CumInCAD is a Cumulative Index about publications in Computer Aided Architectural Design
supported by the sibling associations ACADIA, CAADRIA, eCAADe, SIGraDi, ASCAAD and CAAD futures

PDF papers
References

Hits 1 to 20 of 605

_id ecaade2013_028
id ecaade2013_028
authors Fricker, Pia; Girot, Christophe and Munkel, Georg
year 2013
title How to Teach ‘New Tools’ in Landscape Architecture in the Digital Overload
source Stouffs, Rudi and Sariyildiz, Sevil (eds.), Computation and Performance – Proceedings of the 31st eCAADe Conference – Volume 2, Faculty of Architecture, Delft University of Technology, Delft, The Netherlands, 18-20 September 2013, pp. 545-553
doi https://doi.org/10.52842/conf.ecaade.2013.2.545
wos WOS:000340643600055
summary The central theme of the paper is the introduction of hands-on tools showing the integration of information technology within a postgraduate study program (MAS LA) for landscape architects. What has already become a part of the discourse in the field of architecture – generic design – is now also finding more resonance in the context of large-scale landscape architectural design. If one studies the educational backgrounds of landscape architects, however, they often do not match the same standard as those of architects. A solid background in the area of innovative use of information technology, especially computer-assisted design and CAD/CAM construction is only at a preliminary state at most universities. The critical arguments in the choice of the selected medium and the building up of a continuous digital chain stand here in the forefront. The aim is not to improve the quality of the landscape design based on the variety of the applied tools, but rather through the sensible use of the said. Reflections as well as questions of method and theory stand at the forefront of our efforts. 
keywords Design tool development; computational design research and teaching; new design concepts and strategies; parametric and evolutionary design.
series eCAADe
email
last changed 2022/06/07 07:50

_id caadria2013_223
id caadria2013_223
authors Schimek, Heimo; Albert Wiltsche, Markus Manahl and Christoph Pfaller
year 2013
title Full Scale Prototyping – Logistic and Construction Challenges Realising Digitally Designed Timber Prototypes
source Open Systems: Proceedings of the 18th International Conference on Computer-Aided Architectural Design Research in Asia (CAADRIA 2013) / Singapore 15-18 May 2013, pp. 653-662
doi https://doi.org/10.52842/conf.caadria.2013.653
wos WOS:000351496100064
summary This paper reports on the final stage of a research project with the realization of a real scale prototype and ties an empirical finale to the project, which started as a fundamental research project three years ago. The scope of this research project was to explore new ways, how Non-Standard Architecture can be build with standard building elements using contemporary building processes and materials resource efficiently. Mass Customization and File to Factory, concepts where a continuous digital workflow is applied, were fundamental to our approach. Within this framework we developed generic parametric details and made them part of the whole process from the beginning of the design to the manufacturing. The present paper describes a strategy for the assembly of a large prototype, consisting of approximately 50 flat timber panels that are being assembled to a structure of the size of a small house. The paper focuses especially on the customized falsework, we designed for the construction of the prototype, which became a crucial part of the assembling process besides the assembly of the actual prototype.  
keywords Digital fabrication and construction, Precedence and prototypes, Mass customization 
series CAADRIA
email
last changed 2022/06/07 07:57

_id sigradi2013_342
id sigradi2013_342
authors Bruscato, Underléa; Sandro J. Rigo; Cristiano A. Costa; Humberto J. M. Costa
year 2013
title Visualização de Informações Geográficas no Turismo Ubíquo de Itinerários Culturais [Visualization of Geographic Information of Ubiquitous Tourism in Cultural Routes]
source SIGraDi 2013 [Proceedings of the 17th Conference of the Iberoamerican Society of Digital Graphics - ISBN: 978-956-7051-86-1] Chile - Valparaíso 20 - 22 November 2013, pp. 153 - 157
summary This paper presents a practical experience developed within the framework of a network of researchers dedicated to develop projects of technology transfer, training and research in the field of innovation, involving virtual reality, augmented reality and advanced interaction. The group develops visualization oriented technologies and aim to socialize the experiences developed. In this sense was created an Electronic Guide to cultural routes in southern Brazil, exploiting the contemporary concept of ubiquitous tourism, in which users access tourism content with mobile devices, using sensitivity to context, semantic web and advanced visualization, thus rescuing the memory and regional architectural heritage.
keywords Ubiquitous tourism; Mobile computing, Memory
series SIGRADI
email
last changed 2016/03/10 09:47

_id sigradi2013_44
id sigradi2013_44
authors Silvano Costa, Márcia; Evangelos D. Christakou; Lenildo S. Da Silva; Antônio A. Nepomuceno
year 2013
title Identificação de Danos em Fachadas de Edificações: Geração de Mosaicos Fotográficos Obtidos por Plataforma Robótica [Identification of damage on facades of buildings: Generating Mosaics Photographic obtained by Robotics Platform]
source SIGraDi 2013 [Proceedings of the 17th Conference of the Iberoamerican Society of Digital Graphics - ISBN: 978-956-7051-86-1] Chile - Valparaíso 20 - 22 November 2013, pp. 161 - 165
summary Damage in façades rendering is a problem that has been much discussed currently since such damage is important to the degradation process of building. There are many techniques to verify damages in façades and in other external parts of buildings; however, some techniques have restrictions regarding their practical applications. This work deals with the application of the remote sensing (RM) technique. Such technique derives from the need to identify, locate and scale, quickly, accurately and without human risk, the existing damage or potential damages that may appear in the façades of buildings. Moreover, the RM technique may help to detect damages not visible at long distance or in location of difficult access. This technique is performed by corrected high-resolution panoramic images generated from a mosaic of pictures taken with a standard digital camera coupled in a robotic platform. The Itamaraty Palace, a government building, located in Brasília - DF (Brazil), is the object of the present study. The correction of the Itamaraty Palace panoramic image was carried out so that the identification, quantification and mapping of the Palace façade damages were performed using specific softwares such as GigaPan Stitch, AutoCAD and ArcGIS.
keywords Pathologies of Buildings; Panoramic Mosaics; Robotics Platform; Photos rectified and ArcGis
series SIGRADI
email
last changed 2016/03/10 10:00

_id acadia13_151
id acadia13_151
authors Plemenitas, Maj
year 2013
title Autonomous and Adaptive Cross-Scalar Structures and Systems
source ACADIA 13: Adaptive Architecture [Proceedings of the 33rd Annual Conference of the Association for Computer Aided Design in Architecture (ACADIA) ISBN 978-1-926724-22-5] Cambridge 24-26 October, 2013), pp. 151-158
doi https://doi.org/10.52842/conf.acadia.2013.151
summary Cross-scalar design has vital importance for the future development of adaptive and multi-objective design in architecture, by bridging the gap between often inert structures and their ever-evolving and emerging environmental and social contexts. Internal and external stimulus from users and the environment guide, trigger and inform encoded decisions throught the spectrum of scales. The design of seamlessly embedded correlated networks of heterogeneous performative systems enablingsensoring, processing and actuation provides connectivity and redundancy through the ability to accommodate for synchronized and continuous real time reconfiguration and adaptation.
keywords complex systems, 10-__ 10_ systems, embedded autonomy of architecture, cross-scalar performative structural ecologies, geo(eco)logical computation, environmental synchronization, distributed control, sensing, actuation and feedback, expanded effective design range, cross scalar design computation
series ACADIA
type Normal Paper
email
last changed 2022/06/07 08:00

_id ecaade2013_055
id ecaade2013_055
authors Tapias Pedraza, Estefania; Kunze, Antje; Roccasalva, Giuseppe and Schmitt, Gerhard
year 2013
title Best Practices for Urban Densification
source Stouffs, Rudi and Sariyildiz, Sevil (eds.), Computation and Performance – Proceedings of the 31st eCAADe Conference – Volume 1, Faculty of Architecture, Delft University of Technology, Delft, The Netherlands, 18-20 September 2013, pp. 41-50
doi https://doi.org/10.52842/conf.ecaade.2013.1.041
wos WOS:000340635300003
summary This paper presents an approach for microclimate aware densification of urban areas by creating best practices for an in situ application for block-size urban developments.The discussed procedure generates and evaluates urban block types according to microclimate criteria by integrating climate and comfort parameters in the design process of existing urban areas. It supports urban designers by generating design strategies that aim for climate, comfort and spatial as well as for urban design qualities.To achieve this, a multi-step method with different analysis and research processes has been set up. At the end, a parametric envelope tool was created for a local case study area by incorporating pre-defined design strategies built on previous investigations as urban design strategies. It is expected that this envelope tool can be transferred to similar urban development activities and guide microclimatic versus densification trade-offs. The presented approach can be applied from street canyon to block size urban situations.
keywords Urban design; parametric modelling; analysis tools; strategic densification; microclimate evaluation; decision-support tools; decision-making process.
series eCAADe
email
last changed 2022/06/07 07:56

_id ecaade2013r_020
id ecaade2013r_020
authors Bello Diaz, Gabriel; Dubor, Alexandre
year 2013
title Magnetic architecture. A new order in design
source FUTURE TRADITIONS [1st eCAADe Regional International Workshop Proceedings / ISBN 978-989-8527-03-5], University of Porto, Faculty of Architecture (Portugal), 4-5 April 2013, pp. 237-245
summary With the exploration of additive manufacturing, Magnetic Architecture develops different systems and strategies to use magnetic fields for controlling material through construction. In this research we utilize the overlapping of different technologies and digital tools that participate in the innovation of architecture. Thanks to hacked 6-axis robots, Magnetic Architecture approaches decision making from a top/down and bottom/up process. These new processes and conclusions are continuously leading to more areas of research and new design processes, which begins to question the role of the architect with these emerging technologies.
keywords Additive Manufacturing; Sensor Logic; Incremental Coding; Dynamic Blueprints (DBP)
email
last changed 2013/10/07 19:08

_id acadia13_061
id acadia13_061
authors Bruscia, Nicholas; Romano, Christopher
year 2013
title Material Parameters and Digitally Informed Fabrication of Textured Metals
source ACADIA 13: Adaptive Architecture [Proceedings of the 33rd Annual Conference of the Association for Computer Aided Design in Architecture (ACADIA) ISBN 978-1-926724-22-5] Cambridge 24-26 October, 2013), pp. 61-68
doi https://doi.org/10.52842/conf.acadia.2013.061
summary The research represented in this paper proposes to reinvestigate the relationship between structure and appearance through a performative analysis of textured stainless steel, as verified through full-scale prototyping. The work takes a scientific design approach while incorporating a computational workflow that is informed by the material’s physical parameters, and draws a connection between the scales of molecular composition to large-scale geometric systems.Furthermore, the work attempts to provide evidence for thin-gauge textured metals as a high performance and adaptive material, by identifying structural rigidity and particular specular quality as inherent characteristics born from the texturing process. In addition, through close collaboration with the sponsoring manufacturer of textured stainless steel, we are able to gain access to material expertise and large-scale fabrication equipment not readily available to designers, thereby forging a mutually beneficial relationship surrounding the research.
keywords Next Generation Technology, Architecture and Manufacturing, Material Research, Material Science, Digital Fabrication, Rigidized Metal, Parametric Modeling
series ACADIA
type Normal Paper
email
last changed 2022/06/07 07:54

_id cf2013_347
id cf2013_347
authors Dillenburger, Benjamin and Michael Hansmeyer
year 2013
title The Resolution of Architecture in the Digital Age
source Global Design and Local Materialization[Proceedings of the 15th International Conference on Computer Aided Architectural Design Futures / ISBN 978-3-642-38973-3] Shanghai, China, July 3-5, 2013, pp. 347-357.
summary The resolution of architecture is a measure of the spatial density of information inherent in a building. This paper demonstrates how the confluence of advances in computational design and additive manufacturing has recently led to a paradigm shift in potential architectural resolution. Buildings can now be designed and fabricated with elements at the threshold of human perception. This resolution can be used to replicate existing architectural styles ever more efficiently and accurately. Yet as with the introduction of other new technologies, architects must now explore the latent potentials and determine what kind of new architectures become conceivable. Specifically, what architectures can adequately express this enormous resolution and the unlimited geometric complexity within reach? With the project Digital Grotesque, we present the first human-scale, enclosed structure that truly exploits these opportunities. Algorithms are used to articulate and orchestrate the geometry from the macro scale down to 1mm small details. The structure is enriched with local information at a previously unseen resolution. A unique language of form is developed that transcends rationality and celebrates spatial expression: a digital exuberance.
keywords high resolution, additive manufacturing, 3d printing, digital fabrication, computational design, subdivision, mesh
series CAAD Futures
email
last changed 2014/03/24 07:08

_id ijac201311301
id ijac201311301
authors Hack, Norman; Willi Lauer, Silke Langenberg, Fabio Gramazio, Matthias Kohler
year 2013
title Overcoming Repetition: Robotic fabrication processes at a large scale
source International Journal of Architectural Computing vol. 11 - no. 3, 285-300
summary In the context of the Future Cities Laboratory (FCL) of ETH Zurich, the Professorship for Architecture and Digital Fabrication of Fabio Gramazio and Matthias Kohler has set up a robotic laboratory to investigate the potentials of non-standard robotic fabrication for high rise constructions in Singapore. The high degree of industrialisation of this dominant building typology implies standardisation, simplification and repetition and accounts for the increasing monotony evident in many Asian metropolises. The aim of this research on material systems for robotic construction is to develop a new and competitive construction method that makes full use of the malleable potential of concrete as a building material. A novel, spatial, robotic "weaving" method of a tensile active material that simultaneously acts as the form defining mould, folds two separate aspects of concrete-reinforcement and formwork-into one single robotic fabrication process (see Figure 1). This in-situ process could permit the fabrication of structurally differentiated, spatially articulated and material efficient buildings.
series journal
last changed 2019/05/24 09:55

_id caadria2016_497
id caadria2016_497
authors Ryu, Jungrim; Jaehong Jun, Seunghyeon Lee and Seungyeon Choo
year 2016
title A Study on Development of the IFC-based Indoor Spatial Information for Data Visualisation
source Living Systems and Micro-Utopias: Towards Continuous Designing, Proceedings of the 21st International Conference on Computer-Aided Architectural Design Research in Asia (CAADRIA 2016) / Melbourne 30 March–2 April 2016, pp. 497-506
doi https://doi.org/10.52842/conf.caadria.2016.497
summary MOLIT authorised Indoor Spatial Information as Basic spa- tial information in 2013. It became a legal evidence for constructing and managing Indoor Spatial Information. Although it has a little ad- vantage to utilise as service level that Indoor Spatial Information by laser scan or measurement, it has a lot of problems such as consuming many resources, requiring additional progresses for inputting Object Information. In conclusion, it is inefficient to utilise for the mainte- nance and domestic AEC/FM field. The purposes of this study is to output Indoor Spatial Information by operating IFC model which based on open BIM and to improve availability of Indoor Spatial In- formation with data visualisation. The open-sources of IFC Exporter, an inner program of Revit, is used to output Indoor Spatial Infor- mation. Directs 3D Library is also operated to visualise Indoor Spatial Information. It is possible to inter-operate between XML format and the objects of Indoor Spatial Information. It can be utilised in various field as well. For example COBie linkage in facility management, construction of geo-database using air-photogrammetry of UA V , the simulation of large-scale military operations and the simulation of large-scale evacuation. The method that is purposed in this study has outstanding advantages such as conformance with national spatial in- formation policy, high level of interoperability as indoor spatial in- formation objects based on IFC, convenience of editing information, light level of data and simplifying progress of producing information.
keywords Indoor spatial information, data visualisation, open BIM, IFC
series CAADRIA
email
last changed 2022/06/07 07:56

_id ascaad2022_099
id ascaad2022_099
authors Sencan, Inanc
year 2022
title Progeny: A Grasshopper Plug-in that Augments Cellular Automata Algorithms for 3D Form Explorations
source Hybrid Spaces of the Metaverse - Architecture in the Age of the Metaverse: Opportunities and Potentials [10th ASCAAD Conference Proceedings] Debbieh (Lebanon) [Virtual Conference] 12-13 October 2022, pp. 377-391
summary Cellular automata (CA) is a well-known computation method introduced by John von Neumann and Stanislaw Ulam in the 1940s. Since then, it has been studied in various fields such as computer science, biology, physics, chemistry, and art. The Classic CA algorithm is a calculation of a grid of cells' binary states based on neighboring cells and a set of rules. With the variation of these parameters, the CA algorithm has evolved into alternative versions such as 3D CA, Multiple neighborhood CA, Multiple rules CA, and Stochastic CA (Url-1). As a rule-based generative algorithm, CA has been used as a bottom-up design approach in the architectural design process in the search for form (Frazer,1995; Dinçer et al., 2014), in simulating the displacement of individuals in space, and in revealing complex relations at the urban scale (Güzelci, 2013). There are implementations of CA tools in 3D design software for designers as additional scripts or plug-ins. However, these often have limited ability to create customized CA algorithms by the designer. This study aims to create a customizable framework for 3D CA algorithms to be used in 3D form explorations by designers. Grasshopper3D, which is a visual scripting environment in Rhinoceros 3D, is used to implement the framework. The main difference between this work and the current Grasshopper3D plug-ins for CA simulation is the customizability and the real-time control of the framework. The parameters that allow the CA algorithm to be customized are; the initial state of the 3D grid, neighborhood conditions, cell states and rules. CA algorithms are created for each customizable parameter using the framework. Those algorithms are evaluated based on the ability to generate form. A voxel-based approach is used to generate geometry from the points created by the 3D cellular automata. In future, forms generated using this framework can be used as a form generating tool for digital environments.
series ASCAAD
email
last changed 2024/02/16 13:38

_id acadia20_340
id acadia20_340
authors Soana, Valentina; Stedman, Harvey; Darekar, Durgesh; M. Pawar, Vijay; Stuart-Smith, Robert
year 2020
title ELAbot
source ACADIA 2020: Distributed Proximities / Volume I: Technical Papers [Proceedings of the 40th Annual Conference of the Association of Computer Aided Design in Architecture (ACADIA) ISBN 978-0-578-95213-0]. Online and Global. 24-30 October 2020. edited by B. Slocum, V. Ago, S. Doyle, A. Marcus, M. Yablonina, and M. del Campo. 340-349.
doi https://doi.org/10.52842/conf.acadia.2020.1.340
summary This paper presents the design, control system, and elastic behavior of ELAbot: a robotic bending active textile hybrid (BATH) structure that can self-form and transform. In BATH structures, equilibrium emerges from interaction between tensile (form active) and elastically bent (bending active) elements (Ahlquist and Menges 2013; Lienhard et al. 2012). The integration of a BATH structure with a robotic actuation system that controls global deformations enables the structure to self-deploy and achieve multiple three-dimensional states. Continuous elastic material actuation is embedded within an adaptive cyber-physical network, creating a novel robotic architectural system capable of behaving autonomously. State-of-the-art BATH research demonstrates their structural efficiency, aesthetic qualities, and potential for use in innovative architectural structures (Suzuki and Knippers 2018). Due to the lack of appropriate motor-control strategies that exert dynamic loading deformations safely over time, research in this field has focused predominantly on static structures. Given the complexity of controlling the material behavior of nonlinear kinetic elastic systems at an architectural scale, this research focuses on the development of a cyber-physical design framework where physical elastic behavior is integrated into a computational design process, allowing the control of large deformations. This enables the system to respond to conditions that could be difficult to predict in advance and to adapt to multiple circumstances. Within this framework, control values are computed through continuous negotiation between exteroceptive and interoceptive information, and user/designer interaction.
series ACADIA
type paper
email
last changed 2023/10/22 12:06

_id caadria2013_011
id caadria2013_011
authors Sousa, José Pedro and João Pedro Xavier
year 2013
title Symmetry-Based Generative Design: A Teaching Experiment
source Open Systems: Proceedings of the 18th International Conference on Computer-Aided Architectural Design Research in Asia (CAADRIA 2013) / Singapore 15-18 May 2013, pp. 303-312
doi https://doi.org/10.52842/conf.caadria.2013.303
wos WOS:000351496100030
summary Throughout history, symmetry has been widely explored as a geometric strategy to conceive architectural forms and spaces. Nonetheless, its concept has changed and expanded overtime, and its design exploration does not mean anymore the generation of simple and predictable solutions. By framing in history this idea, the present paper discusses the relevance of exploring symmetry in architectural design today, by means of computational design and fabrication processes. It confirms the emergence of a renewed interest in the topic based on two main ideas: On the one hand, symmetry-based design supports the generation of unique and apparent complex solutions out of simple geometric rules, in a bottom-up fashion. On the other hand, despite this intricacy, it assures modularity in the design components, which can bring benefits at the construction level. As the background for testing and illustrating its theoretical arguments, this paper describes the work produced in the Constructive Geometry course at FAUP.  
keywords Geometry, Symmetry, Computational design, Digital manufacturing, Education  
series CAADRIA
email
last changed 2022/06/07 07:56

_id ecaade2013_296
id ecaade2013_296
authors Vidmar, Jernej
year 2013
title Parametric Maps for Performance-Based Urban Design
source Stouffs, Rudi and Sariyildiz, Sevil (eds.), Computation and Performance – Proceedings of the 31st eCAADe Conference – Volume 1, Faculty of Architecture, Delft University of Technology, Delft, The Netherlands, 18-20 September 2013, pp. 311-316
doi https://doi.org/10.52842/conf.ecaade.2013.1.311
wos WOS:000340635300032
summary Urban design is a complex process which deals with multitude of aspects to shape quality urban space. On one hand, we have quantitative aspects such as land use, building heights or floor space index which are tackled on top-down approach. On the other hand, we need to take into consideration more subjective, qualitative aspects such as building shapes and space between them based on bottom-up principle.In order to connect both principles, a new, performance-based parametric urban design method is proposed. It is based on a concept of parametric maps, which represent spatial distribution of key building parameters (quantitative criteria, top-down) throughout the area and are preliminary loaded into the virtual urban development area. Once parametric maps are loaded, we begin designing a development by placing the buildings (qualitative criteria, bottom-up), which adapt their parameters while changing their locations. Parametric maps thus represent a link between a set of spatial parameters and the actual shape of each building in a way, which connects both, top-down and bottom-up principles of urban design into a single conceptual framework.In order to evaluate this new method, an interactive prototype application has been developed in Maya (3D modeling software) and the following results were obtained: 1.) a significant speedup is possible in the creation of different design alternatives in early stage of urban design process; 2.) use of parametric maps is most suitable for mid- to large-scale projects (+15 buildings), while they can be redundant for small-scale areas; 3.) possibility of inconsistency with site regulations is diminished.
keywords Parametric; map; performance-based; urban design; urbanism.
series eCAADe
type normal paper
email
last changed 2022/06/07 07:58

_id sigradi2013_267
id sigradi2013_267
authors de la Sotta Lazzerini, Paola; Eduardo Hamuy Pinto; Bruno Perelli Soto
year 2013
title Diseño de Aplicación en Base a Modelo de Evaluación del Proceso de Enseñanza Aprendizaje en El Taller [A Design Studio Course Assessment Model Applied]
source SIGraDi 2013 [Proceedings of the 17th Conference of the Iberoamerican Society of Digital Graphics - ISBN: 978-956-7051-86-1] Chile - Valparaíso 20 - 22 November 2013, pp. 547 - 550
summary In design studio courses, assessment helps to improve teaching practice and student learning. Output-Mapping model considers a practical working method, applicable to teaching, based on records of students' outcomes. Visualization is a key component; iconographic resources aid understanding and observation of the territory conquered by each participant throughout the course. The next phase of the project addresses the need to manage large amounts of information generated by a statistical model for assessment. Visualization media used so far have proven limited. A new web system may dynamically visualize relationships between students' records more immediately, precisely and in a network.
keywords Design teaching; Assessment; Visualization
series SIGRADI
email
last changed 2016/03/10 09:50

_id ecaade2013_150
id ecaade2013_150
authors El Ahmar, Salma; Fioravanti, Antonio and Hanafi, Mohamed
year 2013
title A Methodology for Computational Architectural Design Based on Biological Principles
source Stouffs, Rudi and Sariyildiz, Sevil (eds.), Computation and Performance – Proceedings of the 31st eCAADe Conference – Volume 1, Faculty of Architecture, Delft University of Technology, Delft, The Netherlands, 18-20 September 2013, pp. 539-548
doi https://doi.org/10.52842/conf.ecaade.2013.1.539
wos WOS:000340635300056
summary Biomimicry, where nature is emulated as a basis for design, is a growing area of research in the fields of architecture and engineering. The widespread and practical application of biomimicry as a design approach remains however largely unrealized. A growing body of international research identifies various obstacles to the employment of biomimicry as an architectural design method. One barrier of particular note is the lack of a clear definition and methodology of the various approaches to biomimicry that designers can initially employ. This paper attempts to link biological principles with computational design in order to present a design methodology that aids interested architects within the preliminary design phase.
keywords Biomimicry; architectural design; design process; case study.
series eCAADe
email
last changed 2022/06/07 07:55

_id caadria2013_061
id caadria2013_061
authors Lyu Junchao, Sun Chengyu and Zhao Qi
year 2013
title Does the Debate on Stress Effect Lead Evacuation Simulation Models to Different Performances?
source Open Systems: Proceedings of the 18th International Conference on Computer-Aided Architectural Design Research in Asia (CAADRIA 2013) / Singapore 15-18 May 2013, pp. 179-187
doi https://doi.org/10.52842/conf.caadria.2013.179
wos WOS:000351496100018
summary There exists a long time debate over the rational state of the evacuees in the evacuation simulation. Sime et al. insisted that the evacuees behave rationally in most cases. Following this argument Arthur and Passini concluded that if a setting works well under normal conditions, it will have a better chance of working well in emergency conditions. Such an argument for rational decision-making makes statistical models, such as Utility Maximizing Model (UMM), acting as proper framework for choice modelling in evacuation. However, on the other side, some people pointed out that there exists panic in the evacuation and bounded rationality theory, represented by pruned Decision Tree Model (DTM), should be adapted in choice modelling instead. Such a debate over stress effect causes hesitations and uncertainties when researchers try to select a proper model framework for their practical simulation. This study compared the performances (prediction accuracies) of the UMM and DTM with the same set of choice data collected in a virtual evacuation experiment. With a similar level of performance on both sides, it is suggested that the on-going debate does NOT bring any difference to the choice modelling in practical evacuation simulation. It is time to improve the performance rather than to continue the debate.  
keywords vacuation, Architectural cue, Machine learning, Bounded rationality 
series CAADRIA
email
last changed 2022/06/07 07:59

_id caadria2013_063
id caadria2013_063
authors Markova, Stanimira; Andreas Dieckmann and Peter Russell
year 2013
title Custom IFC Material Extension – Extending IFC for Parametric Sustainable Building Design
source Open Systems: Proceedings of the 18th International Conference on Computer-Aided Architectural Design Research in Asia (CAADRIA 2013) / Singapore 15-18 May 2013, pp. 13-22
doi https://doi.org/10.52842/conf.caadria.2013.013
wos WOS:000351496100002
summary The enormous variety of design systems and data formats utilised by the actors in the building design process has been recognised as a significant challenge for information exchange and project management. The introduction of the Industry Foundation Classes (IFC) data standard as a paradigm shift has opened a first time opportunity for smooth data and information exchange over the full range of design related parameters and processes, reaching beyond the classical constructional, economic and safety-related requirements. Moreover, IFC allows for the extension of the standard in further areas, corresponding to the specific design, project or client requirements. These user-driven extensions often close an important gap of the IFC standard and can subsequently be imbedded in new releases of the IFC data standard. This paper is focused on the extension of IFC for the purposes of controlling and managing material use, increasing material efficiency and closing material cycles over the life cycle of a building. Material efficiency is defined by the design scopes of material recyclability, element reusability and waste reduction. The practical implications of the data format extension and design-check performance are examined on the level of the data model and, subsequently, on the level of proprietary Building Information Modelling (BIM) software, based on a pre-defined case.  
keywords Material efficient building design, IFC, Parametric design, Semantic design, BIM 
series CAADRIA
email
last changed 2022/06/07 07:59

_id sigradi2014_290
id sigradi2014_290
authors Molinas, Isabel Sabina
year 2014
title Contra la distinción: la libertad de las formas en la experiencia estética contemporánea [Against distinction: the freedom of the shapes in the contemporary esthetic experience]
source SiGraDi 2014 [Proceedings of the 18th Conference of the Iberoamerican Society of Digital Graphics - ISBN: 978-9974-99-655-7] Uruguay - Montevideo 12 - 14 November 2014, pp. 446-449
summary In the field of Contemporary Esthetics is resumed the question of what is art and which are the readability conditions (reading). The questions relate to the displacement between representation and experimentation, beauty and esthetic experience, among others. In this context, we address the technology of poetry (Nancy (2012 [2013]) as technological exhibition that lets your experience the being of the object and become subjects. The corpus includes film and video (Kopystiansky 1996-97; Alys 2011 y Jaar 2013). The objective is to outline an analytical framework for thinking about the esthetic freedom of creation and the practical freedom of their recognition. (Wagner 2004).
keywords Art; Technology; Esthetics; Design; Freedom
series SIGRADI
email
last changed 2016/03/10 09:55

For more results click below:

this is page 0show page 1show page 2show page 3show page 4show page 5... show page 30HOMELOGIN (you are user _anon_306394 from group guest) CUMINCAD Papers Powered by SciX Open Publishing Services 1.002