CumInCAD is a Cumulative Index about publications in Computer Aided Architectural Design
supported by the sibling associations ACADIA, CAADRIA, eCAADe, SIGraDi, ASCAAD and CAAD futures

PDF papers
References

Hits 1 to 20 of 379

_id acadia13_253
id acadia13_253
authors Krieg, Oliver David; Menges, Achim
year 2013
title HygroSkin: A climate-responsive prototype project based on the elastic and hygroscopic properties of wood
doi https://doi.org/10.52842/conf.acadia.2013.023
source ACADIA 13: Adaptive Architecture [Proceedings of the 33rd Annual Conference of the Association for Computer Aided Design in Architecture (ACADIA) ISBN 978-1-926724-22-5] Cambridge 24-26 October, 2013), pp. 23-260
summary The paper presents current research into architectural potentials of robotic fabrication in wood construction based on elastically bent timber sheets with robotically fabricated finger joints. Current developments in computational design and digital fabrication propose an integrative design approach contrary to classical, hierarchical architectural design processes. Architecture related fields, such as material science, engineering and fabrication have been seen as separate disciplines in a linear design process since the Industrialization era. However, current research in computational design reveals the potentials of their integration and interconnection for the development of material-oriented and performance-based architectural design.In the first part, the paper discusses the potentials of robotic fabrication based on its extended design space. The robot’s high degree of kinematic freedom opens up the possibility of developing complex and highly performative mono-material connections for wood plate structures. In the second part, the integration of material behavior is presented. Through the development of robotically fabricated, curved finger joints, that interlock elastically bent plywood sheets, a bending-active construction system is being developed (Figure 1,Figure 2). In the third part, the system’s architectural application and related constructional performance is discussed.
keywords Robotic Fabrication; Finger Joints; Material Computation; Wood Construction; Computational Design
series ACADIA
type Normal Paper
email
last changed 2022/06/07 07:51

_id acadia20_340
id acadia20_340
authors Soana, Valentina; Stedman, Harvey; Darekar, Durgesh; M. Pawar, Vijay; Stuart-Smith, Robert
year 2020
title ELAbot
doi https://doi.org/10.52842/conf.acadia.2020.1.340
source ACADIA 2020: Distributed Proximities / Volume I: Technical Papers [Proceedings of the 40th Annual Conference of the Association of Computer Aided Design in Architecture (ACADIA) ISBN 978-0-578-95213-0]. Online and Global. 24-30 October 2020. edited by B. Slocum, V. Ago, S. Doyle, A. Marcus, M. Yablonina, and M. del Campo. 340-349.
summary This paper presents the design, control system, and elastic behavior of ELAbot: a robotic bending active textile hybrid (BATH) structure that can self-form and transform. In BATH structures, equilibrium emerges from interaction between tensile (form active) and elastically bent (bending active) elements (Ahlquist and Menges 2013; Lienhard et al. 2012). The integration of a BATH structure with a robotic actuation system that controls global deformations enables the structure to self-deploy and achieve multiple three-dimensional states. Continuous elastic material actuation is embedded within an adaptive cyber-physical network, creating a novel robotic architectural system capable of behaving autonomously. State-of-the-art BATH research demonstrates their structural efficiency, aesthetic qualities, and potential for use in innovative architectural structures (Suzuki and Knippers 2018). Due to the lack of appropriate motor-control strategies that exert dynamic loading deformations safely over time, research in this field has focused predominantly on static structures. Given the complexity of controlling the material behavior of nonlinear kinetic elastic systems at an architectural scale, this research focuses on the development of a cyber-physical design framework where physical elastic behavior is integrated into a computational design process, allowing the control of large deformations. This enables the system to respond to conditions that could be difficult to predict in advance and to adapt to multiple circumstances. Within this framework, control values are computed through continuous negotiation between exteroceptive and interoceptive information, and user/designer interaction.
series ACADIA
type paper
email
last changed 2023/10/22 12:06

_id ecaade2013_082
id ecaade2013_082
authors Okuda, Shinya and Bhagra, Saurabh
year 2013
title Cloud Arch
doi https://doi.org/10.52842/conf.ecaade.2013.1.625
source Stouffs, Rudi and Sariyildiz, Sevil (eds.), Computation and Performance – Proceedings of the 31st eCAADe Conference – Volume 1, Faculty of Architecture, Delft University of Technology, Delft, The Netherlands, 18-20 September 2013, pp. 625-632
summary Expanded Polystyrene foam (EPS) is a chemically inert and 100% recyclable material that is lightweight and has a good compression strength per weight ratio; however, its current construction use is mostly limited to insulation or landfill. The key concept of this paper is to develop an EPS composite to create an ultra-lightweight long-span sustainable roofing structure by integrating the minimum necessary structural tension layer with a certified fire protection system. The authors present this concept in the following four steps, 1) EPS composite structural specimen test, 2) structural optimisation of the reversed displacement model, 3) discretisation with developable surfaces and 4) CNC hotwire rapid prototyping and assembly in scaled prototypes. The Cloud Arch is an economical, material-efficient, thermally insulated, quickly assembled ultra-lightweight construction that eliminates the need for formworks for long-span structures. It can be applied to many types of column-free spaces, such as in factories, gymnasiums, markets and cafeterias.
wos WOS:000340635300065
keywords Lightweight; prototyping; composite; digital fabrication; performance.
series eCAADe
email
last changed 2022/06/07 08:00

_id acadia13_293
id acadia13_293
authors Bessai, Tom
year 2013
title Bending-Active Bundled Structures: Preliminary Research and Taxonomy Towards an Ultra-Light Weight Architecture of Differentiated Components
doi https://doi.org/10.52842/conf.acadia.2013.293
source ACADIA 13: Adaptive Architecture [Proceedings of the 33rd Annual Conference of the Association for Computer Aided Design in Architecture (ACADIA) ISBN 978-1-926724-22-5] Cambridge 24-26 October, 2013), pp. 293-300
summary This paper documents preliminary research into a bending-active architecture that leverages the “bundling” of linear force-active elements in order to create spatial diversity and differentiation.The primary design components of the system are light-weight GFRP rods and tubes that perform well in elastic bending. Material testing and iterative physical model studies are documented, and provide a framework to guide the further development of emerging spring-based computation methods. Challenges to the system include the analysis and resolution of rod-to-rod bundled connections, as well as the development of predictable bifurcation and crossing unions. The paperidentifies key precedents to the work followed by a brief summary of the material selection and testing framework. A speculative taxonomy of bundled bending-active “types” is proposed and supported by examples and prototypes.
keywords Bundling, Bending-Active, Force-Active Architecture, Material Systems, Spring-based Modeling
series ACADIA
type Normal Paper
email
last changed 2022/06/07 07:52

_id ecaade2013_002
id ecaade2013_002
authors Hanzl, Ma_gorzata
year 2013
title Modelling of Public Spaces
doi https://doi.org/10.52842/conf.ecaade.2013.1.319
source Stouffs, Rudi and Sariyildiz, Sevil (eds.), Computation and Performance – Proceedings of the 31st eCAADe Conference – Volume 1, Faculty of Architecture, Delft University of Technology, Delft, The Netherlands, 18-20 September 2013, pp. 319-327
summary The relationship between the material settings and situational belonging to a more general notion of the culture of a given community remains the subject of inquiry of at least two scientific disciplines: anthropology and urban morphology studies. In this study an assessment of the various modelling platforms is performed with the objective of finding the most efficient method which allows the description of the semiotic features of urbanscapes. The ideal system should link the parametric definition of urban geometry with the high flexibility of data input and easy manipulation. In order to enable culture related analyses of urbanscapes, analyses should be performed which refers to the semiotics of morphological structures in the detailed scale of urban enclosure, which are streets or squares. Some elements of the proposed method of index key analyses are explained as one possible solution for the problems posed.
wos WOS:000340635300033
keywords Urban design; urban morphology; anthropology; parametric modelling; outdoor space.
series eCAADe
email
last changed 2022/06/07 07:49

_id ecaade2015_161
id ecaade2015_161
authors Papasarantou, Chrissa; Kalaouzis, Giorgos, Pentazou, Ioulia and Bourdakis, Vassilis
year 2015
title A Spatio-Temporal 3D Representation of a Historic Dataset
doi https://doi.org/10.52842/conf.ecaade.2015.1.701
source Martens, B, Wurzer, G, Grasl T, Lorenz, WE and Schaffranek, R (eds.), Real Time - Proceedings of the 33rd eCAADe Conference - Volume 1, Vienna University of Technology, Vienna, Austria, 16-18 September 2015, pp. 701-708
summary Previous research (Bourdakis et al, 2012; Papasarantou et al, 2013) dealt with the problem of creating information visualisation systems capable of combining historical data of MUCIV's database and developing strategies that embed the non-spatial data in spatial models. The database was primarily designed as an experimental flexible spatio-temporal configuration of dynamic visual structures generating a variety of narrations through interaction.The attempt of producing a legible configuration driven by a number of criteria, led to the proposition of two different arrangements, namely the linear and radial array. The aim of this paper is to present the next step on the visualization after redefining both the way that thematic axes and data are visualized and arranged/scattered. Alternate configurations are investigated, based also on theoretical analysis on the conceptualization and perception of information visualization systems (Card et al 1999, Ware, 2004).
wos WOS:000372317300076
series eCAADe
email
more https://mh-engage.ltcc.tuwien.ac.at/engage/ui/watch.html?id=74178dba-702a-11e5-aa5b-67bfe1e6502f
last changed 2022/06/07 08:00

_id acadia13_347
id acadia13_347
authors Sabin, Jenny E.
year 2013
title myThread Pavilion: Generative Fabrication in Knitting Processes
doi https://doi.org/10.52842/conf.acadia.2013.347
source ACADIA 13: Adaptive Architecture [Proceedings of the 33rd Annual Conference of the Association for Computer Aided Design in Architecture (ACADIA) ISBN 978-1-926724-22-5] Cambridge 24-26 October, 2013), pp. 347-354
summary Advancements in weaving, knitting and braiding technologies have brought to surface high-tech and high- performance composite fabrics. These products have historically infiltrated the aerospace, automobile, sports and marine industries, but architecture has not yet fully benefitted from these lightweight freeform surface structures. myThread, a commission from the Nike FlyKnit Collective, features knitted textile structures at the scale of a pavilion. The evolution of digital tools in architecture has prompted new techniques of fabrication alongside new understandings in the organization of material through its properties and potential for assemblage. No longer privileging column, beam and arch, our definition of architectural tectonics has broadened alongside advancements made in computational design. Internal geometries inherent to natural forms, whose complexity could not be computed with the human mind alone, may now be explored synthetically through mathematics and generative systems. Textiles offer architecture a robust design process whereby computational techniques, pattern manipulation, material production and fabrication are explored as an interconnected loop that may feed back upon itself in no particular linear fashion. The myThread Pavilion integrates emerging technologies in design through the materialization of dynamic data sets generated by the human body engaged in sport and movement activities in the city.
keywords next generation technology, textiles, responsive material, knitting, data visualization, generative design, bio-data
series ACADIA
type Normal Paper
email
last changed 2022/06/07 07:59

_id caadria2013_178
id caadria2013_178
authors Stavric, Milena and Albert Wiltsche
year 2013
title Investigations on Quadrilateral Patterns for Rigid Folding Structures – Folding Strategies - Rigid and Curved Folding
doi https://doi.org/10.52842/conf.caadria.2013.893
source Open Systems: Proceedings of the 18th International Conference on Computer-Aided Architectural Design Research in Asia (CAADRIA 2013) / Singapore 15-18 May 2013, pp. 893-902
summary A rigid spatial structure represents a three-dimensional structural system in which the size of the singular planar elements is very small related to the whole construction. In this paper we will do investigations of quadrilateral patterns and we will propose an analytical method for designing structural rigid folding with quadrilateral patterns following geometrical surfaces of different topology. Our method offers folding structures with four fold lines meeting in one node which allows a simpler solution of join connections and assembling of the whole spatial and structural system. As the physical characteristics of paper can lead to all kinds of wrong conclusions it is necessary to use CAD tools in addition to scale models, where the entire folding element is reconstructed and its geometric characteristics are controlled. This kind of control reflects on the scale model. Models are then adjusted, examined and built to reach certain conclusions that are once more tested in CAD software.  
wos WOS:000351496100092
keywords Rigid and curved folding, Quadrilateral folding pattern 
series CAADRIA
email
last changed 2022/06/07 07:56

_id caadria2013_057
id caadria2013_057
authors Turakhia, Dishita G.
year 2013
title Dynamic Tensegrity Systems – Investigating a Case in Reconfigurable Habitable Structures
doi https://doi.org/10.52842/conf.caadria.2013.097
source Open Systems: Proceedings of the 18th International Conference on Computer-Aided Architectural Design Research in Asia (CAADRIA 2013) / Singapore 15-18 May 2013, pp. 97-106
summary Irregular tensegrity structures, due to their non-linear behaviour, possess the potential ability to configure in multiple stable states. The kinematics and inherent properties of the compressive and tensile components govern the final static configuration of the system. The primary objective of the research is to study the non-linear behaviour of irregular tensegrity structures and formulate a computational generative, evaluative and algorithmic method to design a structurally dynamic tensegrity system, with inherent potential to adapt to the varying contexts and its respective demands, requirements and spatial needs.  
wos WOS:000351496100010
keywords ensegrity, Non-linear systems, Dynamic, Generative algorithm, Reconfigurable structures 
series CAADRIA
email
last changed 2022/06/07 07:58

_id acadia13_451
id acadia13_451
authors Turakhia, Dishita G.
year 2013
title Dynamic Tensegrity Systems: A case for reconfigurable structures in urban context
doi https://doi.org/10.52842/conf.acadia.2013.451
source ACADIA 13: Adaptive Architecture [Proceedings of the 33rd Annual Conference of the Association for Computer Aided Design in Architecture (ACADIA) ISBN 978-1-926724-22-5] Cambridge 24-26 October, 2013), pp. 451-452
summary The primary objective of the research is to study the non-linear behavior of irregular tensegrity structures and formulate a computational generative, evaluative and algorithmic method to design a structurally dynamic tensegrity system, with inherent potential to adapt to the varying contexts and its respective demands, requirements and spatial needs.
keywords Complex systems, tensegrity systems, dynamic structures, generative algorithms, membranes
series ACADIA
type Research Poster
email
last changed 2022/06/07 07:58

_id acadia23_v3_77
id acadia23_v3_77
authors Zahiri, Nima
year 2023
title Heigh-active Wood: Elasticity, Anisotropicity, and Hygroscopicity in Timber High-Rises
source ACADIA 2023: Habits of the Anthropocene: Scarcity and Abundance in a Post-Material Economy [Volume 3: Proceedings of the 43rd Annual Conference for the Association for Computer Aided Design in Architecture (ACADIA) ISBN 979-8-9891764-1-0]. Denver. 26-28 October 2023. edited by A. Crawford, N. Diniz, R. Beckett, J. Vanucchi, M. Swackhamer 24-32.
summary The term ‘height-active’ coined by Heino Engel refers to “structure systems, of which the main task is to collect loads from horizontal planes . . . and to vertically transmit them to the base . . . or high-rises accordingly.” (Engel 2013, 14) The focus of this paper is on the characteristics of height-active wood structures due to their vertical extension and susceptibility to horizontal loading. We shall argue that “more innovation can be expected from the advanced understanding of material characteristics, which can be integrated and taken advantage of in the design process, rather than homogenized, approximated or ignored.” (Correa, Krieg and Meyboom 2019, 74) Conventional construction, insofar, has employed linear and planar wood elements in a hierarchical manner. There is an interest to take advantage of wood’s flexibility to innovate free-form high-rise wood structures. Digitized material application of wood has a wide range of technical and functional adaptation. This field notes essay highlights the importance of three main material characteristics of wood – elasticity, anisotropicity, hygroscopicity – for structural design typology of evolving high-rise endeavors.
series ACADIA
type field note
email
last changed 2024/04/17 13:59

_id caadria2014_124
id caadria2014_124
authors Williams, Nicholas; Sascha Bohnenberger and John Cherrey
year 2014
title A System for Collaborative Design on Timber Gridshells
doi https://doi.org/10.52842/conf.caadria.2014.441
source Rethinking Comprehensive Design: Speculative Counterculture, Proceedings of the 19th International Conference on Computer-Aided Architectural Design Research in Asia (CAADRIA 2014) / Kyoto 14-16 May 2014, pp. 441–450
summary The bent timber laths of the Sound Bites gridshell create two types of performance space over an area of almost 100 m2. Such postformed gridshells are a wellestablished design solution for creating curved forms from linear elements. Extending principles developed since the 1970s, contemporary digital tools have been utilised to drive a renewed interest in them, primarily through so-called form-finding techniques which connect digital and material models through a simulation of shape under bending loads (Nettlebladt, 2013) and the definition of efficient structural geometry acting under compression loads only (Hernandez et. al., 2012). This paper describes the workflow conceived and implemented for the Sound Bites structure. A central challenge of the research was for such a workflow to allow for the principles of gridshell design to be engaged in parallel to other tight constraints and design drivers. As such it needed to facilitate close collaboration between architectural, engineering and fabrication experts. This workflow was tested in the design and realisation of the full-scale structure within a six-week period. The gridshell design was developed through the manipulation of the shape of two edge profiles and the shell form spanning between these. Architectural and fabrication constraints were met and the workflow allowed for a sufficient level of structural analysis to be fed back to inform the design.
keywords Digital Workflow; Collaborative Design; Digital Formfinding; Digital Fabrication
series CAADRIA
email
last changed 2022/06/07 07:57

_id ecaade2022_000
id ecaade2022_000
authors Pak, Burak, Wurzer, Gabriel and Stouffs, Rudi
year 2022
title eCAADe 2022 Co-creating the Future: Inclusion in and through Design - Volume 1
doi https://doi.org/10.52842/conf.ecaade.2022.1
source Pak, B, Wurzer, G and Stouffs, R (eds.), Co-creating the Future: Inclusion in and through Design - Proceedings of the 40th Conference on Education and Research in Computer Aided Architectural Design in Europe (eCAADe 2022) - Volume 1, Ghent, 13-16 September 2022, 672 p.
summary Spatial design is becoming an increasingly social, participatory and inclusive practice. In the last decade, ordinary people all around the world have started to claim a shaping power over the processes of urbanization; over the ways in which our cities are made and remade (Harvey, 2013). There has been a resurgence in the number of do-it-yourself cooperatives initiated by non-designer citizens, activists, artists and designers. In parallel to these developments, a plethora of social technologies, tools and platforms have been developed to include a variety of stakeholders in the architectural design, urban design, planning and decision-making processes. Crowdsourcing and crowdfunding applications started to be widely used to tap into the wisdom of the crowd. Novel developments in parametric design and digital fabrication created possibilities for user participation in the making of customized and highly diversified products. With the combination of artificial intelligence and the Internet of Things, smart buildings, autonomous devices, robots and software started to transform into agents and active participants. The attempts to harness collective human and artificial intelligence opened up new avenues for combining practice, research and education. On the other hand, there is a growing concern over the possible negative impact of the digital devices, tools, platforms and agents integrated in the making of our buildings and cities, public, private and collective spaces. Examples of those are the potential exclusion of vulnerable and disadvantaged citizens, transfer of citizen power to the corporations, privatization of personal life and data, as well as spatial exclusion through increased technological control and surveillance.
series eCAADe
email
last changed 2024/04/22 07:10

_id ecaade2022_001
id ecaade2022_001
authors Pak, Burak, Wurzer, Gabriel and Stouffs, Rudi
year 2022
title eCAADe 2022 Co-creating the Future: Inclusion in and through Design- Volume 2
doi https://doi.org/10.52842/conf.ecaade.2022.2
source Pak, B, Wurzer, G and Stouffs, R (eds.), Co-creating the Future: Inclusion in and through Design - Proceedings of the 40th Conference on Education and Research in Computer Aided Architectural Design in Europe (eCAADe 2022) - Volume 2, Ghent, 13-16 September 2022, 646 p.
summary Spatial design is becoming an increasingly social, participatory and inclusive practice. In the last decade, ordinary people all around the world have started to claim a shaping power over the processes of urbanization; over the ways in which our cities are made and remade (Harvey, 2013). There has been a resurgence in the number of do-it-yourself cooperatives initiated by non-designer citizens, activists, artists and designers. In parallel to these developments, a plethora of social technologies, tools and platforms have been developed to include a variety of stakeholders in the architectural design, urban design, planning and decision-making processes. Crowdsourcing and crowdfunding applications started to be widely used to tap into the wisdom of the crowd. Novel developments in parametric design and digital fabrication created possibilities for user participation in the making of customized and highly diversified products. With the combination of artificial intelligence and the Internet of Things, smart buildings, autonomous devices, robots and software started to transform into agents and active participants. The attempts to harness collective human and artificial intelligence opened up new avenues for combining practice, research and education. On the other hand, there is a growing concern over the possible negative impact of the digital devices, tools, platforms and agents integrated in the making of our buildings and cities, public, private and collective spaces. Examples of those are the potential exclusion of vulnerable and disadvantaged citizens, transfer of citizen power to the corporations, privatization of personal life and data, as well as spatial exclusion through increased technological control and surveillance.
keywords Proceedings, Front Matter
series eCAADe
email
last changed 2024/04/22 07:10

_id caadria2013_256
id caadria2013_256
authors De Oliveira Barata, Eduardo; Dirk Anderson and Dagmar Reinhardt
year 2013
title A Minimal Tension Canopy – Through Investigations of Self-Organised Systems
doi https://doi.org/10.52842/conf.caadria.2013.147
source Open Systems: Proceedings of the 18th International Conference on Computer-Aided Architectural Design Research in Asia (CAADRIA 2013) / Singapore 15-18 May 2013, pp. 147-156
summary The dynamics of a physics-based algorithm which acquires its complex organization through a number of localised interactions applied over a prescribed network can be described as a self-organised system. This in turn has the capacity to define explicit form and space based upon behavioural computational processes with an embedded structural logic. This paper discusses the way in which physics based algorithms can be used to inform the organisation of a compressional structure in a case study. Its structure is based on Hooke’s law of elasticity; which establishes a three dimensional catenary logic through a number of localised interactions applied over an entire network. This is applied to a project with specific constraints to site, boundary conditions and maximising solar gain whilst maintaining structural rigidity. The methodological approach describes the design to assembly process in which the project has been developed. This includes the applied generative design tools in order to establish the self-organised logic, the form finding process, the techniques of design documentation, the fabrication process and the logistics of construction and assembly.  
wos WOS:000351496100015
keywords Digital fabrication and construction, Generative, Parametric, Simulation 
series CAADRIA
email
last changed 2022/06/07 07:55

_id ijac201310105
id ijac201310105
authors Agkathidis, Asterios and Andre_ Brown
year 2013
title Tree-Structure Canopy:A Case Study in Design and Fabrication of Complex Steel Structures using Digital Tools
source International Journal of Architectural Computing vol. 11 - no. 1, 87-104
summary This paper describes and reflects on the design and manufacturing process of the Tree-Structure canopy for the WestendGate Tower in Frankfurt upon Main, completed early 2011.The project investigated fabrication and assembly principles of complex steel structures as well as the integration of contemporary computational design, engineering, optimization and simulation techniques in a collaborative design approach. This paper focuses on the notion of modular standardization as opposed to non standard customized components. It also engages with issues relating to digital production tools and their impact on construction cost, material performance and tolerances. In addition it examines the reconfiguration of liability during a planning and construction process, an aspect which can be strongly determined by fabrication companies rather than the architect or designer.This paper is written as a reflection on the complete building process when contemporary digital tools are used from design through to fabrication. It studies both the generation of the steel structure as well the ETFE cushion skin. It reports on a collaborative project, where the main author was responsible for the canopies design, parameterization, digitalization and fabrication, as well as for the dissemination of the outcomes and findings during the design and realization process.As such it represents an example of research through design in a contemporary and evolving field.The canopy received a design award by the Hellenic Architecture Association.
series journal
last changed 2019/05/24 09:55

_id acadia13_281
id acadia13_281
authors Ahlquist, Sean; Menges, Achim
year 2013
title Frameworks for Computational Design of Textile Micro-Architectures and Material Behavior in Forming Complex Force-Active Structures
doi https://doi.org/10.52842/conf.acadia.2013.281
source ACADIA 13: Adaptive Architecture [Proceedings of the 33rd Annual Conference of the Association for Computer Aided Design in Architecture (ACADIA) ISBN 978-1-926724-22-5] Cambridge 24-26 October, 2013), pp. 281-292
summary Material behavior can be defined as the confluence of associative rules, contextual pressures and constraints of materialization. In more general terms, it can be parameterized as topologies, forces and materiality. Forming behavior means resolving the intricate matrix of deterministic and indeterministic factors that comprise and interrelate each subset of these material- nherent conditions. This requires a concise design framework which accumulates the confluent behavior through successive and cyclical exchange of multiple design modes, rather than through a single design environment or set of prescribed procedures. This paper unfolds a sequencing of individual methods as part of a larger design framework, described through the development of a series of complex hybrid- structure material morphologies. The “hybrid” nature reflects the integration of multiple force-active structural concepts within a single continuous material system, devising both self-organized yet highly articulated spatial conditions. This leads primarily to the development of what is termed a “textile hybrid” system: an equilibrium state of tensile surfaces and bending-active meshes. The research described in this paper looks to expose the structure of the textile as an indeterministic design parameter, where its architecture can be manipulated as means for exploring and differentiating behavior. This is done through experimentation with weft-knitting technologies, in which the variability of individual knit logics is instrumentalized for simultaneously articulating and structuring form. Such relationships are shown through an installation constructed at the ggggallery in Copenhagen, Denmark.
keywords Material Behavior, Spring-based Simulation, CNC Knitting, Form- and Bending-Active, Textile Hybrid Structures.
series ACADIA
type Normal Paper
email
last changed 2022/06/07 07:54

_id sigradi2013_117
id sigradi2013_117
authors Alves Veloso, Pedro L.; Anja Pratschke
year 2013
title Uma Arqueologia de Diagramas Cibernéticos [An Archaeology of Cybernetic Diagrams]
source SIGraDi 2013 [Proceedings of the 17th Conference of the Iberoamerican Society of Digital Graphics - ISBN: 978-956-7051-86-1] Chile - Valparaíso 20 - 22 November 2013, pp. 353 - 356
summary This paper investigates the use of explicit structures of information in architectural design. Particularly, it approaches the use of diagrams related to cybernetics and information theory in experimental practices in the 1960’s and 1970’s. It analyses the diagram of cybernetic control proposed by the cybernetician Gordon Pask for the Fun Palace, the diagrams produced by the utopian architect Yona Friedman in the conceptual description of the Flatwriter program and Christopher Alexander’s diagrams and his theories of Synthesis of Form and Pattern Language. Finally it establishes a brief parallel between current domestication and use of dataflow programming with the cybernetic diagrams, highlighting differences in their complexity approach.
keywords Dataflow diagrams; Cybernetics; Complexity
series SIGRADI
email
last changed 2016/03/10 09:47

_id ecaade2013_249
id ecaade2013_249
authors Araya, Sergio; Zolotovsky, Ekaterina; Veliz, Felipe; Song, Juha; Reichert, Steffen; Boyce, Mary and Ortiz, Christine
year 2013
title Bioinformed Performative Composite Structures
doi https://doi.org/10.52842/conf.ecaade.2013.1.575
source Stouffs, Rudi and Sariyildiz, Sevil (eds.), Computation and Performance – Proceedings of the 31st eCAADe Conference – Volume 1, Faculty of Architecture, Delft University of Technology, Delft, The Netherlands, 18-20 September 2013, pp. 575-584
summary This ongoing investigation aims to learn from nature novel material organizations and structural systems in order to develop innovative architectural system. We developed a multidisciplinary approach, using scientific analysis and design research and prototyping. We focus on the study of a “living fossil” fish, whose armor system is so efficient it has remained almost unchanged for millions of years. We investigate its morphological characteristics, its structural properties, the assembly mechanisms and the underlying material properties in order to derive new principles to design new enhanced structural systems. We use micro computerized tomography and scanning electron microscopy to observe microstructures, parametric design to reconstruct the data into digital models and then several 3D printing technologies to prototype systems with high flexibility and adaptive capabilities, proposing new gradual material interfaces and transitions to embed performative capabilities and multifunctional potentials.
wos WOS:000340635300060
keywords Bioinformed; multi-material; composite; parametrics; performative design.
series eCAADe
type normal paper
email
last changed 2022/06/07 07:54

_id caadria2013_034
id caadria2013_034
authors Arenas, Ubaldo and José Manuel Falcón
year 2013
title ALOPS Constructive Systems – Towards the Design and Fabrication of Unsupervised Learning Construction Systems
doi https://doi.org/10.52842/conf.caadria.2013.905
source Open Systems: Proceedings of the 18th International Conference on Computer-Aided Architectural Design Research in Asia (CAADRIA 2013) / Singapore 15-18 May 2013, pp. 905-914
summary In this paper we explore the concept and design guidelines for an Autonomous Learning Oriented Proto System (ALOPS), a construction system designed to enhance its own performance through time. Our research has been focused on the fabrication of a prototype for a porous wall system which reacts to light intensities by closing or opening its apertures. Taking that aim, we used a combination of robotics, programing, and material behaviour to endow the system with the capacity to record reactions towards encountered sets of conditions during its active energy periods, allowing the system to use this knowledge database to evolve autonomously by feeding this information back into the computation process. This approach in construction systems opens up the architectural design processes to address the creation of digital memory structures rather than complex algorithms in order to operate specific functions. With this development, the architect could think of architectures constantly evolving by learning from their environments as well as of users forming symbiotic and behavioural bonds with the emergent spatial personalities, thus affecting the underpinning relationships between architecture, user and context.  
wos WOS:000351496100093
keywords erformance architecture, Unsupervised learning, Machine learning 
series CAADRIA
email
last changed 2022/06/07 07:54

For more results click below:

this is page 0show page 1show page 2show page 3show page 4show page 5... show page 18HOMELOGIN (you are user _anon_88128 from group guest) CUMINCAD Papers Powered by SciX Open Publishing Services 1.002