CumInCAD is a Cumulative Index about publications in Computer Aided Architectural Design
supported by the sibling associations ACADIA, CAADRIA, eCAADe, SIGraDi, ASCAAD and CAAD futures

PDF papers
References

Hits 1 to 20 of 601

_id sigradi2013_41
id sigradi2013_41
authors Luhan, Gregory A.; Robert Gregory
year 2013
title Across Disciplines: Triggering Frame Awareness in Design Education
source SIGraDi 2013 [Proceedings of the 17th Conference of the Iberoamerican Society of Digital Graphics - ISBN: 978-956-7051-86-1] Chile - Valparaíso 20 - 22 November 2013, pp. 619 - 623
summary Tacit knowledge is paradoxical: something we know yet don't know we know, knowledge we sense but can't articulate. In Polanyi’s definition of tacit knowledge, “we know more than we can say" (1966/2009; Scott, 1985; Gelwick, 1977). It's important to see that tacit knowledge is part of a sequence; mental structures, in awareness when first learned, eventually become tacit, operating thenceforth as unquestioned assumptions. These tacit structures pose a problem for professional education in disciplines that encourage creativity. This paper examines the design and re-design of an interdisciplinary course intended to help make these tacit structures visible, to trigger frame awareness.
keywords Tacit knowledge; Design thinking; Sustainability; Systems thinking; Frame reflection
series SIGRADI
email
last changed 2016/03/10 09:55

_id acadia13_109
id acadia13_109
authors Thün, Geoffrey; Velikov, Kathy
year 2013
title Adaptation as a Framework for Reconsidering High-Performance Residential Design: A Case Study
source ACADIA 13: Adaptive Architecture [Proceedings of the 33rd Annual Conference of the Association for Computer Aided Design in Architecture (ACADIA) ISBN 978-1-926724-22-5] Cambridge 24-26 October, 2013), pp. 109-118
doi https://doi.org/10.52842/conf.acadia.2013.109
summary This paper outlines an approach to adaptive residential design explored through recent research and an executed prototype, the North House project (2007-2009), undertaken through an interdisciplinary collaboration of researchers and students from the University of Waterloo, Ryerson University and Simon Fraser University in concert with professional and industry partners. This project aimed to develop a framework for the delivery of adaptive detached residential buildings capable of net-zero energy performance in the temperate climate zone, or the near north. Within this project, the term “adaptive” is developed across several tracts of conceptualization and execution including site and climatically derived models for building material composition and envelope ratios, environmentally-responsive kinetic envelope components, intelligent HVAC controls and interactive interface design aimed at producing co-evolutionary behaviors between building systems and inhabitants. A provisional definition of adaptive architecture is outlined to address this range of considerations that calls into question the stable image of domestic architecture and its relationship to energy and contemporary assumptions regarding sustainable design. This paper also outlines computational approaches to design optimization, distributed building systems integration and the human-controls interfaces applicable to the home’s ecology of physical and information technologies.
keywords next generation technology, responsive buildings, high performance envelopes, sensing and feedback, passive and active systems, energy modeling, user interface
series ACADIA
type Normal Paper
email
last changed 2022/06/07 07:58

_id caadria2013_009
id caadria2013_009
authors Neves, Isabel Clara; João Rocha  and José Pinto Duarte
year 2013
title The Legacy of the Hochschule Für Gestaltung of Ulm for Computational Design Research in Architecture
source Open Systems: Proceedings of the 18th International Conference on Computer-Aided Architectural Design Research in Asia (CAADRIA 2013) / Singapore 15-18 May 2013, pp. 293-302
doi https://doi.org/10.52842/conf.caadria.2013.293
wos WOS:000351496100029
summary Nowadays the use of computational design processes in architecture is a common practice which is currently recovering a set of theories connected to computer science that were developed in the 60’s and 70’s. Such pioneering explorations were marked by an interest in employing scientific principles and methodologies many developed in Research Centres located in the US and the UK. Looking into this period, this paper investigates the relevance of the German design school of the Hochschule für Gestaltung (HfG) Ulm to the birth of computation in architecture. Even thought there were no computers in the school. It is argued that the innovative pedagogies and some distinct professors have launched clear foundations that can be understood as being at the basis of further computational approaches in architecture. By describing and relating the singular work by Tomas Maldonado (educational project), Max Bense (information aesthetics) and Horst Rittel (scientific methods), this paper describes the emergence of analogical ways of computational design thinking. This analysis ultimately wishes to contribute for inscribing the HfG Ulm at the cultural and technological mapping of computation in architecture. 
keywords HfG - Hochschule für Gestaltung Ulm, Design methods, Scientific methodology, Information aesthetics, Computational design, Architecture 
series CAADRIA
email
last changed 2022/06/07 07:58

_id caadria2013_140
id caadria2013_140
authors Park, Juhong and Takehiko Nagakura
year 2013
title A Thousand BIM – A Rapid Value-Simulation Approach to Developing a BIM Tool for Supporting Collaboration During Schematic Design
source Open Systems: Proceedings of the 18th International Conference on Computer-Aided Architectural Design Research in Asia (CAADRIA 2013) / Singapore 15-18 May 2013, pp. 23-32
doi https://doi.org/10.52842/conf.caadria.2013.023
wos WOS:000351496100003
summary A typical architectural design project proceeds as collaboration among professionals who have different expertise, values and priorities. The collaboration is needed to make designs both rich yet feasible, but the professionally different ways of thinking can also be a block on the way of design development. This paper takes the example of the relationship between developers and architects, who tend to have different evaluation criteria, methods, and processes. A BIM-based tool, A Thousand BIM, is introduced as a means to quickly generate possible building typologies on a given project site, with computation of expected total values expressed in simple financial terms. Its aim is to help a group of heterogeneous professionals to communicate in the same language, articulate criteria and priorities in multiple perspectives, and share rapidly simulated evaluations of schematic design variations. The implemented evaluation process considers construction cost per square foot, land value, and sustainability as well as other soft design values such as views and accessibility. It can take various market data as inputs to cost calculation, and the weight to each of the design values is dynamically adjustable. A professional can explicitly set them, and share the criteria, priorities, and results of value simulations with others in an enhanced collaborative process.  
keywords BIM, Pro-forma, Design collaboration, Value simulation 
series CAADRIA
email
last changed 2022/06/07 08:00

_id caadria2013_258
id caadria2013_258
authors Reinhardt, Dagmar; William Martens and Luis Miranda
year 2013
title Sonic Domes – Solving Acoustic Performance of Curved Surfaces by Interfacing Parametric Design, Structural Engineering and Acoustic Analysis
source Open Systems: Proceedings of the 18th International Conference on Computer-Aided Architectural Design Research in Asia (CAADRIA 2013) / Singapore 15-18 May 2013, pp. 529-538
doi https://doi.org/10.52842/conf.caadria.2013.529
wos WOS:000351496100052
summary This paper addresses the acoustic performance of complex curved surface geometries that are commonly known to pose problems of sound concentration, thus affecting speech intelligibility and audience experience in spaces of temporal arts performance. It reviews an open system of design research in which parametric design process, structural analysis and acoustic analysis are deployed to improve the sound of ellipsoidal structures in relation to sound source and audience positions, by adapting the height, dimension and centre point of a dome structure, consequently improving the acoustic behaviour of the performance space. The paper discusses an iterative design, analysis and optimization processes, in which a number of generative form variations were developed in Grasshopper, and reworked in McNeel Rhino, tested in engineering software (Strand7), and evaluated in acoustic simulation (ODEON). This allowed an interdisciplinary team to develop, test and evolve a design proposal that shows one solution for avoiding sound concentration and consequently improving acoustic performance in complex intersecting and curved geometries of a multifunctional building.  
keywords Parametric design, Sound concentration, Curved surfaces, Structural engineering, Acoustic simulation  
series CAADRIA
email
last changed 2022/06/07 08:00

_id ecaade2015_286
id ecaade2015_286
authors Safarova, Bara; Ledesma, Edna, Luhan, Gregory, Caffey, Stephen and Giusti, Cecilia
year 2015
title Learning from Collaborative Integration:The Hackathon as Design Charrette
source Martens, B, Wurzer, G, Grasl T, Lorenz, WE and Schaffranek, R (eds.), Real Time - Proceedings of the 33rd eCAADe Conference - Volume 2, Vienna University of Technology, Vienna, Austria, 16-18 September 2015, pp. 233-240
doi https://doi.org/10.52842/conf.ecaade.2015.2.233
wos WOS:000372316000028
summary This paper examines the application of innovative and interdisciplinary collaboration methods that emerged from the rapidly developing field of information technology and its intersection within the realm of design and architecture. These events, also referred to as hackathons, have risen in popularity in recent years (Artiles & Wallace, 2013) and stem from a design response for the increasing demand for accelerated design decisions within the field of architecture. This paper examines the potential of hackathons as a platform for rapid development of design ideas into prototypes within a time constraint of 24 hours. The paper explores the hackathon as a robust foundational element for pedagogical approaches rooted in interdisciplinary collaboration. Using a case-study research methodology, this paper probes the framework of the event, the outcomes, and the lessons learned. As this paper demonstrates, the hackathon required participants to identify and explore shifting territories through interdisciplinary teamwork to arrive at innovative solutions. In this setting, the format of the hackathon serves as a vibrant territory that enables a concrete theoretical contribution to design pedagogy, CAAD education, and collaborative professional practice.
series eCAADe
email
more https://mh-engage.ltcc.tuwien.ac.at/engage/ui/watch.html?id=499d55fa-6e91-11e5-ae6e-00190f04dc4c
last changed 2022/06/07 07:56

_id cf2013_210
id cf2013_210
authors Schubert, Gerhard; Sebastian Riedel, and Frank Petzold
year 2013
title Seamfully Connected: Real Working Models as Tangible Interfaces for Architectural Design
source Global Design and Local Materialization[Proceedings of the 15th International Conference on Computer Aided Architectural Design Futures / ISBN 978-3-642-38973-3] Shanghai, China, July 3-5, 2013, pp. 210-221.
summary This paper describes work conducted as part of an interdisciplinary research project into new approaches to using computer technology in the early phases of the architectural design process. The aim is to reduce the existing discrepancy between familiar, analogue ways of working in the early design stages and the increasingly widespread use of digital tools in office practice. Taking this as its starting point, a prototype for a design platform was developed. The core of the project is a direct, real-time connection between real volumetric models, an interactive 3D sketching-tool and interactive digital content that supports the design process. The conceptual and technical core of this connection is an integrated object recognition system. In this paper we describe the need for an integrated solution, the underlying conceptual idea and the recognition methods implemented including their respective strengths and limitations.
keywords Design Tool, Urban Design, Early Design Stages, HCI
series CAAD Futures
email
last changed 2014/03/24 07:08

_id ecaade2013r_020
id ecaade2013r_020
authors Bello Diaz, Gabriel; Dubor, Alexandre
year 2013
title Magnetic architecture. A new order in design
source FUTURE TRADITIONS [1st eCAADe Regional International Workshop Proceedings / ISBN 978-989-8527-03-5], University of Porto, Faculty of Architecture (Portugal), 4-5 April 2013, pp. 237-245
summary With the exploration of additive manufacturing, Magnetic Architecture develops different systems and strategies to use magnetic fields for controlling material through construction. In this research we utilize the overlapping of different technologies and digital tools that participate in the innovation of architecture. Thanks to hacked 6-axis robots, Magnetic Architecture approaches decision making from a top/down and bottom/up process. These new processes and conclusions are continuously leading to more areas of research and new design processes, which begins to question the role of the architect with these emerging technologies.
keywords Additive Manufacturing; Sensor Logic; Incremental Coding; Dynamic Blueprints (DBP)
email
last changed 2013/10/07 19:08

_id caadria2013_220
id caadria2013_220
authors Chaszar, André and José Nuno Beirão
year 2013
title Feature Recognition and Clustering for Urban Modelling – Exploration and Analysis in GIS and CAD
source Open Systems: Proceedings of the 18th International Conference on Computer-Aided Architectural Design Research in Asia (CAADRIA 2013) / Singapore 15-18 May 2013, pp. 601-610
doi https://doi.org/10.52842/conf.caadria.2013.601
wos WOS:000351496100059
summary In urban planning exploration and analysis assist the generation, measurement, interpretation and management of the modelled urban environments. This frequently involves categorisation of model elements and identification of element types. Such designation of elements can be achieved through attribution (e.g. ‘tagging’ or ‘layering’) or direct selection by model users. However, for large, complex models the number and arrangement of elements makes these approaches impractical in terms of time/effort and accuracy. This is particularly true of models which include substantial numbers of elements representing existing urban fabric, rather than only newly generated elements (which might be automatically attributed during the generation process). We present methods for identification and categorisation of model elements in models of existing and proposed urban agglomerations. We also suggest how these methods can enable exploration of models, discovery of identities and relationships not otherwise obvious, and acquisition of insights to the models’ structure and contents which are not captured, and may even be obscured, by manual selection or automated pre-attribution.  
keywords City information modelling, Data mining, Feature recognition, Geometric-content-based-search, Urban typologies 
series CAADRIA
email
last changed 2022/06/07 07:55

_id caadria2013_198
id caadria2013_198
authors Chee Zong Jie and Patrick Janssen
year 2013
title Exploration of Urban Street Patterns – Multi-Criteria Evolutionary Optimisation Using Axial Line Analysis
source Open Systems: Proceedings of the 18th International Conference on Computer-Aided Architectural Design Research in Asia (CAADRIA 2013) / Singapore 15-18 May 2013, pp. 695-704
doi https://doi.org/10.52842/conf.caadria.2013.695
wos WOS:000351496100068
summary In urban design, researchers have developed techniques to automate both the generation and evaluation of urban street patterns. In most cases, these approaches are investigated in isolation from one another. Recently, a number of researchers have attempted to couple these approaches, in order to enable larger numbers of street patterns to be generated and evaluated in an iterative loop. However, to date, the possibility of fully automating the generative-evaluative loop using optimisation algorithms has not been explored. This research proposes an explorative design method in which urban street patterns can be optimised for multiple conflicting performance criteria. The optimisation process uses evolutionary algorithms to evolve populations of design variants by iteratively applying three key procedures: development, evaluation, and feedback. For development, a generative technique is proposed for constructing street patterns. For evaluation, various performance measures are used, including in particular Space Syntax based Axial Line analysis. For feedback, a Pareto-ranking algorithm is used that ranks street patterns according to multiple criteria. The proposed method is demonstrated using an abstract scenario in which orthogonal street patterns are evolved for a small urban area.  
keywords Axial line analysis, Generative modelling, Evolutionary algorithms, Decision chain encoding, Urban street patterns 
series CAADRIA
email
last changed 2022/06/07 07:55

_id ecaadesigradi2019_334
id ecaadesigradi2019_334
authors Dembski, Fabian, Wössner, Uwe and Letzgus, Mike
year 2019
title The Digital Twin - Tackling Urban Challenges with Models, Spatial Analysis and Numerical Simulations in Immersive Virtual Environments.
source Sousa, JP, Xavier, JP and Castro Henriques, G (eds.), Architecture in the Age of the 4th Industrial Revolution - Proceedings of the 37th eCAADe and 23rd SIGraDi Conference - Volume 1, University of Porto, Porto, Portugal, 11-13 September 2019, pp. 795-804
doi https://doi.org/10.52842/conf.ecaade.2019.1.795
summary For the built environment's transformation we are confronted with complex dynamics connected to economic, ecologic and demographic change (Czerkauer-Yamu et al., 2013; Yamu, 2014). In general, cities are complex systems being a "heterogeneous mosaic" of a variety of cultures and functions, characterised by diverging perceptions and interests (ibid). The juxtaposed perceptions and interests in relation to ongoing spatial processes of change create a particularly complex situation. Thus, for planning processes we are in need of approaches that are able to cope not only with the urban complexity but also allow for participatory processes to empower citizens. This paper presents the approach of using Digital Twins in virtual reality (VR) for civic engagement in urban planning, enriched with quantitative and qualitative empirical data as one promising approach to tackle not only the complexity of cities but also involve citizens in the planning process.
keywords Digital Twin; Collaborative Planning; Planning and Decision Support; Participation; Virtual Reality; Global System Science
series eCAADeSIGraDi
email
last changed 2022/06/07 07:55

_id ecaade2018_243
id ecaade2018_243
authors Gardner, Nicole
year 2018
title Architecture-Human-Machine (re)configurations - Examining computational design in practice
source Kepczynska-Walczak, A, Bialkowski, S (eds.), Computing for a better tomorrow - Proceedings of the 36th eCAADe Conference - Volume 2, Lodz University of Technology, Lodz, Poland, 19-21 September 2018, pp. 139-148
doi https://doi.org/10.52842/conf.ecaade.2018.2.139
summary This paper outlines a research project that explores the participation in, and perception of, advanced technologies in architectural professional practice through a sociotechnical lens and presents empirical research findings from an online survey distributed to employees in five large-scale architectural practices in Sydney, Australia. This argues that while the computational design paradigm might be well accepted, understood, and documented in academic research contexts, the extent and ways that computational design thinking and methods are put-into-practice has to date been less explored. In engineering and construction, technology adoption studies since the mid 1990s have measured information technology (IT) use (Howard et al. 1998; Samuelson and Björk 2013). In architecture, research has also focused on quantifying IT use (Cichocka 2017), as well as the examination of specific practices such as building information modelling (BIM) (Cardoso Llach 2017; Herr and Fischer 2017; Son et al. 2015). With the notable exceptions of Daniel Cardoso Llach (2015; 2017) and Yanni Loukissas (2012), few scholars have explored advanced technologies in architectural practice from a sociotechnical perspective. This paper argues that a sociotechnical lens can net valuable insights into advanced technology engagement to inform pedagogical approaches in architectural education as well as strategies for continuing professional development.
keywords Computational design; Sociotechnical system; Technology adoption
series eCAADe
email
last changed 2022/06/07 07:51

_id caadria2013_260
id caadria2013_260
authors Kaftan, Martin and Milena Stavric
year 2013
title Robotic Fabrication of Modular Form-Work – An Innovative Approach to Formwork Fabrication for Non-Standard  Concrete Structures
source Open Systems: Proceedings of the 18th International Conference on Computer-Aided Architectural Design Research in Asia (CAADRIA 2013) / Singapore 15-18 May 2013, pp. 75-84
doi https://doi.org/10.52842/conf.caadria.2013.075
wos WOS:000351496100008
summary In this work we address the fast and economical realization of complex formwork for concrete with the advantage of robotic fabrication. Under economical realization we mean reduction of production time and material efficiency. The complex form of individual formwork parts can be in our case double curved surface or complex mesh geometry. We propose the fabrication of the formwork by straight or shaped hot wire. We illustrate different approaches to mould production, where the proposed process demonstrates itself effective. In our approach we deal with the special kinds of modularity and specific symmetry of the formwork.  
keywords Robotic fabrication, Formwork, Non-standard structures 
series CAADRIA
email
last changed 2022/06/07 07:52

_id caadria2013_080
id caadria2013_080
authors Koh, Immanuel
year 2013
title Computer Vision and Augmented Reality Technologies in Experimental Architectural Design Education at the AA
source Open Systems: Proceedings of the 18th International Conference on Computer-Aided Architectural Design Research in Asia (CAADRIA 2013) / Singapore 15-18 May 2013, pp. 427-436
doi https://doi.org/10.52842/conf.caadria.2013.427
wos WOS:000351496100042
summary This paper aims to investigate the potential of both open source software and new media (esp. computer vision and augmented reality) as tools for architectural design and education. The examples illustrated in the paper would be drawn mainly from students’ projects done as part of their AA Media Studies Course submission at the AA School of Architecture (AA) during the academic years from 2011/2012 to 2012/2013. The paper outlines the main approaches, which students have chosen to implement, both directly and indirectly, these new media and tools into their studio work at the AA. Section 1 briefly introduces a range of currently available open source computational design toolkits that are deemed useful for quick implementation of computer vision and augmented reality technologies. The related programming languages, softwares and hardwares would also be introduced and described accordingly. Sections 2 and 3 are accompanied with a visual catalogue of students’ projects to better illustrate the diversity in the understanding and implementation of computer vision and augmented reality technologies in architectural design. Section 4 serves to conclude the paper by first discussing briefly the feedback from students at the end of the course before clarifying the context of the research and thus its relation to recent work done by others using similar technologies.  
keywords Computer vision, Augmented reality, Generative design, Interaction design 
series CAADRIA
email
last changed 2022/06/07 07:51

_id caadria2013_071
id caadria2013_071
authors Lloret Kristensen, Ena; Fabio Gramazio, Matthias Kohler and Silke Langenberg
year 2013
title Complex Concrete Constructions – Merging Existing Casting Techniques with Digital Fabrication
source Open Systems: Proceedings of the 18th International Conference on Computer-Aided Architectural Design Research in Asia (CAADRIA 2013) / Singapore 15-18 May 2013, pp. 613-622
doi https://doi.org/10.52842/conf.caadria.2013.613
wos WOS:000351496100060
summary In the course of the 20th century, architectural construction has gone through intense innovation in its material, engineering and design, radically transforming the way buildings were and are conceived. Technological and industrial advances enabled and challenged architects, engineers and constructors to build increasingly complex architectural structures from concrete. Computer-Aided Design and Manufacturing (CAD/CAM) techniques have, more recently, rejuvenated and increased the possibilities of realising ever more complex geometries. Reinforced concrete is often chosen for such structures since almost any shape can be achieve when poured into a formwork. However, designs generated with digital tools tend to have limited relation to the efficient modes of production typically used in contemporary concrete construction. A large gap has emerged between the technology in architectural design and the building industry, so that few efficient solutions exist for the production of geometrically complex structures in concrete. This paper focuses on the capabilities and efficiency of existing casting techniques both with static and dynamic formwork which, when combined with digital fabrication, allow innovative fabrication approaches to be taken. Particular focus is placed on slipforming, an approved and efficient construction technique, which until now is unexplored in conjunction with digital fabrication. 
keywords Complex concrete structures, Casting techniques, Formwork, Slipforming, Digital fabrication, Smart dynamic casting 
series CAADRIA
email
last changed 2022/06/07 07:59

_id caadria2013_207
id caadria2013_207
authors Narahara, Taro
year 2013
title Adaptive Growth Using Robotic Fabrication
source Open Systems: Proceedings of the 18th International Conference on Computer-Aided Architectural Design Research in Asia (CAADRIA 2013) / Singapore 15-18 May 2013, pp. 65-74
doi https://doi.org/10.52842/conf.caadria.2013.065
wos WOS:000351496100007
summary This paper studies computational methods for adaptive growth seen in human design processes, such as development of spontaneous settlements, by highlighting the contrast with conventional plan execution approaches. The paper speculates as to the possibilities of open frameworks for design using computational methods through a relatively simple yet explicit example in the context of robotic fabrication. The proposed experiment uses an industrial robot arm to pro-duce structures by stacking unit bricks without hard-coded instructions (“blueprints”) from the outset. The paper further speculates about how such implementations can be applied to architectural design.  
keywords Generative design, Robotic fabrication, Adaptable design 
series CAADRIA
email
last changed 2022/06/07 07:58

_id ecaade2013r_002
id ecaade2013r_002
authors Neves, Isabel C.; Rocha, J.
year 2013
title The contribution of Tomas Maldonado to the scientific approach to design at the beginning of computational era. The case of the HfG of Ulm.
source FUTURE TRADITIONS [1st eCAADe Regional International Workshop Proceedings / ISBN 978-989-8527-03-5], University of Porto, Faculty of Architecture (Portugal), 4-5 April 2013, pp. 39-50
summary Nowadays the use of computational design processes in architecture is a common practice which is currently recovering a set of theories connected to computer science developed in the 60`s and 70`s. Back then, such pioneering experiences were carried out by an interest in employing scientific principles and methodologies in architectural design, which, with the help of computers, were developed in Research Centres mainly located in the USA and the UK. Looking into this period, this paper investigates the relevance of the German design school of the Hochschule für Gestaltung of Ulm to the birth of computation in architecture. Even though there were no computers in the school, this paper argues that the innovative pedagogies introduced by a group of distinct professors built clear foundations that can be understood as being at the basis of further computational approaches in architecture.This paper focuses on the remarkable work done by Tomas Maldonado. His contribution was paramount in the emergence of analogical ways of computer design thinking. This analysis ultimately wants to emphasize how the HfG Ulm’s role and its scientific approach have paved the way for the onset of the computational era in architecture.
keywords HfG - Hochschule für Gestaltung Ulm; Educational Project; Semiotics; Operational Research; Computational Design; Architecture
email
last changed 2013/10/07 19:08

_id acadia13_379
id acadia13_379
authors Tamke, Martin; Stasiuk, David; Ramsgard Thomsen, Mette
year 2013
title The Rise – Material Behaviour in Generative Design
source ACADIA 13: Adaptive Architecture [Proceedings of the 33rd Annual Conference of the Association for Computer Aided Design in Architecture (ACADIA) ISBN 978-1-926724-22-5] Cambridge 24-26 October, 2013), pp. 379-388
doi https://doi.org/10.52842/conf.acadia.2013.379
summary The research-based installation, The Rise, is led by the concept of a growing architecture able to sense and dynamically adapt to its environment as it grows into form while continuously reacting to its own material performance and behavioural constraints. This process is enabled through the careful integration of digital simulation techniques with multi-hierarchical generative design approaches. Aggregations of variably sized bundles of rattan core multiply, bend, branch and recombine into a distributed assembly that manifests an alternative to traditional structural systems. The hybrid approach links a material system with simulation and the iterative generation of geometry through a process of calibration at different stages of design. The project leverages emerging computational strategies for growth in a model for an architectural practice that engages the complexity and interdependencies that characterise a contemporary design practice.
keywords complex systems, material behaviour, simulation, generative design, growth patterns, environmental aware design systems
series ACADIA
type Normal Paper
email
last changed 2022/06/07 07:56

_id caadria2013_185
id caadria2013_185
authors Turrin, Michela; Rudi Stouffs and Sevil Sar_y_ld_z
year 2013
title Performance-Based Parameterization Strategies – A Theoretic Framework and Case Studies
source Open Systems: Proceedings of the 18th International Conference on Computer-Aided Architectural Design Research in Asia (CAADRIA 2013) / Singapore 15-18 May 2013, pp. 519-528
doi https://doi.org/10.52842/conf.caadria.2013.519
wos WOS:000351496100051
summary In this paper, alternative approaches to structure the parametric geometry in relation to information on various performances are described and exemplified. They relate to different levels of knowledge that concern the performances considered in the process and which are available to the designer while the parametric model is being set. A theoretic framework embeds the different approaches, for which the use of parametric modelling is structured in three phases: strategy-definition; model-building; and solution-assessment. The phases and their interrelations are discussed. Finally, four case studies are presented, focusing on the relation between the knowledge available in strategy-definition and the exploration occurring in solution-assessment.  
keywords Conceptual design, Parametric design, Performance analysis  
series CAADRIA
email
last changed 2022/06/07 07:58

_id acadia13_301
id acadia13_301
authors Dierichs, Karola; Menges, Achim
year 2013
title Aggregate Architecture: Simulation Models for Synthetic Non-convex Granulates
source ACADIA 13: Adaptive Architecture [Proceedings of the 33rd Annual Conference of the Association for Computer Aided Design in Architecture (ACADIA) ISBN 978-1-926724-22-5] Cambridge 24-26 October, 2013), pp. 301-310
doi https://doi.org/10.52842/conf.acadia.2013.301
summary Aggregate Architectures challenge the common notion of architectural structures as being immutable, permanent and controllable. Aggregate Architectures are understood as material systems consisting of large masses of granules—designed or natural—interacting with each other only through loose, frictional contact. As a consequence, they take the realm of structural stability and architectural planning into entire re-configurability and into merely probable predictions of their prospective behavior. This renders them relevant within the paradigm of Adaptive Architecture.The challenge to the designer is to move away from thinking in terms of clearly defined local and global assembly systems and to acquire tools and modes of design that allow for observation and interaction with the evolving granular architectures. In this context, the focus of the presented researchproject is on the relevance of mathematically based simulations as tools of investigation and design.The paper introduces the field of Aggregate Architectures. Consequently experimental and simulation methods for granulates will be outlined and compared. Different modeling and collision-detection methods for non-convex particles are shown and applied in benchmarking simulations for a full-scale architectural prototype. The potential for micro-mechanical simulation analysis within architectural applications are demonstrated and further areas of research outlined.
keywords Tools and Interfaces; aggregate architecture, designed granular matter, discrete element modeling, non-convex particles
series ACADIA
type Normal Paper
email
last changed 2022/06/07 07:55

For more results click below:

this is page 0show page 1show page 2show page 3show page 4show page 5... show page 30HOMELOGIN (you are user _anon_998781 from group guest) CUMINCAD Papers Powered by SciX Open Publishing Services 1.002