CumInCAD is a Cumulative Index about publications in Computer Aided Architectural Design
supported by the sibling associations ACADIA, CAADRIA, eCAADe, SIGraDi, ASCAAD and CAAD futures

PDF papers
References

Hits 1 to 20 of 598

_id caadria2013_220
id caadria2013_220
authors Chaszar, André and José Nuno Beirão
year 2013
title Feature Recognition and Clustering for Urban Modelling – Exploration and Analysis in GIS and CAD
doi https://doi.org/10.52842/conf.caadria.2013.601
source Open Systems: Proceedings of the 18th International Conference on Computer-Aided Architectural Design Research in Asia (CAADRIA 2013) / Singapore 15-18 May 2013, pp. 601-610
summary In urban planning exploration and analysis assist the generation, measurement, interpretation and management of the modelled urban environments. This frequently involves categorisation of model elements and identification of element types. Such designation of elements can be achieved through attribution (e.g. ‘tagging’ or ‘layering’) or direct selection by model users. However, for large, complex models the number and arrangement of elements makes these approaches impractical in terms of time/effort and accuracy. This is particularly true of models which include substantial numbers of elements representing existing urban fabric, rather than only newly generated elements (which might be automatically attributed during the generation process). We present methods for identification and categorisation of model elements in models of existing and proposed urban agglomerations. We also suggest how these methods can enable exploration of models, discovery of identities and relationships not otherwise obvious, and acquisition of insights to the models’ structure and contents which are not captured, and may even be obscured, by manual selection or automated pre-attribution.  
wos WOS:000351496100059
keywords City information modelling, Data mining, Feature recognition, Geometric-content-based-search, Urban typologies 
series CAADRIA
email
last changed 2022/06/07 07:55

_id sigradi2013_248
id sigradi2013_248
authors Soto, Carolina; Moa Carlsson
year 2013
title Object Interaction Query: A Context Awareness Tool for Evaluating BIM Components’ Interactions
source SIGraDi 2013 [Proceedings of the 17th Conference of the Iberoamerican Society of Digital Graphics - ISBN: 978-956-7051-86-1] Chile - Valparaíso 20 - 22 November 2013, pp. 269 - 273
summary During the creative process, designers constantly evaluate the relations between objects in space. BIM aids this process by providing a modeling platform where objects are embedded with information, which can be extracted on demand. The object Interaction Query (oIQ) proposes a novel way to query BIM models, not only for geometric properties and dimensions, but also about the relations among the components. By including the queried objects’ context and interrelations as part of the computation, the prototype tool is able to provide feedback on complex interactions and conflicts in the design environment. The oIQ approach and its implementation are developed as integral parts of the design process, allowing users to perform customized queries through a GUI in which users can apply their knowledge and design preferences to the model’s evaluation.
keywords BIM; Object interaction; Context awareness; Rule-based system
series SIGRADI
email
last changed 2016/03/10 10:00

_id caadria2013_178
id caadria2013_178
authors Stavric, Milena and Albert Wiltsche
year 2013
title Investigations on Quadrilateral Patterns for Rigid Folding Structures – Folding Strategies - Rigid and Curved Folding
doi https://doi.org/10.52842/conf.caadria.2013.893
source Open Systems: Proceedings of the 18th International Conference on Computer-Aided Architectural Design Research in Asia (CAADRIA 2013) / Singapore 15-18 May 2013, pp. 893-902
summary A rigid spatial structure represents a three-dimensional structural system in which the size of the singular planar elements is very small related to the whole construction. In this paper we will do investigations of quadrilateral patterns and we will propose an analytical method for designing structural rigid folding with quadrilateral patterns following geometrical surfaces of different topology. Our method offers folding structures with four fold lines meeting in one node which allows a simpler solution of join connections and assembling of the whole spatial and structural system. As the physical characteristics of paper can lead to all kinds of wrong conclusions it is necessary to use CAD tools in addition to scale models, where the entire folding element is reconstructed and its geometric characteristics are controlled. This kind of control reflects on the scale model. Models are then adjusted, examined and built to reach certain conclusions that are once more tested in CAD software.  
wos WOS:000351496100092
keywords Rigid and curved folding, Quadrilateral folding pattern 
series CAADRIA
email
last changed 2022/06/07 07:56

_id sigradi2013_281
id sigradi2013_281
authors Braida Rodrigues de Paula, Frederico; Lara Scanapieco Barreto; Felipe Arlindo Silva; Fernando Lima; Vinícius Morais
year 2013
title Maquetes Híbridas: Diálogos Entre as Técnicas Tradicionais e as Tecnologias Digitais no Processo Projetual [Hybrid Models: Dialogues Between Traditional Techniques and Digital Technologies in the Design Process]
source SIGraDi 2013 [Proceedings of the 17th Conference of the Iberoamerican Society of Digital Graphics - ISBN: 978-956-7051-86-1] Chile - Valparaíso 20 - 22 November 2013, pp. 49 - 53
summary This article is about hybrid models, as a kind of three-dimensional representation emerged from of the possibilities of combining traditional techniques with digital technologies. The purpose is to reflect on the possibilities of production and applications of these types of hybrid models, highlighting them as recurring elements of design practice after the rise of new technologies of information and communication, and prototyping and digital manufacturing. By adopting the model as an object of research, we propose to expand the field of reflection on the incorporation of several digital technologies in the design process, specifically aspects of three-dimensional and graphical representation.
keywords Hybrid models; Digital technologies; Architecture and Urbanism
series SIGRADI
email
last changed 2016/03/10 09:47

_id ecaade2013r_006
id ecaade2013r_006
authors Neto, Pedro L.; Vieira, Andrea P.; Moreira, Bruno; Ribeiro, Lígia
year 2013
title A blended-learning approach in CAAD. Enhancing an architectural design studio experience by using collaborative web applications.
source FUTURE TRADITIONS [1st eCAADe Regional International Workshop Proceedings / ISBN 978-989-8527-03-5], University of Porto, Faculty of Architecture (Portugal), 4-5 April 2013, pp. 83-94
summary This paper is the result of a research project started in 2007 in our architecture school which aimed to adopt a Blended-Learning approach in teaching CAAD to 3rd year architecture students, while integrating the knowledge produced by our R&D Unit on architectural representation and communication techniques and web applications. We present our main conclusions regarding this strategy’s results and the web applications involved to understand if they acted like catalysts for engaging students with their learning process and for promoting a better communication between them and their teachers. The article shows how this strategy created new forms of interaction making communication between teachers and students easier and giving the latter an active role in the learning process. We start with an introduction to CAAD’s pedagogical strategy; we then describe the strategy and model applied to several case studies and the materials and learning tools used. Finally, we’ll discuss the most significant results and draw the main conclusions. The results highlight how the learning process coming from the Blended-Learning strategy and the use of complementary web applications strengthens the student’s and teacher’s capacity to work in a close relationship while maintaining the student’s active role in the learning process.
keywords Blended-learning; education in architecture; communication and representation; collaborative teaching and learning; design studio environment
email
last changed 2013/10/07 19:08

_id caadria2013_129
id caadria2013_129
authors Sun, Lei; Tomohiro Fukuda, Toshiki Tokuhara and Nobuyoshi Yabuki
year 2013
title Difference Between a Physical Model and a Virtual Environment as Regards Perception of Scale
doi https://doi.org/10.52842/conf.caadria.2013.457
source Open Systems: Proceedings of the 18th International Conference on Computer-Aided Architectural Design Research in Asia (CAADRIA 2013) / Singapore 15-18 May 2013, pp. 457-466
summary This paper focuses on differences of spatial reasoning capacity observed by using a physical model and a Virtual Reality (VR) system, and specifically emphasizes perception of the scale of space. While respondents view eda physical model and a VR system, a questionnaire was used to objectively evaluate these and establish which was more accurate in conveying object size. As a result, it was acknowledged by the respondents that the physical model performed more accurately and quickly. Subject to further validation, we expect the physical model to offer great utility to develop new digital media in the future. 
wos WOS:000351496100045
keywords Spatial reasoning capacity, Scale perception, Physical model, Virtual reality, Questionnaire 
series CAADRIA
email
last changed 2022/06/07 07:56

_id sigradi2013_275
id sigradi2013_275
authors Valdés, Francisco; Andres Cavieres; Russell Gentry
year 2013
title A Process-Centric Approach for Teaching Digital Fabrication
source SIGraDi 2013 [Proceedings of the 17th Conference of the Iberoamerican Society of Digital Graphics - ISBN: 978-956-7051-86-1] Chile - Valparaíso 20 - 22 November 2013, pp. 400 - 404
summary New generation of fabrication machines, such as 3-D printers, do not use “real” materials nor processes generally used in building construction, and so further exacerbate the disconnect between laboratory-based prototyping and full-scale building construction techniques. This research critically reviews the results of a graduate fabrication course from a process-centric standpoint. Students in the course create specification for fabrication and assembly activities through a diagrammatic language that integrates several types of construction knowledge such as design, material properties, machine constraints, and assembly guidelines. This document presents the foundations of the methodology, and discussed the results based on two criteria: Process Modeling and CAD/CAM workflow.
keywords Process model; CNC, Fabrication, Parametric modeling, CAM
series SIGRADI
email
last changed 2016/03/10 10:02

_id cf2013_245
id cf2013_245
authors Wang, Shuo
year 2013
title Application of BIM and VR Technology in Complex Construction Project: A Case Study of Iceberg 3d BIM Structure Layout Design for an Ocean Park
source Global Design and Local Materialization[Proceedings of the 15th International Conference on Computer Aided Architectural Design Futures / ISBN 978-3-642-38973-3] Shanghai, China, July 3-5, 2013, pp. 245-255.
summary BIM and VR are playing more and more important roles in architecture and engineering design, implementation, management and many other domains. With iceberg 3d structure layout design of an ocean park as example, this paper explores the application of VR and BIM technologies in complex construction projects. In the paper, the laser scanning technology, point cloud processing, BIM model creation based on the Revit software and the specific applications of VR technology are described and discussed.
keywords BIM , VR, Structure Layout Design
series CAAD Futures
email
last changed 2014/03/24 07:08

_id ecaade2013_023
id ecaade2013_023
authors Biloria, Nimish and Chang, Jia-Rey
year 2013
title Hyper-Morphology
doi https://doi.org/10.52842/conf.ecaade.2013.1.529
source Stouffs, Rudi and Sariyildiz, Sevil (eds.), Computation and Performance – Proceedings of the 31st eCAADe Conference – Volume 1, Faculty of Architecture, Delft University of Technology, Delft, The Netherlands, 18-20 September 2013, pp. 529-537
summary Hyper-Morphology is an on-going research outlining a bottom-up evolutionary design process based on autonomous cellular building components. The research interfaces critical operational traits of the natural world (Evolutionary Development Biology, Embryology and Cellular Differentiation) with Evolutionary Computational techniques driven design methodologies. In the Hyper-Morphology research, genetic sequences are considered as sets of locally coded relational associations between multiple factors such as the amount of components, material based constraints, and geometric adaptation/degrees of freedom based adaptation abilities etc, which are embedded autonomously within each HyperCell component. Collective intelligence driven decision-making processes are intrinsic to the Hyper-Morphology logic for intelligently operating with autonomous componential systems (akin to swarm systems). This subsequently results in user and activity centric global morphology generation in real-time. Practically, the Hyper-Morphology research focuses on a 24/7 economy loop wherein real-time adaptive spatial usage interfaces with contemporary culture of flexible living within spatial constraints in a rapidly urbanizing world.
wos WOS:000340635300055
keywords Evo-devo; cellular differentiation; self-organization; evolutionary computation; adaptive architecture.
series eCAADe
email
last changed 2022/06/07 07:54

_id ijac201310103
id ijac201310103
authors Bollmann, Dietrich and Alvaro Bonfiglio
year 2013
title Design Constraint Systems - A Generative Approach to Architecture
source International Journal of Architectural Computing vol. 11 - no. 1, 37-63
summary Generative Architectural Design permits the automatic (or semiautomatic) generation of architectural objects for a wide range of applications, from archaeological research and reconstruction to digital sketching. In this paper the authors introduce design constraint systems (DCS), their approach to the generation of architectural design with the help of a simple example: The development of the necessary formalisms to generate a family of architectural designs, i.e. simple houses and pagodas. After explaining the formal system the authors introduce an approach for the generation of complex form based on the application of transformations and distortions.Architecture is bound by the constraints of physical reality: Gravitation and the properties of the used materials define the limits in which architectural design is possible. With the recent development of new materials and construction methods however, the ways in which form and physics go together get more complicated. As a result, the shapes of architecture gain more liberty, and more and more complex shapes and structures become possible.While these advances allow for new ways of architectural expression, they also make the design process much more challenging. For this reason new tools are necessary for making this complexity manageable for the architect and enable her to play and experiment with the new possibilities of complex shapes and structures. Design constraint systems can be used as tool for experimentation with complex form. Therefore, the authors dedicate the final part of this paper to a concise delineation of an approach for the generation of complex and irregular shapes and structures. While the examples used are simple, they give an idea of the generality of design constraint systems: By using a two-component approach to the generation of designs (the first component describes the abstract structure of the modelled objects while the second component interprets the structure and generates the actual geometric forms) and allowing the user to adjust both components freely, it can be adapted to all kind of different architectural styles, from historical to contemporary architecture.
series journal
last changed 2019/05/24 09:55

_id acadia13_061
id acadia13_061
authors Bruscia, Nicholas; Romano, Christopher
year 2013
title Material Parameters and Digitally Informed Fabrication of Textured Metals
doi https://doi.org/10.52842/conf.acadia.2013.061
source ACADIA 13: Adaptive Architecture [Proceedings of the 33rd Annual Conference of the Association for Computer Aided Design in Architecture (ACADIA) ISBN 978-1-926724-22-5] Cambridge 24-26 October, 2013), pp. 61-68
summary The research represented in this paper proposes to reinvestigate the relationship between structure and appearance through a performative analysis of textured stainless steel, as verified through full-scale prototyping. The work takes a scientific design approach while incorporating a computational workflow that is informed by the material’s physical parameters, and draws a connection between the scales of molecular composition to large-scale geometric systems.Furthermore, the work attempts to provide evidence for thin-gauge textured metals as a high performance and adaptive material, by identifying structural rigidity and particular specular quality as inherent characteristics born from the texturing process. In addition, through close collaboration with the sponsoring manufacturer of textured stainless steel, we are able to gain access to material expertise and large-scale fabrication equipment not readily available to designers, thereby forging a mutually beneficial relationship surrounding the research.
keywords Next Generation Technology, Architecture and Manufacturing, Material Research, Material Science, Digital Fabrication, Rigidized Metal, Parametric Modeling
series ACADIA
type Normal Paper
email
last changed 2022/06/07 07:54

_id ecaade2013_061
id ecaade2013_061
authors Ciftcioglu, Ozer and Bittermann, Michael S.
year 2013
title Fusion of Perceptions in Architectural Design
doi https://doi.org/10.52842/conf.ecaade.2013.2.335
source Stouffs, Rudi and Sariyildiz, Sevil (eds.), Computation and Performance – Proceedings of the 31st eCAADe Conference – Volume 2, Faculty of Architecture, Delft University of Technology, Delft, The Netherlands, 18-20 September 2013, pp. 335-344
summary A method for fusion of perceptions is presented. It is based on probabilistic treatment of perception, where perception quantifies the chance an unbiased observer sees an environmental object, and the associated probability can be interpreted as degree of awareness for the object. The approach uniquely accounts for the fact that final realization or remembrance of a scene in the brain may be absent or elusive, so that it is subject to probabilistic considerations. For objects that are to be perceived from multiple viewpoints, such as a sculpture in a museum, or a building in its urban context, the probabilistic approach uniquely defines the fusion of perceptions. This is accomplished by carrying out the probabilistic union of events. The computation is presented together with its geometric implications, which become rather intricate for multiple observers, whereas the computation is straight forward. The method is exemplified for two applications in architectural design at different scales, namely interior and urban design, indicating the generic nature as well as the large application potential of the method.
wos WOS:000340643600034
keywords Perception; vision modeling; architectural design; evolutionary search.
series eCAADe
email
last changed 2022/06/07 07:56

_id sigradi2013_261
id sigradi2013_261
authors Dezen-Kempter, Eloisa
year 2013
title Urbanidade 360º – Explorando Ferramentas Interativas [Urbanity 360 degrees - Exploring Interactive tools]
source SIGraDi 2013 [Proceedings of the 17th Conference of the Iberoamerican Society of Digital Graphics - ISBN: 978-956-7051-86-1] Chile - Valparaíso 20 - 22 November 2013, pp. 586 - 589
summary The emergence of new social codes and knowledge, including on new technologies of information and communication, has changed our gaze in the new and complex order of the city and the everyday experience of the people. In this article, we show how the user friendly software like Google Earth, Google Maps and the 3D modeling program SketchUP were used to explore urbanity in a current research with high schools students at University of Campinas (Unicamp). This research had as the main objective to integrate geometric aspects into simulation of urban development and environmental impacts.
keywords Urbanity; Digital model; Urban simulation; Urban typologies
series SIGRADI
email
last changed 2016/03/10 09:50

_id acadia23_v1_128
id acadia23_v1_128
authors Fayyad, Iman
year 2023
title Bending Cylinders: Geometries of the Anthropocene
source ACADIA 2023: Habits of the Anthropocene: Scarcity and Abundance in a Post-Material Economy [Volume 1: Projects Catalog of the 43rd Annual Conference of the Association of Computer Aided Design in Architecture (ACADIA) ISBN 979-8-9860805-8-1]. Denver. 26-28 October 2023. edited by A. Crawford, N. Diniz, R. Beckett, J. Vanucchi, M. Swackhamer 128-135.
summary Over the past several decades, the conception and construction of formal complexity has disregarded the realities of material waste, costs, and accessibility. By engaging the isometric relationship between flatness and three-dimensional form, the research shown here investigates how waste-conscious approaches to geometric innovation can create new architectural languages. Specifically, the work deploys a subset of curved-crease folding that uses planar reflections referred to as sectional mirror operations to create unique forms comprised of composite cylindrical and conical surfaces (Figure 1). Whereas known studies in curved-crease folding typically explore singular (one-off, figural) compositions (Davis et al. 2013), this process develops a module aggregation strategy to suggest large inhabitable structures as both figural and field-like conditions.
series ACADIA
type project
email
last changed 2024/04/17 13:58

_id ecaade2013_156
id ecaade2013_156
authors Gün, Onur Yüce
year 2013
title Performing Realism
doi https://doi.org/10.52842/conf.ecaade.2013.1.061
source Stouffs, Rudi and Sariyildiz, Sevil (eds.), Computation and Performance – Proceedings of the 31st eCAADe Conference – Volume 1, Faculty of Architecture, Delft University of Technology, Delft, The Netherlands, 18-20 September 2013, pp. 61-68
summary Realistic renderings contain a large amount of information about the spatial, geometric and material properties of prospective buildings that can directly affect design decisions, yet these images are most of the time used as after-the-fact representational visualizations. In this paper we propose a model to make the realistic images a very part of the design and decision making process. If we are to utilize realistic images during earlier decision making stages of the design processes, then we should develop experiential workflows in which we can create and interact with immersive realistic images real-time. We take several steps towards establishing an interactive rendering-animating-editing workflow that enables the designers to work with real-time rendered stereoscopic animations. In our system, we use realism to create an immersive exploration environment, as opposed to underutilizing it to represent a static moment.
wos WOS:000340635300005
keywords Visualization; stereoscopy; computation; interaction; immersion.
series eCAADe
email
last changed 2022/06/07 07:49

_id acadia13_311
id acadia13_311
authors Maxwell, Iain; Pigram, David; McGee, Wes
year 2013
title The Novel Stones of Venice: The Marching Cube Algorithm as a Strategy for Managing Mass-customisation
doi https://doi.org/10.52842/conf.acadia.2013.311
source ACADIA 13: Adaptive Architecture [Proceedings of the 33rd Annual Conference of the Association for Computer Aided Design in Architecture (ACADIA) ISBN 978-1-926724-22-5] Cambridge 24-26 October, 2013), pp. 311-318
summary The Marching Cube (MC) algorithm is a simple procedural routine for the surface representation of three- dimensional scalar fields. While much has been written of the algorithm’s efficiencies and adaptive nature within the domain of computer graphics and imaging, little has been explored within the context of architectural geometry and fabrication. This paper posits a novel implementation of the MC algorithm coupled with robotic fabrication (RF) techniques, to realise an open-ended design method that approaches mass-customisation as the unique geometric distortion of a finite set of topologically consistent families of tectonic elements.The disciplinary consequences of this and similar methods that intimately couple algorithmic design techniques with robotic fabrication are discussed. These include the re-affirmation or expansion of the role of the architect as master builder that is enabled by challenging Leon Battista Alberti’s 15th Century division between design concept and building.The method and its disciplinary potentials are illustrated through the description of an installation built by the authors for the Australian Pavilion at the Venice Biennale. Clouds of Venice serves as a case study for a new integrated mode of production, one that increases the quality and number of feedback relations between design, matter and making.
keywords tools and interfaces, mass-customisation, robotic fabrication, algorithmic architecture, marching cube, digital fabrication
series ACADIA
type Normal Paper
email
last changed 2022/06/07 07:58

_id ecaade2013_131
id ecaade2013_131
authors Nourian, Pirouz; Rezvani, Samaneh and Sariyildiz, Sevil
year 2013
title Designing with Space Syntax
doi https://doi.org/10.52842/conf.ecaade.2013.1.357
source Stouffs, Rudi and Sariyildiz, Sevil (eds.), Computation and Performance – Proceedings of the 31st eCAADe Conference – Volume 1, Faculty of Architecture, Delft University of Technology, Delft, The Netherlands, 18-20 September 2013, pp. 357-365
summary This paper introduces a design methodology and a toolkit developed as a parametric CAD program for configurative design of architectural plan layouts. Using this toolkit, designers can start plan layout process with sketching the way functional spaces need to connect to each other. A tool draws an interactive bubble diagram and a set of tools reveal feasible geometric interpretations of the proposed bubble diagram in terms of plan layout graphs. Offering real-time Space Syntax analyses at the same time, the tools provide feedback on the spatial performance, which is translatable into the likely social performance of the plan layout patterns.
wos WOS:000340635300037
keywords Architectural configuration; graph theory; space syntax; spatial performance; plan layout.
series eCAADe
email
last changed 2022/06/07 08:00

_id caadria2013_076
id caadria2013_076
authors Raspall, Felix; Matias Imbern and William Choi
year 2013
title Fisac Variations: An Integrated Design and Fabrication Strategy for Adaptable Building Systems
doi https://doi.org/10.52842/conf.caadria.2013.055
source Open Systems: Proceedings of the 18th International Conference on Computer-Aided Architectural Design Research in Asia (CAADRIA 2013) / Singapore 15-18 May 2013, pp. 55-64
summary The promise of robotic fabrication as an enabler for mass-customization in Architecture has been hindered by the intricate workflow required to go from parametric modelling to CNC fabrication. The lack of integration between highly-specialized proprietary software, normally required to operate the machines, and most of the design tools constitutes a major limitation. One way to tackle this constraint is by developing simple tools that directly link parametric modelling to robotic coding. Accordingly, “Fisac Variations” develops an uninterrupted digital workflow from form-generation to robotic fabrication. This innovative approach to Computer Aided Design and Manufacturing was tested by studying and reengineering a specific historic construction system -Miguel Fisac’s Bones System was used as a case study- and by enabling it to address problems of contemporary architectural agenda such as flexibility, variability and mass-customization. The proposed workflow threads form-finding, structural analysis, geometric definition, CNC code generation and digital fabrication within the same open-source computational environment. In this way, this innovative procedure aims to increase design freedom while ensuring fabrication feasibility. This paper describes background research, concept, form-finding, construction process, methodology, results and conclusions.  
wos WOS:000351496100006
keywords Parametric design, Digital fabrication and construction, Integrated design and fabrication, Mass-customization, Miguel fisac bones system 
series CAADRIA
email
last changed 2022/06/07 08:00

_id caadria2013_039
id caadria2013_039
authors Schrems. Maximilian J. and Toni Kotnik
year 2013
title Statically Motivated Form Finding Based on Extended  Graphical Statics (EGS)
doi https://doi.org/10.52842/conf.caadria.2013.843
source Open Systems: Proceedings of the 18th International Conference on Computer-Aided Architectural Design Research in Asia (CAADRIA 2013) / Singapore 15-18 May 2013, pp. 843-852
summary In the 19th century it was common to use graphical methods for study the relationship between form and force. The central element of all drawing methods for representing the inner flow of forces was the investigation of the dependence of equilibrium and force polygons, as well as their representation in two geometrically dependent diagrams with different units. This research is part of an on going project to extend the methods of ‘graphical statics’ of Carl Culmann (1866) to the third dimension in order to overcome some of the 2D-limitations of this approach. It is focused on the construction of resulting force within 3D and the utilization within discrete space frames (tetrahedrons) in equilibrium. The objective of the EGS is to focus on constructing in contrast to calculating. That means that the logic of the inner force flow leads to a process-oriented and visible approach of design, which gets computationally accessible. With the use of digital tools and increasing importance of performative methods of form-finding a renewed interest in these vector-based geometric methods of construction of force flow has occurred. This may be will give the possibility to get an alternative to the common form finding methods by relaxation processes and analysis by FEM.  
wos WOS:000351496100087
keywords Graphical statics, 3D equilibrium, Form finding method 
series CAADRIA
email
last changed 2022/06/07 07:57

_id ijac201310205
id ijac201310205
authors Sharif, Shani; T. Russell Gentry, Jeannette Yen, Joseph N. Goodman
year 2013
title Transformative Solar Panels: A Multidisciplinary Approach
source International Journal of Architectural Computing vol. 11 - no. 2, 227-246
summary This paper focuses on the applications of geometrically transformable and expandable structures with deployed "energy production" mode and retracted "wind shedding" mode to replace the fixed photovoltaic (PV) panels and racking systems currently used in buildings rooftop installations. The significance of this expandable geometric system relies on its embedded motion grammar, i.e. rotation and translation transformations, in the system. The research draws inspiration from reconfiguration of compound tree leaves in nature, and addresses issues of redesign and modeling challenges that led to digital fabrication of the prototype. Finally, the research studies the development of a multidisciplinary research from the distributed cognition point of view, and emphasizes on the role of an iterative creation, sharing and reflection method for the development of a common ground for a successful collaboration.
series journal
last changed 2019/05/24 09:55

For more results click below:

this is page 0show page 1show page 2show page 3show page 4show page 5... show page 29HOMELOGIN (you are user _anon_648233 from group guest) CUMINCAD Papers Powered by SciX Open Publishing Services 1.002