/CAM processes with a Six Axis Robotic Arm (KUKA KR125/2).
keywords Robotic fabrication; Parametric modeling, Teaching architecture
series SIGRADI
email
last changed 2016/03/10 09:48

_id ecaade2015_120
id ecaade2015_120
authors Daoud, Bassam and Voordouw, Johan
year 2015
title Making Machines that Make Buildings - Constructing a Mobile 3D Printer for Concrete Elements
doi https://doi.org/10.52842/conf.ecaade.2015.2.355
source Martens, B, Wurzer, G, Grasl T, Lorenz, WE and Schaffranek, R (eds.), Real Time - Proceedings of the 33rd eCAADe Conference - Volume 2, Vienna University of Technology, Vienna, Austria, 16-18 September 2015, pp. 355-359
wos WOS:000372316000041
summary This paper is both a fundamental and applied study of the multi-faceted design and fabrication issues related to the construction of a mobile 3D printer. The paper signifies the halfway point in a project initiated at the Azrieli School of Architecture and Urbanism at Carleton University starting in 2013. The printer, entitled 3DB, intends to print concrete elements for the Architecture, Engineering and Construction industry. The printer frame was designed to fit within the bed of a typical half-ton pick up truck or contract trailer. The paper describes the design, simulation and construction of the steel frame, gantry and extruder and makes speculation on future research including improved design of the extruder and nozzle mechanism.
series eCAADe
email
last changed 2022/06/07 07:55

_id acadia23_v2_340
id acadia23_v2_340
authors Huang, Lee-Su; Spaw, Gregory
year 2023
title Augmented Reality Assisted Robotic: Tube Bending
source ACADIA 2023: Habits of the Anthropocene: Scarcity and Abundance in a Post-Material Economy [Volume 2: Proceedings of the 43rd Annual Conference for the Association for Computer Aided Design in Architecture (ACADIA) ISBN 979-8-9891764-0-3]. Denver. 26-28 October 2023. edited by A. Crawford, N. Diniz, R. Beckett, J. Vanucchi, M. Swackhamer 340-349.
summary The intent of this research is to study potential improvements and optimizations in the context of robotic fabrication paired with Augmented Reality (AR), leveraging the technology in the fabrication of the individual part, as well as guiding the larger assembly process. AR applications within the Architecture, Engineering, and Construction (AEC) industry have seen constant research and development as designers, fabricators, and contractors seek methods to reduce errors, minimize waste, and optimize efficiency to lower costs (Chi, Kang, and Wang 2013). Recent advancements have made the technology very accessible and feasible for use in the field, as demonstrated by seminal projects such as the Steampunk Pavilion in Tallinn, Estonia (Jahn, Newnham, and Berg 2022). These types of projects typically improve manual craft processes. They often provide projective guidelines, and make possible complex geometries that would otherwise be painstakingly slow to complete and require decades of artisanal experience (Jahn et al. 2019). Building upon a previously developed robotic tube bending workflow, our research implements a custom AR interface to streamline the bending process for multiple, large, complex parts with many bends, providing a pre-visualization of the expected fabrication process for safety and part-verification purposes. We demonstrate the utility of this AR overlay in the part fabrication setting and in an inadvertent, human-robot, collaborative process when parts push the fabrication method past its limits. The AR technology is also used to facilitate the assembly process of a spatial installation exploring a unique aesthetic with subtle bends, loops, knots, bundles, and weaves utilizing a rigid tube material.
series ACADIA
type paper
email
last changed 2024/12/20 09:12

_id caadria2013_071
id caadria2013_071
authors Lloret Kristensen, Ena; Fabio Gramazio, Matthias Kohler and Silke Langenberg
year 2013
title Complex Concrete Constructions – Merging Existing Casting Techniques with Digital Fabrication
doi https://doi.org/10.52842/conf.caadria.2013.613
source Open Systems: Proceedings of the 18th International Conference on Computer-Aided Architectural Design Research in Asia (CAADRIA 2013) / Singapore 15-18 May 2013, pp. 613-622
wos WOS:000351496100060
summary In the course of the 20th century, architectural construction has gone through intense innovation in its material, engineering and design, radically transforming the way buildings were and are conceived. Technological and industrial advances enabled and challenged architects, engineers and constructors to build increasingly complex architectural structures from concrete. Computer-Aided Design and Manufacturing (CAD/CAM) techniques have, more recently, rejuvenated and increased the possibilities of realising ever more complex geometries. Reinforced concrete is often chosen for such structures since almost any shape can be achieve when poured into a formwork. However, designs generated with digital tools tend to have limited relation to the efficient modes of production typically used in contemporary concrete construction. A large gap has emerged between the technology in architectural design and the building industry, so that few efficient solutions exist for the production of geometrically complex structures in concrete. This paper focuses on the capabilities and efficiency of existing casting techniques both with static and dynamic formwork which, when combined with digital fabrication, allow innovative fabrication approaches to be taken. Particular focus is placed on slipforming, an approved and efficient construction technique, which until now is unexplored in conjunction with digital fabrication. 
keywords Complex concrete structures, Casting techniques, Formwork, Slipforming, Digital fabrication, Smart dynamic casting 
series CAADRIA
email
last changed 2022/06/07 07:59

_id ecaade2013_039
id ecaade2013_039
authors Papadonikolaki, Eleni; Koutamanis, Alexander and Wamelink, J. W. F. (Hans)
year 2013
title Attaining Performance with Building Information Modelling
doi https://doi.org/10.52842/conf.ecaade.2013.2.475
source Stouffs, Rudi and Sariyildiz, Sevil (eds.), Computation and Performance – Proceedings of the 31st eCAADe Conference – Volume 2, Faculty of Architecture, Delft University of Technology, Delft, The Netherlands, 18-20 September 2013, pp. 475-483
wos WOS:000340643600048
summary The paper presents the findings of a systematic literature review of approximately 200 scientific sources. It is designed with the aim to identify the current benefits and factors of high performance in Architecture, Engineering, Construction (AEC) since the introduction of Building Information Modelling (BIM). We formed and confirmed two main propositions associating the performance of the AEC to the use of BIM. The mapping of the current impact and benefits of BIM showed that the role of the managers, suppliers, owners and authorities is underestimated, as well as the initiation and use stage of project development. At the same time, the performance in the AEC industry can be improved by an array of possibilities where IT research and policy-making authorities contribute – from establishing new collaboration protocols until improving existing or creating new BIM tools.
keywords Building Information Modelling (BIM); Architecture, Engineering and Construction (AEC); supply chain management; life-cycle phases; stakeholders.
series eCAADe
email
last changed 2022/06/07 08:00

_id sigradi2013_52
id sigradi2013_52
authors Rivera, Omar; Alexis Salinas; Paula Ulloa; Oscar Otárola; Braulio Gatica; William Fuentes; Rodrigo García Alvarado; Mauro Chiarella
year 2013
title Emprendimiento de Componentes Constructivos Paramétricos [Entrepreneurship of Building Parametric Components]
source SIGraDi 2013 [Proceedings of the 17th Conference of the Iberoamerican Society of Digital Graphics - ISBN: 978-956-7051-86-1] Chile - Valparaíso 20 - 22 November 2013, pp. 244 - 248
summary New technologies of parametric design and digital fabrication encourages development of building components, involving a new approach to architectural work and promote professional endeavors. This paper presents several experiences of recent graduates of architecture in U. Bio-Bio, Chile, which demonstrate these capabilities. The development of a roof module, a structural grid, a flexible envelope, cutting partitions and folded units for wind protection are examples of mass-customization, with implementation of new processes of design, construction and divulgation into the building industry.
keywords Parametric Design, Digital Fabrication, Building Construction, Entrepreneurship, Innovative Architecture
series SIGRADI
email
last changed 2016/03/10 09:58

_id ecaade2014_001
id ecaade2014_001
authors Thompson, Emine Mine (ed.)
year 2014
title Fusion, Volume 2
doi https://doi.org/10.52842/conf.ecaade.2014.1
source Proceedings of the 32nd International Conference on Education and research in Computer Aided Architectural Design in Europe, Department of Architecture and Built Environment, Faculty of Engineering and Environment, Newcastle upon Tyne, England, UK, 10-12 September 2014, 632 p.
summary This is the second volume of the conference proceedings of the 32nd eCAADe conference, held from 10-12 September 2013 at the Department of Architecture and Built Environment, Faculty of Engineering and Environment, Northumbria University in Newcastle upon Tyne, England. Both volumes together contain 130 papers that were submitted and accepted to this conference. The theme of the 32nd eCAADe conference is Fusion- data integration at its best. All quests for data integration in architecture and the construction industry lead ultimately to FUSION, a synthesis of knowledge that transcends mere combination. FUSION is the dream of a knowledge system that will enable multiple sets of data, in manifold formats, to be presented in a unified view. This conference is exploring the possibilities for advanced levels of data integration in the service of the representation and management of the natural environment, and the design, visualisation and making of the built environment. These proceedings are presenting the contributions which explore the elusive goal of FUSION in architecture and related fields. The second volume of the proceedings contains 65 papers grouped under nine sub-themes (Generative Design- Parametric Modelling, Material, Collaboration and Participation, VR, Spatial Analysis, Shape, Form and Geometry 2, BIM, Design Tool 2 and Smart and Responsive Design).
series eCAADe
type normal paper
email
last changed 2022/06/07 07:49

_id ecaade2014_000
id ecaade2014_000
authors Thompson, Emine Mine (ed.)
year 2014
title Fusion, Volume 1
doi https://doi.org/10.52842/conf.ecaade.2014.2
source Proceedings of the 32nd International Conference on Education and research in Computer Aided Architectural Design in Europe, Department of Architecture and Built Environment, Faculty of Engineering and Environment, Newcastle upon Tyne, England, UK, 10-12 September 2014, 668 p.
summary This is the first volume of the conference proceedings of the 32nd eCAADe conference, held from 10-12 September 2013 at the Department of Architecture and Built Environment, Faculty of Engineering and Environment, Northumbria University in Newcastle upon Tyne, England. Both volumes together contain 130 papers that were submitted and accepted to this conference. The theme of the 32nd eCAADe conference is Fusion- data integration at its best. All quests for data integration in architecture and the construction industry lead ultimately to FUSION, a synthesis of knowledge that transcends mere combination. FUSION is the dream of a knowledge system that will enable multiple sets of data, in manifold formats, to be presented in a unified view. This conference is exploring the possibilities for advanced levels of data integration in the service of the representation and management of the natural environment, and the design, visualisation and making of the built environment. These proceedings are presenting the contributions which explore the elusive goal of FUSION in architecture and related fields. The first volume of the proceedings contains 65 papers grouped under seven sub-themes (Towards Smarter Cities, Design Tool 1, CAAD Education, Fabrication, Shape-Form-Geometry, Visualisation and Digital Heritage).
series eCAADe
type normal paper
email
last changed 2022/06/07 07:49

_id sigradi2017_062
id sigradi2017_062
authors Lima da Silva, Juliano; Andréa Quadrado Mussi, Lauro André Ribeiro, Thaísa Leal da Silva
year 2017
title Programação em plataforma BIM e a Norma de Desempenho Brasileira: Desenvolvimento de uma aplicação para estimativa de performance acústica em projetos arquitetônicos [BIM platform programming and Brazilian Performance Standard: Development of an application to estimate acoustic performance in architectural design]
source SIGraDi 2017 [Proceedings of the 21th Conference of the Iberoamerican Society of Digital Graphics - ISBN: 978-956-227-439-5] Chile, Concepción 22 - 24 November 2017, pp.423-428
summary The Brazilian Performance Standard (NBR 15.575/2013 – Housing Buildings – Performance) is changing the design process of residential buildings, imposing new acoustic performance criteria. In this Context, the present paper proposes the programming of a Revit plug-in for verifying sound insulation of walls between environments, collecting information of the building’s model from a parameter database, calculating values of the elements’ sound reduction index and allowing to ponder constructive systems’ performance. The application aims to amplify productivity of designers and to provide greater control over technological solutions, assisting in the compliance with performance criteria.
series SIGRADI
email
last changed 2021/03/28 19:58

_id ecaade2013_112
id ecaade2013_112
authors Orbey, Betül
year 2013
title A Catalyst for Digital Design Media
doi https://doi.org/10.52842/conf.ecaade.2013.1.167
source Stouffs, Rudi and Sariyildiz, Sevil (eds.), Computation and Performance – Proceedings of the 31st eCAADe Conference – Volume 1, Faculty of Architecture, Delft University of Technology, Delft, The Netherlands, 18-20 September 2013, pp. 167-174
wos WOS:000340635300016
summary This study aims to understand whether time restriction along with a ‘situational influence on creativity’ can act as a catalyst to speed up unique design alternative genera- tion when digital media is being used compared to sketching. In order to achieve this, an experiment with undergraduate architectural design students is conducted. The results are measured with the flexibility and fluidity measures of creativity proposed by the Torrance Test.
keywords Digital design media; sketching; design productivity.
series eCAADe
email
last changed 2022/06/07 08:00

_id acadia13_405
id acadia13_405
authors Seibert, Matthew; Roy, Eric
year 2013
title Metabolic Change
doi https://doi.org/10.52842/conf.acadia.2013.405
source ACADIA 13: Adaptive Architecture [Proceedings of the 33rd Annual Conference of the Association for Computer Aided Design in Architecture (ACADIA) ISBN 978-1-926724-22-5] Cambridge 24-26 October, 2013), pp. 405-406
summary Metabolic Change investigates a coastal region experiencing population growth largely driven by environmental change as a burgeoning superorganism consuming, transforming and expelling materials. The regional analysis and plan focuses on this superorganism’s metabolism of phosphorus, a finite resource essential to agricultural productivity and responsible for widespread aquatic pollution. 
keywords Complex Systems, Phosphorous, Material Flow, Urban Metabolism, Parametric Urbanism
series ACADIA
type Design Poster
email
last changed 2022/06/07 08:00

_id ijac201310105
id ijac201310105
authors Agkathidis, Asterios and Andre_ Brown
year 2013
title Tree-Structure Canopy:A Case Study in Design and Fabrication of Complex Steel Structures using Digital Tools
source International Journal of Architectural Computing vol. 11 - no. 1, 87-104
summary This paper describes and reflects on the design and manufacturing process of the Tree-Structure canopy for the WestendGate Tower in Frankfurt upon Main, completed early 2011.The project investigated fabrication and assembly principles of complex steel structures as well as the integration of contemporary computational design, engineering, optimization and simulation techniques in a collaborative design approach. This paper focuses on the notion of modular standardization as opposed to non standard customized components. It also engages with issues relating to digital production tools and their impact on construction cost, material performance and tolerances. In addition it examines the reconfiguration of liability during a planning and construction process, an aspect which can be strongly determined by fabrication companies rather than the architect or designer.This paper is written as a reflection on the complete building process when contemporary digital tools are used from design through to fabrication. It studies both the generation of the steel structure as well the ETFE cushion skin. It reports on a collaborative project, where the main author was responsible for the canopies design, parameterization, digitalization and fabrication, as well as for the dissemination of the outcomes and findings during the design and realization process.As such it represents an example of research through design in a contemporary and evolving field.The canopy received a design award by the Hellenic Architecture Association.
series journal
last changed 2019/05/24 09:55

_id sigradi2013_294
id sigradi2013_294
authors Arenas Alvarez del Castillo, Ubaldo; José Manuel Falcón Meraz
year 2013
title Hacia la Adaptabilidad en Sistemas Robóticos de Construcción [Towards Adaptability in Robotic Building Systems]
source SIGraDi 2013 [Proceedings of the 17th Conference of the Iberoamerican Society of Digital Graphics - ISBN: 978-956-7051-86-1] Chile - Valparaíso 20 - 22 November 2013, pp. 71 - 75
summary This article explores the concept of adaptability within the built environment, extending the feedback and inter-communication characteristics of parametric design into construction processes and the material components of contemporary buildings; providing a conceptual and contextual framework, it also describes several strategies explored to achieve such type of communication.
series SIGRADI
email
last changed 2016/03/10 09:47

For more results click below:

this is page 0show page 1show page 2show page 3show page 4show page 5... show page 30HOMELOGIN (you are user _anon_272877 from group guest) CUMINCAD Papers Powered by SciX Open Publishing Services 1.002