CumInCAD is a Cumulative Index about publications in Computer Aided Architectural Design
supported by the sibling associations ACADIA, CAADRIA, eCAADe, SIGraDi, ASCAAD and CAAD futures

PDF papers
References

Hits 1 to 20 of 610

_id acadia13_093
id acadia13_093
authors Konis, Kyle
year 2013
title Wiring to the Sky
source ACADIA 13: Adaptive Architecture [Proceedings of the 33rd Annual Conference of the Association for Computer Aided Design in Architecture (ACADIA) ISBN 978-1-926724-22-5] Cambridge 24-26 October, 2013), pp. 93-100
doi https://doi.org/10.52842/conf.acadia.2013.093
summary As architectural design methodologies focus increasingly on the production of dynamic form, the means to actuate these forms, the input that fuels parametric processes, analytical form-generating techniques and responsive controls is of primary concern. In the virtual test beds where systems are developed, inputs are often ad-hoc, based on crude assumptions of the environment, or disconnected from the physical environment entirely.Inverting a technique originally developed to illuminate virtual objects with light captured from real (physical) environments, this project explores image-based lighting as a means of detailed environmental light sensing. The objective of the project is to demonstrate the application of High Dynamic Range (HDR) image data acquired continuously in the physical world as signal input to inform, actuate and evaluate responsive solar control and daylighting systems. As a proof of concept, a virtual hemispherical dome consisting of 145 apertures is controlled to respond in real time to continuous image-based measurements of sky luminance, seeking a defined set of daylighting and solar control objectives. The paper concludes by discussing the implications of incorporating real-world environmental data in the development of dynamic form.
keywords complex systems, image-based lighting, environmental adaptation
series ACADIA
type Normal Paper
email
last changed 2022/06/07 07:51

_id acadia13_293
id acadia13_293
authors Bessai, Tom
year 2013
title Bending-Active Bundled Structures: Preliminary Research and Taxonomy Towards an Ultra-Light Weight Architecture of Differentiated Components
source ACADIA 13: Adaptive Architecture [Proceedings of the 33rd Annual Conference of the Association for Computer Aided Design in Architecture (ACADIA) ISBN 978-1-926724-22-5] Cambridge 24-26 October, 2013), pp. 293-300
doi https://doi.org/10.52842/conf.acadia.2013.293
summary This paper documents preliminary research into a bending-active architecture that leverages the “bundling” of linear force-active elements in order to create spatial diversity and differentiation.The primary design components of the system are light-weight GFRP rods and tubes that perform well in elastic bending. Material testing and iterative physical model studies are documented, and provide a framework to guide the further development of emerging spring-based computation methods. Challenges to the system include the analysis and resolution of rod-to-rod bundled connections, as well as the development of predictable bifurcation and crossing unions. The paperidentifies key precedents to the work followed by a brief summary of the material selection and testing framework. A speculative taxonomy of bundled bending-active “types” is proposed and supported by examples and prototypes.
keywords Bundling, Bending-Active, Force-Active Architecture, Material Systems, Spring-based Modeling
series ACADIA
type Normal Paper
email
last changed 2022/06/07 07:52

_id ecaade2013_154
id ecaade2013_154
authors Kepczynska-Walczak, Anetta
year 2013
title Performing the Past and the Present for the Knowledge of the Future
source Stouffs, Rudi and Sariyildiz, Sevil (eds.), Computation and Performance – Proceedings of the 31st eCAADe Conference – Volume 2, Faculty of Architecture, Delft University of Technology, Delft, The Netherlands, 18-20 September 2013, pp. 453-462
doi https://doi.org/10.52842/conf.ecaade.2013.2.453
wos WOS:000340643600046
summary The aim of this paper is to discuss the role three-dimensional models play in addressing performance issues in virtual reconstructions of the heritage buildings. Heritage visualisation is considered here as a process of representing knowledge about space, time, behaviour, light, and other elements that constitute cultural environments. The author aims to analyse the process of digital reconstruction of heritage buildings and the impact of the decisions taken during its development on the final performance. Based on the examples drawn from practice, various stages of development are discussed, confronted with the principles of London Charter.
keywords Virtual reconstructions; cultural heritage; 3D modelling; London Charter.
series eCAADe
email
last changed 2022/06/07 07:52

_id caadria2013_161
id caadria2013_161
authors Manferdini, Elena and Anna Maria Manferdini
year 2013
title Tempera
source Open Systems: Proceedings of the 18th International Conference on Computer-Aided Architectural Design Research in Asia (CAADRIA 2013) / Singapore 15-18 May 2013, pp. 883-892
doi https://doi.org/10.52842/conf.caadria.2013.883
wos WOS:000351496100091
summary This paper explores the characteristics of painting developed during the Nineteenth century, and specifically updates the use of matter and brushing techniques invented by a group of painters called “Impressionists”. In that period, impressionist artists began to brush “tempera” on a canvas as a malleable matter able to emphasize an accurate depiction of light in its changing qualities.  Thick brush strokes left on the painted surface revealed the master’ gesture and completely changed the way to represent reality. Stimulated by the recent advancements in digital technologies, this paper looks for methodologies able to transfer impressionistic painterly innovation into a contemporary digital 3D environment and investigates how paint behaves when morphing from a photorealistic depiction of Nature to a disfigured one. In particular, reality-based 3D information, first frozen by a laser scanner into a digital geometry, slowly melts into liquid paint on a colour palette. While colours mix, the geometrical matter that constitutes the photorealistic scanned reality and its details disappear into primitive paint clog that are mixed and brushed into new colours and shapes able to create novel atmospheric and chromatic effects.  
keywords Tempera, Laser scanner, 3D painting effects, Design creativity 
series CAADRIA
email
last changed 2022/06/07 07:59

_id acadia14_219
id acadia14_219
authors Moritz Dörstelmann, Moritz; Prado, Marshall; Parascho, Stefana; Knippers, Jan; Menges, Achim
year 2014
title Integrative computational design methodologies for modular architectural fiber composite morphologies
source ACADIA 14: Design Agency [Proceedings of the 34th Annual Conference of the Association for Computer Aided Design in Architecture (ACADIA) ISBN 9781926724478]Los Angeles 23-25 October, 2014), pp. 219-228
doi https://doi.org/10.52842/conf.acadia.2014.219
summary This paper describes how computational design methodologies can serve as an integrative tool within a multidisciplinary design project. The topic is discussed based on the design and fabrication process for modular architectural fiber composite morphologies applied and developed in the ICD/ITKE Research Pavilion 2013-14.
keywords integrative computational design, digital fabrication and construction, robotic fabrication reinforced fiber composite structures, biomimicry and biological models in design, light-weight construction, multidisciplinary design
series ACADIA
type Normal Paper
email
last changed 2022/06/07 07:58

_id caadria2016_497
id caadria2016_497
authors Ryu, Jungrim; Jaehong Jun, Seunghyeon Lee and Seungyeon Choo
year 2016
title A Study on Development of the IFC-based Indoor Spatial Information for Data Visualisation
source Living Systems and Micro-Utopias: Towards Continuous Designing, Proceedings of the 21st International Conference on Computer-Aided Architectural Design Research in Asia (CAADRIA 2016) / Melbourne 30 March–2 April 2016, pp. 497-506
doi https://doi.org/10.52842/conf.caadria.2016.497
summary MOLIT authorised Indoor Spatial Information as Basic spa- tial information in 2013. It became a legal evidence for constructing and managing Indoor Spatial Information. Although it has a little ad- vantage to utilise as service level that Indoor Spatial Information by laser scan or measurement, it has a lot of problems such as consuming many resources, requiring additional progresses for inputting Object Information. In conclusion, it is inefficient to utilise for the mainte- nance and domestic AEC/FM field. The purposes of this study is to output Indoor Spatial Information by operating IFC model which based on open BIM and to improve availability of Indoor Spatial In- formation with data visualisation. The open-sources of IFC Exporter, an inner program of Revit, is used to output Indoor Spatial Infor- mation. Directs 3D Library is also operated to visualise Indoor Spatial Information. It is possible to inter-operate between XML format and the objects of Indoor Spatial Information. It can be utilised in various field as well. For example COBie linkage in facility management, construction of geo-database using air-photogrammetry of UA V , the simulation of large-scale military operations and the simulation of large-scale evacuation. The method that is purposed in this study has outstanding advantages such as conformance with national spatial in- formation policy, high level of interoperability as indoor spatial in- formation objects based on IFC, convenience of editing information, light level of data and simplifying progress of producing information.
keywords Indoor spatial information, data visualisation, open BIM, IFC
series CAADRIA
email
last changed 2022/06/07 07:56

_id caadria2013_099
id caadria2013_099
authors Suh, Junghwa K. and Hyoung-June Park
year 2013
title Daylighting as a Synthesis Tool in the Early Stage of an Urban-Scape Design
source Open Systems: Proceedings of the 18th International Conference on Computer-Aided Architectural Design Research in Asia (CAADRIA 2013) / Singapore 15-18 May 2013, pp. 189-198
doi https://doi.org/10.52842/conf.caadria.2013.189
wos WOS:000351496100019
summary This paper proposes an integrated daylighting design framework for developing optimal configurations of multiple buildings in order to achieve satisfactory visual comfort level. The proposed approach consists of the application of Climatic envelopeand Design Rules with assorted computational tools. The envelope becomes a prescriptive zoning tool and 3D boundary of parcel design that clarifies environmentally conscious design boundary for architects to develop various building configurations. Its synthetic implementation of natural light in the design process is combined with Design Rules for optimizing the building configurations to maximize their visual comfort level. The proposed design framework is demonstrated through a real site application; Honolulu, HI and Seattle, WA where two dominant sky conditions, clear and overcast sky, are represented. The integrated framework is introduced as a design guideline for architects to develop initial building configurations that maximizes the visual comfort in the early design stage.  
keywords aylight design, Visual comfort, Climatic envelope, Design rules, Urban-scape, Design synthesis, Configurations of buildings 
series CAADRIA
email
last changed 2022/06/07 07:56

_id sigradi2013_274
id sigradi2013_274
authors Velasco, Rodrigo; Julián Viasus; Fabián Tocancipá
year 2013
title Customizable Volumetric High Performance Brise-Soleil System Based on the Use of Planar Faces
source SIGraDi 2013 [Proceedings of the 17th Conference of the Iberoamerican Society of Digital Graphics - ISBN: 978-956-7051-86-1] Chile - Valparaíso 20 - 22 November 2013, pp. 328 - 332
summary This paper presents a proposal for a cellular brise-soleil system appropriate for tropical humid climates. The system controls thermal gains whilst allowing for specific lighting requirements, permitting, in many cases, interior thermal and light comfort conditions without the use of thermal machines or artificial lighting. The development of the system involved a definition of variable design parameters and areas of performance evaluation and optimization, plus construction detailing development represented by a first project to be completed in 2014. Even if the geometrical definitions, optimization processes and production machinery are relatively simple and not particularly new to anyone in the field, it is claimed that the use of such already widely available technologies at this basic level, when solving relevant problems, has still to be used in generalised ways by common designers, and with the example shown, this paper wishes to promote such prospect.
keywords Solar shadings; Environmental simulations; Parametric models; Performance in architecture
series SIGRADI
email
last changed 2016/03/10 10:02

_id ecaade2013r_013
id ecaade2013r_013
authors Verma, Sushant; Devadass, Pradeep
year 2013
title Adaptive [skins]: Responsive building skin systems based on tensegrity principles
source FUTURE TRADITIONS [1st eCAADe Regional International Workshop Proceedings / ISBN 978-989-8527-03-5], University of Porto, Faculty of Architecture (Portugal), 4-5 April 2013, pp. 155-170
summary The project investigates responsive building skin systems that adapt to the dynamic environmental conditions to regulate the internal conditions in a habitable space over different periods of time by exhibiting a state of motion and dynamism. Heat and Light are the primary parameters for regulation, leading to energy efficiency and dynamic spatial effects. Passive and active skins using shape memory alloys and pneumatic actuators are developed through investigations of smart systems that integrate smart materials and smart geometries. The precedents in this domain have rarely dealt with individually controlled multiple parameters of heat and light in a single system, which is attempted in this project. Owing to the complexity of the multi-parametric system, genetic algorithms are developed for system optimization and calibrated with physical prototypes at varied scales. The developed systems are tested against two distinct climatic models- New Delhi and Barcelona, and evaluated for performance, based on heat and light, which are quantified as solar gain and illuminance as principles, and daylight factor for evaluation purpose. The use of genetic algorithms makes the problem solving faster and accurate. New tool-sets are developed in the process by combining various digital tools, to create a real-time feedback and memory loop system.
keywords Adaptive architecture, Building skins, Genetic algorithms, Tensegrity, Smart materials
email
last changed 2013/10/07 19:08

_id acadia13_411
id acadia13_411
authors Yogiaman, Christine; Tracy, Ken
year 2013
title Loom Portal
source ACADIA 13: Adaptive Architecture [Proceedings of the 33rd Annual Conference of the Association for Computer Aided Design in Architecture (ACADIA) ISBN 978-1-926724-22-5] Cambridge 24-26 October, 2013), pp. 411-412
doi https://doi.org/10.52842/conf.acadia.2013.411
summary Loom Portal is a proxy for the covered windows in the galleries at Laumeier Sculpture Park in St. Louis, Missouri. Conceived as a light-retention and transmission device that grafts onto the facade of the building, Loom Portal establishes a real-time interface between the segregated interior and exterior environments.
keywords Tools and Interfaces, Responsive Environments, Sensing, Real-time Computation, Optical Fiber, Ikat weaving, Loom Portal
series ACADIA
type Design Poster
email
last changed 2022/06/07 07:57

_id ecaade2013_206
id ecaade2013_206
authors Miltiadis, Constantinos
year 2013
title From the Univocal to the Dissipative
source Stouffs, Rudi and Sariyildiz, Sevil (eds.), Computation and Performance – Proceedings of the 31st eCAADe Conference – Volume 1, Faculty of Architecture, Delft University of Technology, Delft, The Netherlands, 18-20 September 2013, pp. 517-525
doi https://doi.org/10.52842/conf.ecaade.2013.1.517
wos WOS:000340635300054
summary The paper develops around a problematic regarding the methodology of contemporary computational real-time design. It begins by exploring the status of computer-driven architecture today, locating its inherent limitations that support the paper’s main argument that the problem of this kind of architecture, is the failure of realizing the necessity of a paradigm shift.Utilizing a personal project that falls in the category of real-time computation and design, and guiding the reader to the distinct stages for its development, an attempt is made to introduce an alternative methodology based on the materialist philosophy of Gilles Deleuze, that, displays a great potential to be applied and used as a conceptual framework for such designs.
keywords real-time; kinetic; interactive; methodology; computation.
series eCAADe
email
last changed 2022/06/07 07:59

_id acadia23_v3_19
id acadia23_v3_19
authors Dickey, Rachel
year 2023
title Material Interfaces
source ACADIA 2023: Habits of the Anthropocene: Scarcity and Abundance in a Post-Material Economy [Volume 3: Proceedings of the 43rd Annual Conference for the Association for Computer Aided Design in Architecture (ACADIA) ISBN 979-8-9891764-1-0]. Denver. 26-28 October 2023. edited by A. Crawford, N. Diniz, R. Beckett, J. Vanucchi, M. Swackhamer 24-32.
summary Based on our current daily rate, 85,410 hours is the average amount of time that an adult in the United States will spend on their phone in a lifetime (Howarth 2023). This is time spent texting, tweeting, emailing, snapping, chatting, posting, and interacting with an interface which each of us carry in our pocket. Kelly Dobson explains, “We psychologically view the cell phone as an extension of our bodies, which is why when you accidentally forget it or leave it behind you feel you have lost apart of yourself” (2013). In reality, this device is just one of many technologies which affect our relationship with our bodies and the physical world. Additionally, Zoom meetings, social media networks, on-line shopping, and delivery robots, all increasingly detach our bodies and our senses from our everyday experiences and interactions. In response to digital culture, Liam Young writes, “Perhaps the day will come when we turn off our target ads, navigational prompts, Tinder match notifications, and status updates to find a world stripped bare, where nothing is left but scaffolds and screens” (2015). Make no mistake; the collection of projects shared in these field notes is intended to be a counterpoint to such a prophesied future. However, the intent is not to try to compete with technology, but rather, to consider the built environment itself as an interface, encouraging interaction through feedback and responsivity directly related to human factors, finding ways to re-engage the body through design.
series ACADIA
type field note
email
last changed 2024/04/17 13:59

_id ecaade2013_244
id ecaade2013_244
authors Fiorito, Stefano; Orsi, Francesco; Serdoura, Francisco Manuel and Ferreira, Victor
year 2013
title Data Extraction from Social Networks for Urban Analyses
source Stouffs, Rudi and Sariyildiz, Sevil (eds.), Computation and Performance – Proceedings of the 31st eCAADe Conference – Volume 1, Faculty of Architecture, Delft University of Technology, Delft, The Netherlands, 18-20 September 2013, pp. 439-445
doi https://doi.org/10.52842/conf.ecaade.2013.1.439
wos WOS:000340635300046
summary The present work constitutes the first stage of an ongoing research on the interaction between morphological characteristics of the urban fabric and the amount of social activity in such spaces. In order to analyze such correlation, the current research links together two different field of studies: Space Syntax on one side, for the morphological analysis of the spatial configuration of the urban fabric, and a remote sensing study about social activity in the analyzed urban context, on the other. Data extracted from location-based online Social Networks databases (e.g. Foursquare) are employed in order to perform such survey. The resulting methodology constitutes an early attempt to set a novel approach to the study of the relationships between the morphological and configurational characteristics of urban systems and actual human dynamics in urban contexts. 
keywords Space Syntax; urban morphology; remote sensing; social networks; urban dynamics.
series eCAADe
email
last changed 2022/06/07 07:50

_id ecaade2013_030
id ecaade2013_030
authors Marques, Rui and Eloy, Sara
year 2013
title Customized Cork Façade
source Stouffs, Rudi and Sariyildiz, Sevil (eds.), Computation and Performance – Proceedings of the 31st eCAADe Conference – Volume 2, Faculty of Architecture, Delft University of Technology, Delft, The Netherlands, 18-20 September 2013, pp. 621-626
doi https://doi.org/10.52842/conf.ecaade.2013.2.621
wos WOS:000340643600064
summary The propose paper presents an ongoing research which main goal is to use cork in a customized modular façade system. Cork is used due to its ecological value, renewable characteristic, insulation properties and aesthetic value. The modular system design is bio-inspired in the microscopic cork pattern and the study aims at reproducing in the façade some of the natural characteristics that enable cork to be suitable for the function it plays in construction. Façades are design by a generative design process based on a parametric shape grammar which encodes shape rules and an algorithm to guide the generation. The developed cork modules are part of a back-ventilated façade system which is assembled upon a substructure that reproduces the cork cell structure and enables both the assemblage of the modules to the support wall and the connection between them.
keywords Shape grammar; generative design; cork; façade; digital fabrication.
series eCAADe
email
last changed 2022/06/07 07:59

_id ascaad2022_099
id ascaad2022_099
authors Sencan, Inanc
year 2022
title Progeny: A Grasshopper Plug-in that Augments Cellular Automata Algorithms for 3D Form Explorations
source Hybrid Spaces of the Metaverse - Architecture in the Age of the Metaverse: Opportunities and Potentials [10th ASCAAD Conference Proceedings] Debbieh (Lebanon) [Virtual Conference] 12-13 October 2022, pp. 377-391
summary Cellular automata (CA) is a well-known computation method introduced by John von Neumann and Stanislaw Ulam in the 1940s. Since then, it has been studied in various fields such as computer science, biology, physics, chemistry, and art. The Classic CA algorithm is a calculation of a grid of cells' binary states based on neighboring cells and a set of rules. With the variation of these parameters, the CA algorithm has evolved into alternative versions such as 3D CA, Multiple neighborhood CA, Multiple rules CA, and Stochastic CA (Url-1). As a rule-based generative algorithm, CA has been used as a bottom-up design approach in the architectural design process in the search for form (Frazer,1995; Dinçer et al., 2014), in simulating the displacement of individuals in space, and in revealing complex relations at the urban scale (Güzelci, 2013). There are implementations of CA tools in 3D design software for designers as additional scripts or plug-ins. However, these often have limited ability to create customized CA algorithms by the designer. This study aims to create a customizable framework for 3D CA algorithms to be used in 3D form explorations by designers. Grasshopper3D, which is a visual scripting environment in Rhinoceros 3D, is used to implement the framework. The main difference between this work and the current Grasshopper3D plug-ins for CA simulation is the customizability and the real-time control of the framework. The parameters that allow the CA algorithm to be customized are; the initial state of the 3D grid, neighborhood conditions, cell states and rules. CA algorithms are created for each customizable parameter using the framework. Those algorithms are evaluated based on the ability to generate form. A voxel-based approach is used to generate geometry from the points created by the 3D cellular automata. In future, forms generated using this framework can be used as a form generating tool for digital environments.
series ASCAAD
email
last changed 2024/02/16 13:38

_id caadria2013_261
id caadria2013_261
authors Themistocleous, Theodoros
year 2013
title Modelling, Simulation and Verification of Pneumatically Actuated Auxetic Systems
source Open Systems: Proceedings of the 18th International Conference on Computer-Aided Architectural Design Research in Asia (CAADRIA 2013) / Singapore 15-18 May 2013, pp. 395-404
doi https://doi.org/10.52842/conf.caadria.2013.395
wos WOS:000351496100039
summary This paper presents the development of an SLS 3D printed auxetic structure actuated to a predefined form by an embedded pneumatic network through an iterative process of feedback between digital simulation and physical testing. This feedback process is critical to the development of a more accurate predictive model, and to compose the geometry of the suggested structure. An approach based on the emergence of the final structure from the convergence of the behaviour of sub-structures and a methodology based on the analysis and synthesis of the simplest sub-system is the core of this research. The results indicate a promising simulation environment and a novel methodology for the design and fabrication of auxetic structures with embedded pneumatic actuation. This exploratory research suggests a fertile space for investigation within the field of adaptive architecture and soft kinetic design. 
keywords Auxetic, Fabrication, Simulation, Pneumatic, Kinetic 
series CAADRIA
email
last changed 2022/06/07 07:58

_id ecaade2023_317
id ecaade2023_317
authors Zamani, Alireza, Mohseni, Alale and Bertug Çapunaman, Özgüç
year 2023
title Reconfigurable Formwork System for Vision-Informed Conformal Robotic 3D Printing
source Dokonal, W, Hirschberg, U and Wurzer, G (eds.), Digital Design Reconsidered - Proceedings of the 41st Conference on Education and Research in Computer Aided Architectural Design in Europe (eCAADe 2023) - Volume 1, Graz, 20-22 September 2023, pp. 387–396
doi https://doi.org/10.52842/conf.ecaade.2023.1.387
summary Robotic additive manufacturing has garnered significant research and development interest due to its transformative potential in architecture, engineering, and construction as a cost-effective, material-efficient, and energy-saving fabrication method. However, despite its potential, conventional approaches heavily depend on meticulously optimized work environments, as robotic arms possess limited information regarding their immediate surroundings (Bechthold, 2010; Bechthold & King, 2013). Furthermore, such approaches are often restricted to planar build surfaces and slicing algorithms due to computational and physical practicality, which consequently limits the feasibility of robotic solutions in scenarios involving complex geometries and materials. Building on previous work (Çapunaman et al., 2022), this research investigates conformal 3D printing of clay using a 6 degrees-of-freedom robot arm and a vision-based sensing framework on parametrically reconfigurable tensile hyperbolic paraboloid (hypar) formwork. In this paper, we present the implementation details of the formwork system, share findings from preliminary testing of the proposed workflow, and demonstrate application feasibility through a design exercise that aims to fabricate unique components for a poly-hypar surface structure. The formwork system also offers parametric control over generating complex, non-planar tensile surfaces to be printed on. Within the scope of this workflow, the vision-based sensing framework is employed to generate a digital twin informing iterative tuning of the formwork geometry and conformal toolpath planning on scanned geometries. Additionally, we utilized the augmented fabrication framework to observe and analyze deformations in the printed clay body that occurs during air drying. The proposed workflow, in conjunction with the vision-based sensing framework and the reconfigurable formwork, aims to minimize time and material waste in custom formwork fabrication and printing support materials for complex geometric panels and shell structures.
keywords Robotic Fabrication, Conformal 3D Printing, Additive Manufacturing, Computer-Vision, Reconfigurable Formwork
series eCAADe
email
last changed 2023/12/10 10:49

_id caadria2013_034
id caadria2013_034
authors Arenas, Ubaldo and José Manuel Falcón
year 2013
title ALOPS Constructive Systems – Towards the Design and Fabrication of Unsupervised Learning Construction Systems
source Open Systems: Proceedings of the 18th International Conference on Computer-Aided Architectural Design Research in Asia (CAADRIA 2013) / Singapore 15-18 May 2013, pp. 905-914
doi https://doi.org/10.52842/conf.caadria.2013.905
wos WOS:000351496100093
summary In this paper we explore the concept and design guidelines for an Autonomous Learning Oriented Proto System (ALOPS), a construction system designed to enhance its own performance through time. Our research has been focused on the fabrication of a prototype for a porous wall system which reacts to light intensities by closing or opening its apertures. Taking that aim, we used a combination of robotics, programing, and material behaviour to endow the system with the capacity to record reactions towards encountered sets of conditions during its active energy periods, allowing the system to use this knowledge database to evolve autonomously by feeding this information back into the computation process. This approach in construction systems opens up the architectural design processes to address the creation of digital memory structures rather than complex algorithms in order to operate specific functions. With this development, the architect could think of architectures constantly evolving by learning from their environments as well as of users forming symbiotic and behavioural bonds with the emergent spatial personalities, thus affecting the underpinning relationships between architecture, user and context.  
keywords erformance architecture, Unsupervised learning, Machine learning 
series CAADRIA
email
last changed 2022/06/07 07:54

_id ecaade2013_003
id ecaade2013_003
authors Attia, Shady
year 2013
title Achieving Informed Decision-Making using Building Performance Simulation
source Stouffs, Rudi and Sariyildiz, Sevil (eds.), Computation and Performance – Proceedings of the 31st eCAADe Conference – Volume 1, Faculty of Architecture, Delft University of Technology, Delft, The Netherlands, 18-20 September 2013, pp. 21-30
doi https://doi.org/10.52842/conf.ecaade.2013.1.021
wos WOS:000340635300001
summary Building performance simulation (BPS) is the basis for informed decision-making of Net Zero Energy Buildings (NZEBs) design. This paper aims to investigate the use of building performance simulation tools as a method of informing the design decision of NZEBs. The aim of this study is to evaluate the effect of a simulation-based decision aid, ZEBO, on informed decision-making using sensitivity analysis. The objective is to assess the effect of ZEBO and other building performance simulation (BPS) tools on three specific outcomes: (i) knowledge and satisfaction when using simulation for NZEB design; (ii) users’ decision-making attitudes and patterns, and (iii) performance robustness based on an energy analysis. The paper utilizes three design case studies comprising a framework to test the use of BPS tools. The paper provides results that shed light on the effectiveness of sensitivity analysis as an approach for informing the design decisions of NZEBs.
keywords Decision support; early stage; design; simulation; architects
series eCAADe
email
last changed 2022/06/07 07:54

_id acadia13_121
id acadia13_121
authors Beites, Steven
year 2013
title Morphological Behavior of Shape Memory Polymers Toward a Deployable, Adaptive Architecture
source ACADIA 13: Adaptive Architecture [Proceedings of the 33rd Annual Conference of the Association for Computer Aided Design in Architecture (ACADIA) ISBN 978-1-926724-22-5] Cambridge 24-26 October, 2013), pp. 121-128
doi https://doi.org/10.52842/conf.acadia.2013.121
summary Shape-memory polymers (SMPs) are an emerging class of “smart materials” that have dual-shape capability. They are able to undergo significant deformation when exposed to an external stimulus such as heat or light. SMPs have been widely investigated within the biomedicine and aerospace industries; however, their potential has yet to be explored within an architectural framework. The research presented in this paper begins an investigation into the morphological behavior ofSMPs toward a deployable, adaptive architecture. The structure’s ease of assembly, compact storage, transportability and configurable properties offer promising applications in emergency and disaster relief shelters, lightweight recreational structures and a variety of other applications in the temporary construction and aerospace industry. This paper explores the use of SMPs through the development of a dynamic actuator that links a series of interconnected panels creating overall form to a self-standing structure. The shape-shifting behavior of the SMP allows the dynamic actuator to become flexible when storage and transportability are required. Alternatively, when exposed to the appropriate temperature range, the actuator is capable of returning to its memorized state for on-site deployment. Through a series ofprototypes, this paper will provide a fundamental understanding of the SMP’s thermo-mechanicalproperties toward deployable, adaptive architecture.
keywords next-generation technology, smart materials, shape-memory polymers, material analysis, smart assemblies, dynamic actuator, soft architecture
series ACADIA
type Normal Paper
email
last changed 2022/06/07 07:54

For more results click below:

this is page 0show page 1show page 2show page 3show page 4show page 5... show page 30HOMELOGIN (you are user _anon_760435 from group guest) CUMINCAD Papers Powered by SciX Open Publishing Services 1.002