CumInCAD is a Cumulative Index about publications in Computer Aided Architectural Design
supported by the sibling associations ACADIA, CAADRIA, eCAADe, SIGraDi, ASCAAD and CAAD futures

PDF papers
References

Hits 1 to 20 of 604

_id caadria2014_044
id caadria2014_044
authors Huang, Alvin; Stephen Lewis and Jason Gillette
year 2014
title Pure Tension: Intuition, Engineering & Fabrication
source Rethinking Comprehensive Design: Speculative Counterculture, Proceedings of the 19th International Conference on Computer-Aided Architectural Design Research in Asia (CAADRIA 2014) / Kyoto 14-16 May 2014, pp. 171–180
doi https://doi.org/10.52842/conf.caadria.2014.171
summary The "PURE Tension" Pavilion is a lightweight, rapidly deployable, tensioned membrane structure and portable charging station commissioned by Volvo Car Italia to showcase the new Volvo V60 Hybrid Electric Diesel car. Officially launched in Milan, Italy in October 2013, this experimental structure was developed through a process of rigorous research and development that investigated methods of associative modelling, dynamic mesh relaxation, geometric rationalization, solar incidence analysis, membrane panelling, and material performance. It is an experimental structure that, similar to a concept car, is a working prototype that speculates on the potential future of personal mobility and alternative energy sources for transportation while also exploring digital design methodologies and innovative structural solutions. This paper will illustrate the design, development and fabrication processes involved in realizing this structure.
keywords Form-finding; dynamic-mesh relaxation; geometric rationalisation; patterning, digital fabrication
series CAADRIA
email
last changed 2022/06/07 07:50

_id sigradi2013_274
id sigradi2013_274
authors Velasco, Rodrigo; Julián Viasus; Fabián Tocancipá
year 2013
title Customizable Volumetric High Performance Brise-Soleil System Based on the Use of Planar Faces
source SIGraDi 2013 [Proceedings of the 17th Conference of the Iberoamerican Society of Digital Graphics - ISBN: 978-956-7051-86-1] Chile - Valparaíso 20 - 22 November 2013, pp. 328 - 332
summary This paper presents a proposal for a cellular brise-soleil system appropriate for tropical humid climates. The system controls thermal gains whilst allowing for specific lighting requirements, permitting, in many cases, interior thermal and light comfort conditions without the use of thermal machines or artificial lighting. The development of the system involved a definition of variable design parameters and areas of performance evaluation and optimization, plus construction detailing development represented by a first project to be completed in 2014. Even if the geometrical definitions, optimization processes and production machinery are relatively simple and not particularly new to anyone in the field, it is claimed that the use of such already widely available technologies at this basic level, when solving relevant problems, has still to be used in generalised ways by common designers, and with the example shown, this paper wishes to promote such prospect.
keywords Solar shadings; Environmental simulations; Parametric models; Performance in architecture
series SIGRADI
email
last changed 2016/03/10 10:02

_id ecaade2013_234
id ecaade2013_234
authors Turrin, Michela; Chatzikonstantinou, Ioannis; Tenpierik, Martin and Sariyildiz, Sevil
year 2013
title Engineering Performance Simulations in Architectural Design Conception
source Stouffs, Rudi and Sariyildiz, Sevil (eds.), Computation and Performance – Proceedings of the 31st eCAADe Conference – Volume 2, Faculty of Architecture, Delft University of Technology, Delft, The Netherlands, 18-20 September 2013, pp. 137-146
doi https://doi.org/10.52842/conf.ecaade.2013.2.137
wos WOS:000340643600013
summary The paper tackles the integration of engineering performance simulations in the conceptual phase of architectural design, with specific focus on parametric design processes. A general framework is exemplified, in which the use of performance simulations and the learning process of the designer are discussed in relation to the parameterization process. A specific case study is presented more in details regarding the design of an atrium for the reuse of an existing building in Shenyang-China. Performance simulations concerning the thermal comfort in the atrium are presented and discussed in relation to the general framework.
keywords Conceptual design; building simulation tools.
series eCAADe
email
last changed 2022/06/07 07:58

_id caadria2013_256
id caadria2013_256
authors De Oliveira Barata, Eduardo; Dirk Anderson and Dagmar Reinhardt
year 2013
title A Minimal Tension Canopy – Through Investigations of Self-Organised Systems
source Open Systems: Proceedings of the 18th International Conference on Computer-Aided Architectural Design Research in Asia (CAADRIA 2013) / Singapore 15-18 May 2013, pp. 147-156
doi https://doi.org/10.52842/conf.caadria.2013.147
wos WOS:000351496100015
summary The dynamics of a physics-based algorithm which acquires its complex organization through a number of localised interactions applied over a prescribed network can be described as a self-organised system. This in turn has the capacity to define explicit form and space based upon behavioural computational processes with an embedded structural logic. This paper discusses the way in which physics based algorithms can be used to inform the organisation of a compressional structure in a case study. Its structure is based on Hooke’s law of elasticity; which establishes a three dimensional catenary logic through a number of localised interactions applied over an entire network. This is applied to a project with specific constraints to site, boundary conditions and maximising solar gain whilst maintaining structural rigidity. The methodological approach describes the design to assembly process in which the project has been developed. This includes the applied generative design tools in order to establish the self-organised logic, the form finding process, the techniques of design documentation, the fabrication process and the logistics of construction and assembly.  
keywords Digital fabrication and construction, Generative, Parametric, Simulation 
series CAADRIA
email
last changed 2022/06/07 07:55

_id ecaade2013_032
id ecaade2013_032
authors Foged, Isak Worre
year 2013
title Architectural Thermal Forms
source Stouffs, Rudi and Sariyildiz, Sevil (eds.), Computation and Performance – Proceedings of the 31st eCAADe Conference – Volume 2, Faculty of Architecture, Delft University of Technology, Delft, The Netherlands, 18-20 September 2013, pp. 99-105
doi https://doi.org/10.52842/conf.ecaade.2013.2.099
wos WOS:000340643600009
summary The paper presents a developed method and algorithm to create environmental sustainable optimised forms based on the solar energy received in relation to receiving, containing and distributing energy. Different studies are created based upon this approach, to which forms are evaluated against conventional building geometries. The work shows a significant improvement on several aspects of environmental performance. Lastly the work presents an idea of maximum structures, rather than minimum structures as a path in future research work.
keywords Sustainable environmental architecture; performative generative algorithms; simulation; material distribution.
series eCAADe
email
last changed 2022/06/07 07:51

_id acadia13_093
id acadia13_093
authors Konis, Kyle
year 2013
title Wiring to the Sky
source ACADIA 13: Adaptive Architecture [Proceedings of the 33rd Annual Conference of the Association for Computer Aided Design in Architecture (ACADIA) ISBN 978-1-926724-22-5] Cambridge 24-26 October, 2013), pp. 93-100
doi https://doi.org/10.52842/conf.acadia.2013.093
summary As architectural design methodologies focus increasingly on the production of dynamic form, the means to actuate these forms, the input that fuels parametric processes, analytical form-generating techniques and responsive controls is of primary concern. In the virtual test beds where systems are developed, inputs are often ad-hoc, based on crude assumptions of the environment, or disconnected from the physical environment entirely.Inverting a technique originally developed to illuminate virtual objects with light captured from real (physical) environments, this project explores image-based lighting as a means of detailed environmental light sensing. The objective of the project is to demonstrate the application of High Dynamic Range (HDR) image data acquired continuously in the physical world as signal input to inform, actuate and evaluate responsive solar control and daylighting systems. As a proof of concept, a virtual hemispherical dome consisting of 145 apertures is controlled to respond in real time to continuous image-based measurements of sky luminance, seeking a defined set of daylighting and solar control objectives. The paper concludes by discussing the implications of incorporating real-world environmental data in the development of dynamic form.
keywords complex systems, image-based lighting, environmental adaptation
series ACADIA
type Normal Paper
email
last changed 2022/06/07 07:51

_id sigradi2013_337
id sigradi2013_337
authors Al-Haddad, Tristan; Keyan Rahimzadeh; Jill Fredrickson
year 2013
title Concrete Continuum: Concept, Calculus, & Construction Connected Through Parametric Representation
source SIGraDi 2013 [Proceedings of the 17th Conference of the Iberoamerican Society of Digital Graphics - ISBN: 978-956-7051-86-1] Chile - Valparaíso 20 - 22 November 2013, pp. 230 - 234
summary This paper outlines a custom-built suite of scripts that automate the processes of reinforced concrete design and is directly linked to the parametric design model of the architect. The workflow creates a design and engineering feedback loop for early phase schematic design. Using this system, the design geometry is generated and then deconstructed into a Finite Element model. The workflow executes a static analysis then calculates rebar size and placement, and finally generates fabrication drawings. This methodology allows architectural intent and engineering analysis to be collapsed into a single non-linear design process.
keywords Parametric design; Digital fabrication; Reinforced concrete; Production automation; Design feedback proces
series SIGRADI
email
last changed 2016/03/10 09:47

_id cf2013_176
id cf2013_176
authors Burry, Jane; Nicholas Williams, John Cherrey, and Brady Peters
year 2013
title Fabpod: Universal Digital Work_ow, Local Prototype Materialization
source Global Design and Local Materialization[Proceedings of the 15th International Conference on Computer Aided Architectural Design Futures / ISBN 978-3-642-38973-3] Shanghai, China, July 3-5, 2013, pp. 176-186.
summary This paper reports on a research project with the dual aims of 1) linking acoustic simulation to complex custom surface design and 2) realizing a full-scale prototype meeting room within an open knowledge work environment at a very high level of craft, engineering and material specification and differentiation. Here we report on the outcomes of the novel design and materialization processes.
keywords digital workflow, digital fabrication, acoustic performance, sound diffusion, material assemblies
series CAAD Futures
email
last changed 2014/03/24 07:08

_id acadia23_v2_340
id acadia23_v2_340
authors Huang, Lee-Su; Spaw, Gregory
year 2023
title Augmented Reality Assisted Robotic: Tube Bending
source ACADIA 2023: Habits of the Anthropocene: Scarcity and Abundance in a Post-Material Economy [Volume 2: Proceedings of the 43rd Annual Conference for the Association for Computer Aided Design in Architecture (ACADIA) ISBN 979-8-9860805-9-8]. Denver. 26-28 October 2023. edited by A. Crawford, N. Diniz, R. Beckett, J. Vanucchi, M. Swackhamer 340-349.
summary The intent of this research is to study potential improvements and optimizations in the context of robotic fabrication paired with Augmented Reality (AR), leveraging the technology in the fabrication of the individual part, as well as guiding the larger assembly process. AR applications within the Architecture, Engineering, and Construction (AEC) industry have seen constant research and development as designers, fabricators, and contractors seek methods to reduce errors, minimize waste, and optimize efficiency to lower costs (Chi, Kang, and Wang 2013). Recent advancements have made the technology very accessible and feasible for use in the field, as demonstrated by seminal projects such as the Steampunk Pavilion in Tallinn, Estonia (Jahn, Newnham, and Berg 2022). These types of projects typically improve manual craft processes. They often provide projective guidelines, and make possible complex geometries that would otherwise be painstakingly slow to complete and require decades of artisanal experience (Jahn et al. 2019). Building upon a previously developed robotic tube bending workflow, our research implements a custom AR interface to streamline the bending process for multiple, large, complex parts with many bends, providing a pre-visualization of the expected fabrication process for safety and part-verification purposes. We demonstrate the utility of this AR overlay in the part fabrication setting and in an inadvertent, human-robot, collaborative process when parts push the fabrication method past its limits. The AR technology is also used to facilitate the assembly process of a spatial installation exploring a unique aesthetic with subtle bends, loops, knots, bundles, and weaves utilizing a rigid tube material.
series ACADIA
type paper
email
last changed 2024/04/17 13:59

_id acadia13_253
id acadia13_253
authors Krieg, Oliver David; Menges, Achim
year 2013
title HygroSkin: A climate-responsive prototype project based on the elastic and hygroscopic properties of wood
source ACADIA 13: Adaptive Architecture [Proceedings of the 33rd Annual Conference of the Association for Computer Aided Design in Architecture (ACADIA) ISBN 978-1-926724-22-5] Cambridge 24-26 October, 2013), pp. 23-260
doi https://doi.org/10.52842/conf.acadia.2013.023
summary The paper presents current research into architectural potentials of robotic fabrication in wood construction based on elastically bent timber sheets with robotically fabricated finger joints. Current developments in computational design and digital fabrication propose an integrative design approach contrary to classical, hierarchical architectural design processes. Architecture related fields, such as material science, engineering and fabrication have been seen as separate disciplines in a linear design process since the Industrialization era. However, current research in computational design reveals the potentials of their integration and interconnection for the development of material-oriented and performance-based architectural design.In the first part, the paper discusses the potentials of robotic fabrication based on its extended design space. The robot’s high degree of kinematic freedom opens up the possibility of developing complex and highly performative mono-material connections for wood plate structures. In the second part, the integration of material behavior is presented. Through the development of robotically fabricated, curved finger joints, that interlock elastically bent plywood sheets, a bending-active construction system is being developed (Figure 1,Figure 2). In the third part, the system’s architectural application and related constructional performance is discussed.
keywords Robotic Fabrication; Finger Joints; Material Computation; Wood Construction; Computational Design
series ACADIA
type Normal Paper
email
last changed 2022/06/07 07:51

_id cf2013_295
id cf2013_295
authors Markova, Stanimira; Christoph Langenhan, Peter Russell, and Frank Petzold
year 2013
title Building Elements Re-usability Optimization - Design Decision Support Using a Case-Base of Building Information Models and Semantic Fingerprints
source Global Design and Local Materialization[Proceedings of the 15th International Conference on Computer Aided Architectural Design Futures / ISBN 978-3-642-38973-3] Shanghai, China, July 3-5, 2013, pp. 295-305.
summary The complexity of the requirements on buildings is continuously increasing and thus, often confronting designers with interdisciplinary problems, reaching far beyond the traditional challenges and methods of architecture and engineering. Moreover, designers are often required to take decisions, when most of the information and knowledge is still missing or to be generated. In the context of sustainable building design, the re-usability of building elements and the optimisation for exchangeability is crucial for the achievement of two of the main goals: efficient use of material resources and waste reduction. The scope of this work in progress is describing requirements for case-based decision support in order to optimise building element re-usability, create an analysis of explicit re-usability indicators (e.g. “connection liberation”, “modularity” or “life span collision”) and to identify retrieval strategies. A proposal to support decision making processes by retrieving existing design solutions graph representations as well as the use of building information models are also described.
keywords case-based reasoning, sustainable design, early design stage support, building information modelling
series CAAD Futures
email
last changed 2014/03/24 07:08

_id caadria2013_258
id caadria2013_258
authors Reinhardt, Dagmar; William Martens and Luis Miranda
year 2013
title Sonic Domes – Solving Acoustic Performance of Curved Surfaces by Interfacing Parametric Design, Structural Engineering and Acoustic Analysis
source Open Systems: Proceedings of the 18th International Conference on Computer-Aided Architectural Design Research in Asia (CAADRIA 2013) / Singapore 15-18 May 2013, pp. 529-538
doi https://doi.org/10.52842/conf.caadria.2013.529
wos WOS:000351496100052
summary This paper addresses the acoustic performance of complex curved surface geometries that are commonly known to pose problems of sound concentration, thus affecting speech intelligibility and audience experience in spaces of temporal arts performance. It reviews an open system of design research in which parametric design process, structural analysis and acoustic analysis are deployed to improve the sound of ellipsoidal structures in relation to sound source and audience positions, by adapting the height, dimension and centre point of a dome structure, consequently improving the acoustic behaviour of the performance space. The paper discusses an iterative design, analysis and optimization processes, in which a number of generative form variations were developed in Grasshopper, and reworked in McNeel Rhino, tested in engineering software (Strand7), and evaluated in acoustic simulation (ODEON). This allowed an interdisciplinary team to develop, test and evolve a design proposal that shows one solution for avoiding sound concentration and consequently improving acoustic performance in complex intersecting and curved geometries of a multifunctional building.  
keywords Parametric design, Sound concentration, Curved surfaces, Structural engineering, Acoustic simulation  
series CAADRIA
email
last changed 2022/06/07 08:00

_id acadia23_v3_71
id acadia23_v3_71
authors Vassigh, Shahin; Bogosian, Biayna
year 2023
title Envisioning an Open Knowledge Network (OKN) for AEC Roboticists
source ACADIA 2023: Habits of the Anthropocene: Scarcity and Abundance in a Post-Material Economy [Volume 3: Proceedings of the 43rd Annual Conference for the Association for Computer Aided Design in Architecture (ACADIA) ISBN 979-8-9891764-1-0]. Denver. 26-28 October 2023. edited by A. Crawford, N. Diniz, R. Beckett, J. Vanucchi, M. Swackhamer 24-32.
summary The construction industry faces numerous challenges related to productivity, sustainability, and meeting global demands (Hatoum and Nassereddine 2020; Carra et al. 2018; Barbosa, Woetzel, and Mischke 2017; Bock 2015; Linner 2013). In response, the automation of design and construction has emerged as a promising solution. In the past three decades, researchers and innovators in the Architecture, Engineering, and Construction (AEC) fields have made significant strides in automating various aspects of building construction, utilizing computational design and robotic fabrication processes (Dubor et al. 2019). However, synthesizing innovation in automation encounters several obstacles. First, there is a lack of an established venue for information sharing, making it difficult to build upon the knowledge of peers. First, the absence of a well-established platform for information sharing hinders the ability to effectively capitalize on the knowledge of peers. Consequently, much of the research remains isolated, impeding the rapid dissemination of knowledge within the field (Mahbub 2015). Second, the absence of a standardized and unified process for automating design and construction leads to the individual development of standards, workflows, and terminologies. This lack of standardization presents a significant obstacle to research and learning within the field. Lastly, insufficient training materials hinder the acquisition of skills necessary to effectively utilize automation. Traditional in-person robotics training is resource-intensive, expensive, and designed for specific platforms (Peterson et al. 2021; Thomas 2013).
series ACADIA
type field note
email
last changed 2024/04/17 13:59

_id cf2013_327
id cf2013_327
authors Worre Foged, Isak
year 2013
title Architectural Thermal Forms II: Brick Envelope
source Global Design and Local Materialization[Proceedings of the 15th International Conference on Computer Aided Architectural Design Futures / ISBN 978-3-642-38973-3] Shanghai, China, July 3-5, 2013, pp. 327-337.
summary The paper presents an architectural concept and design method that investigates the use of dynamic factors in evolutionary form finding processes. The architectural construct, phenotype, is based on a brick assembly and how this can be organized based upon material properties and environmental aspects selected from the factors used in the Fanger equations to determine perceived comfort. The work finds that the developed method can be applied as performance oriented driver, while at the same time allowing diversity and variation in the architectural design space.
keywords Architectural Design Method, Genetic Algorithm, Environmental Architecture, Architectural Performance
series CAAD Futures
email
last changed 2014/03/24 07:08

_id ecaade2013_137
id ecaade2013_137
authors Camporeale, Patricia
year 2013
title Genetic Algorithms Applied to Urban Growth Optimization
source Stouffs, Rudi and Sariyildiz, Sevil (eds.), Computation and Performance – Proceedings of the 31st eCAADe Conference – Volume 2, Faculty of Architecture, Delft University of Technology, Delft, The Netherlands, 18-20 September 2013, pp. 227-236
doi https://doi.org/10.52842/conf.ecaade.2013.2.227
wos WOS:000340643600022
summary This work is a research on the application of genetic algorithms (GA) to urban growth taking into account the optimization of solar envelope and sunlight in open spaces.It was considered a typical block of a Spanish grid, which is the most common subdivision of the urban land in towns situated in Argentina. Two models are compared, one in which the growth has no more limitations than building codes. The other one, in which the growth incorporates the solar radiation as a desirable parameter.This way of parameterizing configures a bottom-up method of urban growth. No top-down decisions intervenes in the growth process.This tool proves to be useful at early stages of urban planning when decisions—which will influence along the development of the city for a long time—are taken.
keywords Genetic algorithms; solar envelope.
series eCAADe
email
last changed 2022/06/07 07:54

_id sigradi2013_393
id sigradi2013_393
authors Cavieres, Andres; Joseph Goodman
year 2013
title The Role of Functional Knowledge in Multidisciplinary Design: The Case of Solar Energy Integration in Buildings
source SIGraDi 2013 [Proceedings of the 17th Conference of the Iberoamerican Society of Digital Graphics - ISBN: 978-956-7051-86-1] Chile - Valparaíso 20 - 22 November 2013, pp. 333 - 337
summary The paper presents a model-based methodology to support multidisciplinary collaboration for the application of photovoltaic systems to buildings. It focuses on the representation of domain specific knowledge necessary for the design of novel PV racking and mounting structures, based on principles of multi-functionality and functional integration. The proposed representation is based on a language for modeling functional requirements in terms of causal behaviors. These behavioral models provide common ground not only for multidisciplinary design, but also for the elaboration of performance metrics and verification procedures for evaluation of design alternatives. The paper concludes with a discussion on the potential of Model-based approach to support innovation in Design.
keywords Knowledge representation; Functional requirement; Model-based systems Integration; Multidisciplinary design; Solar energy
series SIGRADI
email
last changed 2016/03/10 09:48

_id ecaade2013_298
id ecaade2013_298
authors Gadelhak, Mahmoud
year 2013
title Integrating Computational and Building Performance Simulation Techniques for Optimized Facade Designs
source Stouffs, Rudi and Sariyildiz, Sevil (eds.), Computation and Performance – Proceedings of the 31st eCAADe Conference – Volume 2, Faculty of Architecture, Delft University of Technology, Delft, The Netherlands, 18-20 September 2013, pp. 261-269
doi https://doi.org/10.52842/conf.ecaade.2013.2.261
wos WOS:000340643600026
summary This paper investigates the integration of Building Performance Simulation (BPS) and optimization tools to provide high performance solutions. An office room in Cairo, Egypt was chosen as a base testing case, where a Genetic Algorithm (GA) was used for optimizing the annual daylighting performance of two parametrically modeled daylighting systems. In the first case, a combination of a redirecting system (light shelf) and shading system (solar screen) was studied. While in the second, a free-form “gills surface” was also optimized to provide acceptable daylighting performance. Results highlight the promising future of using computational techniques along with simulation tools, and provide a methodology for integrating optimization and performance simulation techniques at early design stages.
keywords High performance facade; daylighting simulation; optimization; form finding; genetic algorithm.
series eCAADe
email
last changed 2022/06/07 07:50

_id acadia13_243
id acadia13_243
authors Khoo, Chin Koi; Salim, Flora
year 2013
title Responsive Materiality for Morphing Architectural Skins
source ACADIA 13: Adaptive Architecture [Proceedings of the 33rd Annual Conference of the Association for Computer Aided Design in Architecture (ACADIA) ISBN 978-1-926724-22-5] Cambridge 24-26 October, 2013), pp. 243-252
doi https://doi.org/10.52842/conf.acadia.2013.243
summary This paper presents the design of a novel material system with sensing, form-changing and luminous capacities for responsive and kinetic architecture. This aim is explored and evaluated through an experimental design investigation in the form of an architectural skin. Through experimentation with alternative materials and a rigorous process of designing the responsive material systems,a new architectural skin, namely Blanket, emerged from this research. The newly developed responsive material system is an amalgamation of silicone rubbers and glowing pigments, molded and fabricated in a prescribed way—embedded with shape memory alloys on a tensegrity skeletal structure to achieve the desired morphing properties and absorb solar energy to glow in the dark.Thus, the design investigation explores the potential of the use of form-changing materials with capacitance sensing, energy absorbing and illumination capabilities for a morphing architectural skin that is capable of responding to proximity and lighting stimuli. This lightweight, flexible and elastic architectural morphing skin is designed to minimize the use of discrete mechanical components. It moves towards an integrated “synthetic” morphing architecture that can sense and respond to environmental and occupancy conditions.
keywords next generation technology; responsive material system; morphing architectural skin; kinetic structure; physical computing in architectural design; sensing and luminous material
series ACADIA
type Normal Paper
email
last changed 2022/06/07 07:52

_id ijac201310202
id ijac201310202
authors Leidi, Michele; Arno Schlüter
year 2013
title Exploring Urban Space: Volumetric Site Analysis for Conceptual Design in the Urban Context
source International Journal of Architectural Computing vol. 11 - no. 2, 157-182
summary This paper proposes a set of new analytic and visualization methods for conceptual design in the urban context. The methodology is based on the discretization of the urban site into a volumetric grid of points. For each of these points, different physical properties such as solar radiation, airflow, and visibility are computed. Subsequently interactive visualization techniques allow the observation of the site at a volumetric, directional and dynamic level, making visible information that is typically invisible. Several case-studies demonstrate how this allows to generate suggestions, for example, for the definition of the form of a building or for the rationalization of its surfaces. This approach aims at developing a conceptual design process that allows the fusion of active technologies, passive methods, and expressive aspects, in cohesive concepts able to embrace and exploit the diversities of an urban site.
series journal
last changed 2019/05/24 09:55

_id ecaade2013_272
id ecaade2013_272
authors Ozel, Filiz
year 2013
title SolarPierce: A Solar Path Based Generative System
source Stouffs, Rudi and Sariyildiz, Sevil (eds.), Computation and Performance – Proceedings of the 31st eCAADe Conference – Volume 1, Faculty of Architecture, Delft University of Technology, Delft, The Netherlands, 18-20 September 2013, pp. 127-134
doi https://doi.org/10.52842/conf.ecaade.2013.1.127
wos WOS:000340635300012
summary In hot and arid climates, limiting solar heat gain while also providing daylight into a structure is a major concern in building design. Building skin that gradually changes in porosity can help limit solar heat gain. Since solar heat gain is primarily a problem during summer, the path the sun follows during summer must be taken into account in determining opening sizes. In this paper, the researcher reports on a study where a generative system called SolarPierce was developed using AutoLISP, the scripting language of AutoCAD, to generate solid geometry for a building skin based on the sun’s path in a given geographical area. The system automatically punches different size openings in a given shell structure where openings facing the sun are the smallest and those fully facing away from the sun are the largest. Opening sizes gradually change from a given minimum to a given maximum depending on how much they face the sun.
keywords Solar; generative system; building skin; dome; shell structure.
series eCAADe
email
last changed 2022/06/07 08:00

For more results click below:

this is page 0show page 1show page 2show page 3show page 4show page 5... show page 30HOMELOGIN (you are user _anon_832037 from group guest) CUMINCAD Papers Powered by SciX Open Publishing Services 1.002