CumInCAD is a Cumulative Index about publications in Computer Aided Architectural Design
supported by the sibling associations ACADIA, CAADRIA, eCAADe, SIGraDi, ASCAAD and CAAD futures

PDF papers
References

Hits 1 to 20 of 570

_id caadria2013_230
id caadria2013_230
authors Gün, Onur Y.
year 2013
title The Executed and the Observed in Sketches: Visual and Computational Processing for Explorative Drawings
source Open Systems: Proceedings of the 18th International Conference on Computer-Aided Architectural Design Research in Asia (CAADRIA 2013) / Singapore 15-18 May 2013, pp. 801-810
doi https://doi.org/10.52842/conf.caadria.2013.801
wos WOS:000351496100083
summary Drawing is expressing. The mind’s eye works with the drawing to materialize ideas via transforming them into visual abstractions. The genuine supremacy of drawing emerges from its potential to evoke, not from its ability to represent. Computers are harbingers of unprecedented and enriching drawing environments. Yet they also introduce ambivalences since they suppress drafter’s bodily and perceptual engagement with drawings. This paper aims to delineate the similarities and differences between hand drawing and (via-computer) algorithmic drawing for design. The goal is to discuss the altering role of eyes and hands in long-contrasted virtual and material environments of drawing. The outlined comparisons of algorithmic and hand sketching should encourage research for blending digital and analogue modes of sketching.  
keywords Drawing, Computation, Sketch, Algorithmic, Design, Studio, Visual, Calculation 
series CAADRIA
email
last changed 2022/06/07 07:50

_id ascaad2022_099
id ascaad2022_099
authors Sencan, Inanc
year 2022
title Progeny: A Grasshopper Plug-in that Augments Cellular Automata Algorithms for 3D Form Explorations
source Hybrid Spaces of the Metaverse - Architecture in the Age of the Metaverse: Opportunities and Potentials [10th ASCAAD Conference Proceedings] Debbieh (Lebanon) [Virtual Conference] 12-13 October 2022, pp. 377-391
summary Cellular automata (CA) is a well-known computation method introduced by John von Neumann and Stanislaw Ulam in the 1940s. Since then, it has been studied in various fields such as computer science, biology, physics, chemistry, and art. The Classic CA algorithm is a calculation of a grid of cells' binary states based on neighboring cells and a set of rules. With the variation of these parameters, the CA algorithm has evolved into alternative versions such as 3D CA, Multiple neighborhood CA, Multiple rules CA, and Stochastic CA (Url-1). As a rule-based generative algorithm, CA has been used as a bottom-up design approach in the architectural design process in the search for form (Frazer,1995; Dinçer et al., 2014), in simulating the displacement of individuals in space, and in revealing complex relations at the urban scale (Güzelci, 2013). There are implementations of CA tools in 3D design software for designers as additional scripts or plug-ins. However, these often have limited ability to create customized CA algorithms by the designer. This study aims to create a customizable framework for 3D CA algorithms to be used in 3D form explorations by designers. Grasshopper3D, which is a visual scripting environment in Rhinoceros 3D, is used to implement the framework. The main difference between this work and the current Grasshopper3D plug-ins for CA simulation is the customizability and the real-time control of the framework. The parameters that allow the CA algorithm to be customized are; the initial state of the 3D grid, neighborhood conditions, cell states and rules. CA algorithms are created for each customizable parameter using the framework. Those algorithms are evaluated based on the ability to generate form. A voxel-based approach is used to generate geometry from the points created by the 3D cellular automata. In future, forms generated using this framework can be used as a form generating tool for digital environments.
series ASCAAD
email
last changed 2024/02/16 13:38

_id cf2013_038
id cf2013_038
authors Lee, Ju Hyun; Ning Gu, Michael J. Ostwald, and Julie Jupp
year 2013
title Understanding Cognitive Activities in Parametric Design
source Global Design and Local Materialization[Proceedings of the 15th International Conference on Computer Aided Architectural Design Futures / ISBN 978-3-642-38973-3] Shanghai, China, July 3-5, 2013, pp. 38-49.
summary Parametric design offers a new paradigm in the field of ComputerAided Design; a paradigm focused on the potential for producing design variations. However, despite this potential, the cognitive activities associated with parametric design are not well understood. The authors of this paper present a formal method for capturing cognitive activities via protocol analysis. To support the interpretation of this method, this paper evaluates creativity implicit in design products by way of a consensual assessment technique. The findings identify two cognitive activities (‘making generation’ and ‘changing existing parameters’) as potential critical to divergent thinking and the restructuring of design components. These activities facilitate the generative aspects of parametric design. The paper concludes with a discussion of three cognitive levels (physical, perceptual and conceptual) that support an understanding of cognitive activities in parametric design.
keywords Parametric design, CAD, Cognitive activity, Protocol analysis, Consensual assessment technique
series CAAD Futures
email
last changed 2014/03/24 07:08

_id sigradi2013_167
id sigradi2013_167
authors Milioli, Larissa; Neander Furtado Silva
year 2013
title As Implicações Formais do Uso de Diferentes Sistemas CAD e Prototipagem Rápida no Início do Processo de Projeto de Arquitetura [Formal Implications of Using Different Systems CAD and Rapid Prototyping in Early Architectural Design Process]
source SIGraDi 2013 [Proceedings of the 17th Conference of the Iberoamerican Society of Digital Graphics - ISBN: 978-956-7051-86-1] Chile - Valparaíso 20 - 22 November 2013, pp. 454 - 458
summary This article presents the formal results obtained from the same project, defined at the initial stage, modeled in three different CAD systems, exported and prototyped in two different types of three-dimensional printer. These digital systems have varying degrees of precision, can result in rapid prototyping different from the original virtual model, and this could frustrate the user's initial expectations, due to the need of modeling rework. The proper use of these tools can be helpful, since the beginning of the design process, with quick and reliable information, regarding the formal intent of the architect.
keywords Architectural design; CAD; Early process; Form; Rapid prototyping
series SIGRADI
email
last changed 2016/03/10 09:55

_id ecaade2013r_002
id ecaade2013r_002
authors Neves, Isabel C.; Rocha, J.
year 2013
title The contribution of Tomas Maldonado to the scientific approach to design at the beginning of computational era. The case of the HfG of Ulm.
source FUTURE TRADITIONS [1st eCAADe Regional International Workshop Proceedings / ISBN 978-989-8527-03-5], University of Porto, Faculty of Architecture (Portugal), 4-5 April 2013, pp. 39-50
summary Nowadays the use of computational design processes in architecture is a common practice which is currently recovering a set of theories connected to computer science developed in the 60`s and 70`s. Back then, such pioneering experiences were carried out by an interest in employing scientific principles and methodologies in architectural design, which, with the help of computers, were developed in Research Centres mainly located in the USA and the UK. Looking into this period, this paper investigates the relevance of the German design school of the Hochschule für Gestaltung of Ulm to the birth of computation in architecture. Even though there were no computers in the school, this paper argues that the innovative pedagogies introduced by a group of distinct professors built clear foundations that can be understood as being at the basis of further computational approaches in architecture.This paper focuses on the remarkable work done by Tomas Maldonado. His contribution was paramount in the emergence of analogical ways of computer design thinking. This analysis ultimately wants to emphasize how the HfG Ulm’s role and its scientific approach have paved the way for the onset of the computational era in architecture.
keywords HfG - Hochschule für Gestaltung Ulm; Educational Project; Semiotics; Operational Research; Computational Design; Architecture
email
last changed 2013/10/07 19:08

_id caadria2013_223
id caadria2013_223
authors Schimek, Heimo; Albert Wiltsche, Markus Manahl and Christoph Pfaller
year 2013
title Full Scale Prototyping – Logistic and Construction Challenges Realising Digitally Designed Timber Prototypes
source Open Systems: Proceedings of the 18th International Conference on Computer-Aided Architectural Design Research in Asia (CAADRIA 2013) / Singapore 15-18 May 2013, pp. 653-662
doi https://doi.org/10.52842/conf.caadria.2013.653
wos WOS:000351496100064
summary This paper reports on the final stage of a research project with the realization of a real scale prototype and ties an empirical finale to the project, which started as a fundamental research project three years ago. The scope of this research project was to explore new ways, how Non-Standard Architecture can be build with standard building elements using contemporary building processes and materials resource efficiently. Mass Customization and File to Factory, concepts where a continuous digital workflow is applied, were fundamental to our approach. Within this framework we developed generic parametric details and made them part of the whole process from the beginning of the design to the manufacturing. The present paper describes a strategy for the assembly of a large prototype, consisting of approximately 50 flat timber panels that are being assembled to a structure of the size of a small house. The paper focuses especially on the customized falsework, we designed for the construction of the prototype, which became a crucial part of the assembling process besides the assembly of the actual prototype.  
keywords Digital fabrication and construction, Precedence and prototypes, Mass customization 
series CAADRIA
email
last changed 2022/06/07 07:57

_id sigradi2013_205
id sigradi2013_205
authors Chiarella, Mauro; Luis Felipe González Böhme; Cristian Calvo Barentin
year 2013
title Robots: Automatización en Diseño y Construcción para la Enseñanza de Arquitectura [Robots: Automation in Design and Manufacturing for Teaching Architecture]
source SIGraDi 2013 [Proceedings of the 17th Conference of the Iberoamerican Society of Digital Graphics - ISBN: 978-956-7051-86-1] Chile - Valparaíso 20 - 22 November 2013, pp. 439 - 443
summary Industrial robots controlled by parametric design software and visual programming environments are gaining popularity in the research and use of non-conventional construction processes in architecture. Process automation which can be personalized through variable components promises to become an industry standard with similar cost structures to current pre-fabrication industrial processes. In order to incorporate competencies from non-serial variable architectural modular design, an initial teaching initiative (Advanced Architectural Design Studio – USM) was developed in Latin América. The strategy employed is based on incorporating concepts and instruments of Construction & Design Automation for CAD/CAM processes with a Six Axis Robotic Arm (KUKA KR125/2).
keywords Robotic fabrication; Parametric modeling, Teaching architecture
series SIGRADI
email
last changed 2016/03/10 09:48

_id caadria2013_072
id caadria2013_072
authors Christopher, Hannah; Srinivas Tadeppalli and G. Subbaiyan
year 2013
title Computer Aided Modular Geometric Modeling,to Study the Perception of Safety – Natural Surveillance for Perceived Personal Security
source Open Systems: Proceedings of the 18th International Conference on Computer-Aided Architectural Design Research in Asia (CAADRIA 2013) / Singapore 15-18 May 2013, pp. 761-770
doi https://doi.org/10.52842/conf.caadria.2013.761
wos WOS:000351496100079
summary Natural surveillance is one key factor proposed, in the approach to decrease fear of crime. Building fenestrations and outdoor spaces like terrace, balconies and verandas that extend the interior spaces and the indoor activities, beyond the closed external shell of the buildings, are proposed by CPTED, in their place specific policy guidelines, to help design out fear and crime. In this background, this study on natural surveillance opportunities, explores typological variations of these component outdoor spaces of buildings, in line with variations in size and location. The affordances considered for this study specifically focus on the ways in which these spaces structure the visual fields for the external observer. This paper thus reports the survey of visual preferences exploring the spatial affordances of building spaces and their association with fear of crime.  
keywords Natural surveillance, Typology, Fear of crime, Visibility analysis 
series CAADRIA
email
last changed 2022/06/07 07:56

_id cf2013_084
id cf2013_084
authors Herr, Christiane M. and Thomas Fischer
year 2013
title Generative Column and Beam Layout for Reinforced Concrete Structures in China
source Global Design and Local Materialization[Proceedings of the 15th International Conference on Computer Aided Architectural Design Futures / ISBN 978-3-642-38973-3] Shanghai, China, July 3-5, 2013, pp. 84-95.
summary This paper outlines generative strategies for the design of structural layout patterns of columns and beams in reinforced concrete structures based on contemporary local construction practice in China. Following an introduction to constraints and opportunities of this new potential context for generative design application, possible generative strategies are proposed and discussed, with a view to their viability within the local context. The proposed strategies are illustrated in terms of geometry, generative sequence and plausibility of construction and discussed in terms of visual and overall structural merit.
keywords generative design, algorithmic design, structural design, visual thinking, reinforced concrete structures, China
series CAAD Futures
email
last changed 2014/03/24 07:08

_id ijac201310104
id ijac201310104
authors Indraprastha, Aswin and Michihiko Shinozaki
year 2013
title Computing Level of Privacy in a Virtual Environment
source International Journal of Architectural Computing vol. 11 - no. 1, 65-86
summary This paper presents a computational model designed to analyze architectural space and to a develop privacy level using two methods: visual distance method and viewing angle method as those are primary cognitive mechanism to experience architectural space.We suggest that the result will offer possibilities for quantitative design analysis of privacy that influenced by architectural elements.The proposed method consists of two stages: determination of subdivided enclosed spaces and measuring privacy level on each subdivided enclosed space. Previous models showed that spatial quality is related to the visual distance to the architectural elements. In addition to distance variables, our model includes viewing angle variables to determine area and the direction angle from any observation point to the architectural elements on the boundary of an interior space.The case study evaluation is able to rank the quality of design of interior spaces with respect to their privacy level.
series journal
last changed 2019/05/24 09:55

_id caadria2014_150
id caadria2014_150
authors Knapp, Chris; Jonathan Neslon and Michael Parsons
year 2014
title Constructing Atmospheres
source Rethinking Comprehensive Design: Speculative Counterculture, Proceedings of the 19th International Conference on Computer-Aided Architectural Design Research in Asia (CAADRIA 2014) / Kyoto 14-16 May 2014, pp. 149–158
doi https://doi.org/10.52842/conf.caadria.2014.149
summary This paper documents and critically reflects upon the design, development, fabrication, and implementation of three pavilion projects developed during 2013-14. The core investigation of this work is the production of architectural spaces characterized by a quality of enveloping, diffuse, visual and spatial atmospheres. The principal activity of the research is aimed at refining methods for software-based exploration of formal complexities and the subsequent need to control variability and efficiency in fabrication output, using Grasshopper for Rhino to develop customized definitions particular to each specific project scenario. Linking the projects together are issues of scale, resolution of effect, and intent to move from disparate assemblies of structure and skin toward composite, manifold construction techniques that address multiple concerns (gravity, bracing, affect, etc) with a minimum of assembly. A material palette common to the current vernacular of CNC-based projects such as plywood, plastics, and other sheet materials is utilised. This work is invested in extending the possibilities of the architect and architecture as a discipline, extrapolating the workflow from these successive projects to the speculative impact of the work upon emerging possibilities of architectural construction and craft.
keywords 3d modelling; Digital fabrication; Rhinoceros; Grasshopper; Tessellation
series CAADRIA
email
last changed 2022/06/07 07:51

_id caadria2013_080
id caadria2013_080
authors Koh, Immanuel
year 2013
title Computer Vision and Augmented Reality Technologies in Experimental Architectural Design Education at the AA
source Open Systems: Proceedings of the 18th International Conference on Computer-Aided Architectural Design Research in Asia (CAADRIA 2013) / Singapore 15-18 May 2013, pp. 427-436
doi https://doi.org/10.52842/conf.caadria.2013.427
wos WOS:000351496100042
summary This paper aims to investigate the potential of both open source software and new media (esp. computer vision and augmented reality) as tools for architectural design and education. The examples illustrated in the paper would be drawn mainly from students’ projects done as part of their AA Media Studies Course submission at the AA School of Architecture (AA) during the academic years from 2011/2012 to 2012/2013. The paper outlines the main approaches, which students have chosen to implement, both directly and indirectly, these new media and tools into their studio work at the AA. Section 1 briefly introduces a range of currently available open source computational design toolkits that are deemed useful for quick implementation of computer vision and augmented reality technologies. The related programming languages, softwares and hardwares would also be introduced and described accordingly. Sections 2 and 3 are accompanied with a visual catalogue of students’ projects to better illustrate the diversity in the understanding and implementation of computer vision and augmented reality technologies in architectural design. Section 4 serves to conclude the paper by first discussing briefly the feedback from students at the end of the course before clarifying the context of the research and thus its relation to recent work done by others using similar technologies.  
keywords Computer vision, Augmented reality, Generative design, Interaction design 
series CAADRIA
email
last changed 2022/06/07 07:51

_id caadria2013_087
id caadria2013_087
authors Lee, Jung Hoon and Atsuko Kaga
year 2013
title Visual Analysis of the Relation Between Concentrated Districts of Knowledge-Based Industries and Third Places in Osaka City
source Open Systems: Proceedings of the 18th International Conference on Computer-Aided Architectural Design Research in Asia (CAADRIA 2013) / Singapore 15-18 May 2013, pp. 581-589
doi https://doi.org/10.52842/conf.caadria.2013.581
wos WOS:000351496100057
summary Recently, as the changes in the economic structure, service industries have become an important factor of the urban regeneration.  Especially, Knowledge-based industry is garnering attention as an engine of urban economics. Urban present condition such as location of Knowledge-based industry visualization and analysis are main issues for people as well as policymakers, urban planner and designers. This paper presents analysis of the spatial characteristics of the distribution and spatial concentration of Knowledge-based Industry, specifically Business-support Services. Furthermore, this paper is intended to describe examination of the visual relation between spatial conditions and configuration by visualization using GIS and space syntax analysis. This paper shows that business support services are likely to concentrate in specific places. Results of this study show that each type of business support services is concentrated in different districts. Results show that creative design industries are located near the park, riverfront, and such third places with high integration and connectivity with the street by space syntax analysis. Results show that concentrated districts of creative design companies at inner block show relatively high local integration values and connectivity. This study elucidates how industrial concentration and spatial configuration can be ascertained visually.  
keywords Spatial analysis, Knowledge-based industry, Third place, GIS, Space syntax 
series CAADRIA
email
last changed 2022/06/07 07:51

_id cf2013_256
id cf2013_256
authors Lyu, Junchao; Bauke de Vries, and Chengyu Sun
year 2013
title Towards a Computational Spatial Knowledge Acquisition Model in Architectural Space
source Global Design and Local Materialization[Proceedings of the 15th International Conference on Computer Aided Architectural Design Futures / ISBN 978-3-642-38973-3] Shanghai, China, July 3-5, 2013, pp. 256-266.
summary Existing research which is related to spatial knowledge acquisition often shows a limited scope because of the complexity in the cognition process. Research in spatial representation such as space syntax presumes that vision drives movement. This assumption is only true under certain conditions and makes these models valid only in specific scenarios. Research in human spatial cognition field suggests that the spatial information perceived by the individual is not equal to the visual appearance of the space, a straightforward way to represent this cognition process quantitatively is lacking. Research in wayfinding usually assumes a certain degree of familiarity of the environment for the individual, which ignores the fact that the individual sequentially perceives information during wayfinding and the familiarity of the environment changes during the wayfinding process. In this paper, a conceptual spatial knowledge acquisition model for architectural space is presented based on the continuous spatial cognition framework. Three types of local architectural cues are concluded to relate common architectural elements to the continuous spatial cognition framework. With all relations in the proposed conceptual model quantitatively described, a computational model can be developed to avoid the aforementioned limitations in spatial representation models, human spatial cognition models and wayfinding models. In this way, our computational model can assist architects evaluate whether their designed space can be well perceived and understood by the users. It can help enhance the way-finding efficiency and boost the operational efficiency of many public buildings.
keywords local architectural cues, spatial knowledge, human cognition framework
series CAAD Futures
email
last changed 2014/03/24 07:08

_id caadria2013_113
id caadria2013_113
authors Muslimin, Rizal
year 2013
title Decoding Passura’ – Representing the Indigenous Visual Messages Underlying Traditional Icons with Descriptive Grammar
source Open Systems: Proceedings of the 18th International Conference on Computer-Aided Architectural Design Research in Asia (CAADRIA 2013) / Singapore 15-18 May 2013, pp. 781-790
doi https://doi.org/10.52842/conf.caadria.2013.781
wos WOS:000351496100081
summary For the Toraja people in South Sulawesi, Indonesia, the engraved ornament (Passura’) means more than a simple decorative element. More importantly, Passura’ also serves as a symbolic icon to convey spiritual messages. However, only few people actually understand the underlying meaning behind the ornament. Consequently, those without this knowledge can only appreciate the aesthetic dimension of Passura’. Our computational design research focuses on under-standing the visual–linguistic aspect of Passura’ using Descriptive Grammar method to investigate how meanings are embedded on the ornaments. The design rules and their description are synthesized into a shape-to-text grammar that can read the ornament as a text, and into a text-to-shape grammar that can write a text into an ornamental design. Preliminary results of this grammar demonstrate how Passura’ works as an active indigenous communication device, rather than simply being a passive decorative element.  
keywords Passura, Ornament, Shape grammar, Toraja 
series CAADRIA
email
last changed 2022/06/07 07:59

_id acadia20_574
id acadia20_574
authors Nguyen, John; Peters, Brady
year 2020
title Computational Fluid Dynamics in Building Design Practice
source ACADIA 2020: Distributed Proximities / Volume I: Technical Papers [Proceedings of the 40th Annual Conference of the Association of Computer Aided Design in Architecture (ACADIA) ISBN 978-0-578-95213-0]. Online and Global. 24-30 October 2020. edited by B. Slocum, V. Ago, S. Doyle, A. Marcus, M. Yablonina, and M. del Campo. 574-583.
doi https://doi.org/10.52842/conf.acadia.2020.1.574
summary This paper provides a state-of-the-art of computational fluid dynamics (CFD) in the building industry. Two methods were used to find this new knowledge: a series of interviews with leading architecture, engineering, and software professionals; and a series of tests in which CFD software was evaluated using comparable criteria. The paper reports findings in technology, workflows, projects, current unmet needs, and future directions. In buildings, airflow is fundamental for heating and cooling, as well as occupant comfort and productivity. Despite its importance, the design of airflow systems is outside the realm of much of architectural design practice; but with advances in digital tools, it is now possible for architects to integrate air flow into their building design workflows (Peters and Peters 2018). As Chen (2009) states, “In order to regulate the indoor air parameters, it is essential to have suitable tools to predict ventilation performance in buildings.” By enabling scientific data to be conveyed in a visual process that provides useful analytical information to designers (Hartog and Koutamanis 2000), computer performance simulations have opened up new territories for design “by introducing environments in which we can manipulate and observe” (Kaijima et al. 2013). Beyond comfort and productivity, in recent months it has emerged that air flow may also be a matter of life and death. With the current global pandemic of SARS-CoV-2, it is indoor environments where infections most often happen (Qian et al. 2020). To design architecture in a post-COVID-19 environment will require an in-depth understanding of how air flows through space.
series ACADIA
type paper
email
last changed 2023/10/22 12:06

_id cf2013_286
id cf2013_286
authors Pang, Lei; Xiaodong Song, and Chengyu Sun
year 2013
title Computer Aided Simulation for Compact Residential Regulatory Plan
source Global Design and Local Materialization[Proceedings of the 15th International Conference on Computer Aided Architectural Design Futures / ISBN 978-3-642-38973-3] Shanghai, China, July 3-5, 2013, pp. 286-294.
summary Residential land development requires compact and intelligent growth in order to conserve land, especially in countries such as China with a large population but little usable land for built environment. This should not be done at the expense of public green space. Living density is an important issue that cannot be avoided in the urbanization process. This research uses Spatial Form Compact as the goal of trying to support the residential regulatory plan. A prototype site has been chosen to optimize the layout. Suppose the type of residential building had been decided and FAR is given as a premise. This method allows the arrangement of residential buildings to be compact and leads to more available space for concentrated green area, for example parks or other facilities. The BL-based method of genetic algorithm and VB program is used for the optimization and calculation of the prototype. The arrangement of residential buildings which is done by computer in this period is only used to explore the relationship between FAR and reasonable building layout. In order to guide the real construction of the building, the site plan should be done further elaborately under the guidance of regulatory plan by the developer and urban planner.
keywords Compact, Residential area, FAR, Concentrated Green Space
series CAAD Futures
email
last changed 2014/03/24 07:08

_id caadria2013_140
id caadria2013_140
authors Park, Juhong and Takehiko Nagakura
year 2013
title A Thousand BIM – A Rapid Value-Simulation Approach to Developing a BIM Tool for Supporting Collaboration During Schematic Design
source Open Systems: Proceedings of the 18th International Conference on Computer-Aided Architectural Design Research in Asia (CAADRIA 2013) / Singapore 15-18 May 2013, pp. 23-32
doi https://doi.org/10.52842/conf.caadria.2013.023
wos WOS:000351496100003
summary A typical architectural design project proceeds as collaboration among professionals who have different expertise, values and priorities. The collaboration is needed to make designs both rich yet feasible, but the professionally different ways of thinking can also be a block on the way of design development. This paper takes the example of the relationship between developers and architects, who tend to have different evaluation criteria, methods, and processes. A BIM-based tool, A Thousand BIM, is introduced as a means to quickly generate possible building typologies on a given project site, with computation of expected total values expressed in simple financial terms. Its aim is to help a group of heterogeneous professionals to communicate in the same language, articulate criteria and priorities in multiple perspectives, and share rapidly simulated evaluations of schematic design variations. The implemented evaluation process considers construction cost per square foot, land value, and sustainability as well as other soft design values such as views and accessibility. It can take various market data as inputs to cost calculation, and the weight to each of the design values is dynamically adjustable. A professional can explicitly set them, and share the criteria, priorities, and results of value simulations with others in an enhanced collaborative process.  
keywords BIM, Pro-forma, Design collaboration, Value simulation 
series CAADRIA
email
last changed 2022/06/07 08:00

_id sigradi2013_31
id sigradi2013_31
authors Portillo, Juan Pablo
year 2013
title BIM enclosures, una aplicación para cálculos térmicos en cerramientos [BIM Enclosures, an Application for Thermal Calculations in Enclosures]
source SIGraDi 2013 [Proceedings of the 17th Conference of the Iberoamerican Society of Digital Graphics - ISBN: 978-956-7051-86-1] Chile - Valparaíso 20 - 22 November 2013, pp. 279 - 283
summary The BIM software (Building Information Modeling) enables a holistic model -a complete description of the model-building for a complete analysis and validation prior to build, as well as the plotting of final design in architecture and its subsequent maintenance. Users can extend virtually unlimited capabilities. For this reason we have chosen a BIM with programmability by the user to create a calculation module to validate, the heat transfer and possible condensation on both walls and ceilings. The Revit Architecture BIM was chosen using the API (application programming interface) in C#. In this paper, we analyze the experience gained and the results achieved. The objective is to create a calculation and graphing module thermal transmission and condensation.
series SIGRADI
email
last changed 2016/03/10 09:58

_id caadria2013_118
id caadria2013_118
authors Roupé, Mattias and Mathias Gustafsson
year 2013
title Judgment and Decision-Making Aspects on the Use of Virtual Reality in Volume Studies
source Open Systems: Proceedings of the 18th International Conference on Computer-Aided Architectural Design Research in Asia (CAADRIA 2013) / Singapore 15-18 May 2013, pp. 437-446
doi https://doi.org/10.52842/conf.caadria.2013.437
wos WOS:000351496100043
summary The most common reason for using Virtual Reality (VR) as a communication medium in urban planning and building design is to provide decision makers with access to a shared virtual space, which can facilitate communication and collaboration in order to make better decisions. However, there is a risk that judgmental biases arise within the virtual space. The displaying of the VR-models and itscontent could be one way of changing the settings for the visual access to the virtual space and could thus influence the outcome of the decision making process. For that reason it is important to have knowledge of how different settings in and around the VR-medium influence the experience of the shared visual space that the VR-medium strives to achieve. In this case the decision-making process, perceptions of space, and the cognition process of decoding of information in the visual space are important. This paper investigates how reference points influence judgments of a volume study of a building and furthermore what visual cues that are used for spatial reasoning about volumes. The results show that the initial visual information has a profound impact on the decision, even when this information lacks in validity.  
keywords Virtual reality, Spatial perception, Judgment, Volume study, Urban planning 
series CAADRIA
email
last changed 2022/06/07 07:56

For more results click below:

this is page 0show page 1show page 2show page 3show page 4show page 5... show page 28HOMELOGIN (you are user _anon_587838 from group guest) CUMINCAD Papers Powered by SciX Open Publishing Services 1.002