CumInCAD is a Cumulative Index about publications in Computer Aided Architectural Design
supported by the sibling associations ACADIA, CAADRIA, eCAADe, SIGraDi, ASCAAD and CAAD futures

PDF papers
References

Hits 1 to 20 of 611

_id acadia13_121
id acadia13_121
authors Beites, Steven
year 2013
title Morphological Behavior of Shape Memory Polymers Toward a Deployable, Adaptive Architecture
doi https://doi.org/10.52842/conf.acadia.2013.121
source ACADIA 13: Adaptive Architecture [Proceedings of the 33rd Annual Conference of the Association for Computer Aided Design in Architecture (ACADIA) ISBN 978-1-926724-22-5] Cambridge 24-26 October, 2013), pp. 121-128
summary Shape-memory polymers (SMPs) are an emerging class of “smart materials” that have dual-shape capability. They are able to undergo significant deformation when exposed to an external stimulus such as heat or light. SMPs have been widely investigated within the biomedicine and aerospace industries; however, their potential has yet to be explored within an architectural framework. The research presented in this paper begins an investigation into the morphological behavior ofSMPs toward a deployable, adaptive architecture. The structure’s ease of assembly, compact storage, transportability and configurable properties offer promising applications in emergency and disaster relief shelters, lightweight recreational structures and a variety of other applications in the temporary construction and aerospace industry. This paper explores the use of SMPs through the development of a dynamic actuator that links a series of interconnected panels creating overall form to a self-standing structure. The shape-shifting behavior of the SMP allows the dynamic actuator to become flexible when storage and transportability are required. Alternatively, when exposed to the appropriate temperature range, the actuator is capable of returning to its memorized state for on-site deployment. Through a series ofprototypes, this paper will provide a fundamental understanding of the SMP’s thermo-mechanicalproperties toward deployable, adaptive architecture.
keywords next-generation technology, smart materials, shape-memory polymers, material analysis, smart assemblies, dynamic actuator, soft architecture
series ACADIA
type Normal Paper
email
last changed 2022/06/07 07:54

_id sigradi2013_212
id sigradi2013_212
authors Angulo, Antonieta; Guillermo Vásquez de Velasco
year 2013
title Immersive Simulation of Architectural Spatial Experiences
source SIGraDi 2013 [Proceedings of the 17th Conference of the Iberoamerican Society of Digital Graphics - ISBN: 978-956-7051-86-1] Chile - Valparaíso 20 - 22 November 2013, pp. 495 - 499
summary The paper describes our research efforts seeking to assess the potential use of immersive simulation through virtual reality (VR) environments as a tool for aiding the design of architectural spatial experiences. By making use of a fully implemented HMD-based VR Environment in our school at Ball State University we conducted a controlled experiment with novice design students. After the evaluation of results of the experiment we have found evidence of the positive impact of the use of the system in design education. We will further investigate on the best practices to incorporate its pervasive use based on high-impact simplified methods.
keywords Spatial experience; Immersive simulation; Head mounted display; Virtual reality; Design education
series SIGRADI
email
last changed 2016/03/10 09:47

_id sigradi2013_271
id sigradi2013_271
authors Lobos, Danny; Gerth Wandersleben; Lorena Silva Castillo
year 2013
title Mapeo de Interoperabilidad entre BIM y software de Simulación Energética para Chile [Mapping the Interoperability between BIM and Energy Simulation Software for Chile]
source SIGraDi 2013 [Proceedings of the 17th Conference of the Iberoamerican Society of Digital Graphics - ISBN: 978-956-7051-86-1] Chile - Valparaíso 20 - 22 November 2013, pp. 378 - 382
summary The Research focuses on possible links between (Building Information Modeling), the Building Energy Performance Requirements and BPS software (Building Performance Simulation). It is expected to establish critical paths within the interoperability processes between BIM and BPS to support architects and energy consultants to choose the most appropriated workflow for the analyzed buildings to fulfill the performance requirements given by the Chilean laws. Several study cases in interoperability and the state-of-the-art are presented and discussed. Finally a novel map of relation between these three areas is presented.
keywords Building information modeling; Building performance simulation; Building performance standards; Architectural design, Interoperability
series SIGRADI
email
last changed 2016/03/10 09:55

_id sigradi2014_292
id sigradi2014_292
authors Nardelli, Eduardo Sampaio; Lais Guerle Tonso
year 2014
title BIM – Barreiras institucionais para a sua implantação no Brasil [BIM - Institutional barriers to its implementation in Brazil]
source SiGraDi 2014 [Proceedings of the 18th Conference of the Iberoamerican Society of Digital Graphics - ISBN: 978-9974-99-655-7] Uruguay - Montevideo 12 - 14 November 2014, pp. 408-411
summary This paper presents the current state of art of BIM implementation in Brazil and evaluates its maturity level using the framework of Succar (2013), following analyzes institutional barriers that hinder the advancement of this process in Brazilian construction chain and points out about future possibilities to increase it.
keywords BIM; Maturity of BIM; BIM in Brazil; Brazilian productivity in construction chain; Barriers to BIM in Brazil
series SIGRADI
email
last changed 2016/03/10 09:56

_id caadria2013_033
id caadria2013_033
authors Nguyen, Danny D. and M. Hank Haeusler
year 2013
title Assimilating Interactive Technology into Architectural Design – A Quest for developing an ‘Architectural Drawing’ for Urban Interaction Design as a Communication Platform Through Combining Physical Sensing Devices with Simulation Software
doi https://doi.org/10.52842/conf.caadria.2013.365
source Open Systems: Proceedings of the 18th International Conference on Computer-Aided Architectural Design Research in Asia (CAADRIA 2013) / Singapore 15-18 May 2013, pp. 365-373
summary Assimilating Interactive Technology into Architectural Design – A Quest for developing an ‘Architectural Drawing’ for Urban Interaction Design as a Communication Platform Through Combining Physical Sensing Devices with Simulation Software The research presented in this paper investigates the need for an equivalent of architectural drawings for urban interaction design in an architectural scale in order to communicate interaction design intentions to design participants and clients through using state of the art computer, gaming and sensor technologies. The paper discusses two projects (a) Blur Building, as a large scale interaction design project executed through an experienced team and (b) presents as student design project coordinated by the researchers as a reference project. Both projects in this paper are discussed and evaluated from an Urban Interaction Design point of view. This   paper   emphasizes   the   significance   for   establishing ‘drawing’ equivalents for urban interaction design, discussing representation of ideas in architectural design; followed by outlining existing methods of interactive design representation, such as storyboards to then introduce current advancements in gaming environments. The following paper introduces a framework for future research projects that will design, deploy and evaluate of prototypes as a communication platform combining physical sensing devices in combination with gaming engines to enable a digital / physical hybrid. This would allow designers and clients to test, evaluate and improve urban interactions in a design phase prior to completing the project. 
wos WOS:000351496100036
keywords Spatial design, Human-computing interfacing, Interactive architecture, Smart environments, Sensor technology 
series CAADRIA
email
last changed 2022/06/07 07:58

_id acadia20_574
id acadia20_574
authors Nguyen, John; Peters, Brady
year 2020
title Computational Fluid Dynamics in Building Design Practice
doi https://doi.org/10.52842/conf.acadia.2020.1.574
source ACADIA 2020: Distributed Proximities / Volume I: Technical Papers [Proceedings of the 40th Annual Conference of the Association of Computer Aided Design in Architecture (ACADIA) ISBN 978-0-578-95213-0]. Online and Global. 24-30 October 2020. edited by B. Slocum, V. Ago, S. Doyle, A. Marcus, M. Yablonina, and M. del Campo. 574-583.
summary This paper provides a state-of-the-art of computational fluid dynamics (CFD) in the building industry. Two methods were used to find this new knowledge: a series of interviews with leading architecture, engineering, and software professionals; and a series of tests in which CFD software was evaluated using comparable criteria. The paper reports findings in technology, workflows, projects, current unmet needs, and future directions. In buildings, airflow is fundamental for heating and cooling, as well as occupant comfort and productivity. Despite its importance, the design of airflow systems is outside the realm of much of architectural design practice; but with advances in digital tools, it is now possible for architects to integrate air flow into their building design workflows (Peters and Peters 2018). As Chen (2009) states, “In order to regulate the indoor air parameters, it is essential to have suitable tools to predict ventilation performance in buildings.” By enabling scientific data to be conveyed in a visual process that provides useful analytical information to designers (Hartog and Koutamanis 2000), computer performance simulations have opened up new territories for design “by introducing environments in which we can manipulate and observe” (Kaijima et al. 2013). Beyond comfort and productivity, in recent months it has emerged that air flow may also be a matter of life and death. With the current global pandemic of SARS-CoV-2, it is indoor environments where infections most often happen (Qian et al. 2020). To design architecture in a post-COVID-19 environment will require an in-depth understanding of how air flows through space.
series ACADIA
type paper
email
last changed 2023/10/22 12:06

_id ascaad2022_099
id ascaad2022_099
authors Sencan, Inanc
year 2022
title Progeny: A Grasshopper Plug-in that Augments Cellular Automata Algorithms for 3D Form Explorations
source Hybrid Spaces of the Metaverse - Architecture in the Age of the Metaverse: Opportunities and Potentials [10th ASCAAD Conference Proceedings] Debbieh (Lebanon) [Virtual Conference] 12-13 October 2022, pp. 377-391
summary Cellular automata (CA) is a well-known computation method introduced by John von Neumann and Stanislaw Ulam in the 1940s. Since then, it has been studied in various fields such as computer science, biology, physics, chemistry, and art. The Classic CA algorithm is a calculation of a grid of cells' binary states based on neighboring cells and a set of rules. With the variation of these parameters, the CA algorithm has evolved into alternative versions such as 3D CA, Multiple neighborhood CA, Multiple rules CA, and Stochastic CA (Url-1). As a rule-based generative algorithm, CA has been used as a bottom-up design approach in the architectural design process in the search for form (Frazer,1995; Dinçer et al., 2014), in simulating the displacement of individuals in space, and in revealing complex relations at the urban scale (Güzelci, 2013). There are implementations of CA tools in 3D design software for designers as additional scripts or plug-ins. However, these often have limited ability to create customized CA algorithms by the designer. This study aims to create a customizable framework for 3D CA algorithms to be used in 3D form explorations by designers. Grasshopper3D, which is a visual scripting environment in Rhinoceros 3D, is used to implement the framework. The main difference between this work and the current Grasshopper3D plug-ins for CA simulation is the customizability and the real-time control of the framework. The parameters that allow the CA algorithm to be customized are; the initial state of the 3D grid, neighborhood conditions, cell states and rules. CA algorithms are created for each customizable parameter using the framework. Those algorithms are evaluated based on the ability to generate form. A voxel-based approach is used to generate geometry from the points created by the 3D cellular automata. In future, forms generated using this framework can be used as a form generating tool for digital environments.
series ASCAAD
email
last changed 2024/02/16 13:38

_id acadia20_340
id acadia20_340
authors Soana, Valentina; Stedman, Harvey; Darekar, Durgesh; M. Pawar, Vijay; Stuart-Smith, Robert
year 2020
title ELAbot
doi https://doi.org/10.52842/conf.acadia.2020.1.340
source ACADIA 2020: Distributed Proximities / Volume I: Technical Papers [Proceedings of the 40th Annual Conference of the Association of Computer Aided Design in Architecture (ACADIA) ISBN 978-0-578-95213-0]. Online and Global. 24-30 October 2020. edited by B. Slocum, V. Ago, S. Doyle, A. Marcus, M. Yablonina, and M. del Campo. 340-349.
summary This paper presents the design, control system, and elastic behavior of ELAbot: a robotic bending active textile hybrid (BATH) structure that can self-form and transform. In BATH structures, equilibrium emerges from interaction between tensile (form active) and elastically bent (bending active) elements (Ahlquist and Menges 2013; Lienhard et al. 2012). The integration of a BATH structure with a robotic actuation system that controls global deformations enables the structure to self-deploy and achieve multiple three-dimensional states. Continuous elastic material actuation is embedded within an adaptive cyber-physical network, creating a novel robotic architectural system capable of behaving autonomously. State-of-the-art BATH research demonstrates their structural efficiency, aesthetic qualities, and potential for use in innovative architectural structures (Suzuki and Knippers 2018). Due to the lack of appropriate motor-control strategies that exert dynamic loading deformations safely over time, research in this field has focused predominantly on static structures. Given the complexity of controlling the material behavior of nonlinear kinetic elastic systems at an architectural scale, this research focuses on the development of a cyber-physical design framework where physical elastic behavior is integrated into a computational design process, allowing the control of large deformations. This enables the system to respond to conditions that could be difficult to predict in advance and to adapt to multiple circumstances. Within this framework, control values are computed through continuous negotiation between exteroceptive and interoceptive information, and user/designer interaction.
series ACADIA
type paper
email
last changed 2023/10/22 12:06

_id ecaade2013_262
id ecaade2013_262
authors Rolando, Andrea and D’Uva, Domenico
year 2013
title Hyperdomes
doi https://doi.org/10.52842/conf.ecaade.2013.2.315
source Stouffs, Rudi and Sariyildiz, Sevil (eds.), Computation and Performance – Proceedings of the 31st eCAADe Conference – Volume 2, Faculty of Architecture, Delft University of Technology, Delft, The Netherlands, 18-20 September 2013, pp. 315-324
summary The development of new shapes in architecture has deeply influenced the current perception of the built environment. The analysis of the processes behind this evolution is, therefore, of great interest. At least two well known factors, influencing this development, may be pointed out: the great improvement of digital tools and the tendency toward building distinctiveness.In particular, the innovation of digital tools such as parametric modeling is resulting in an overall diffusion of complex shapes, and the phenomenon is also evident in a clear expressionistic search for architectural singularity, that some might consider as a negative effect of globalization trends.Though, if we can consider as a positive result the fact that parameterization allows a deeper control over design factors in terms of reference to cultural, historical and physical context, at the same time such control possibilities are sometimes so stark to be even auto-referential, stepping over site-specific parameterization, to create unusual shapes just for the sake of complexity.The ever-growing diffusion of generative design processes is in fact going to transform niche procedures, frequently limited to temporary decontextualized structures, into an architectural complexification as an end in itself.The hypothesis of this paper is to demonstrate that site-specific parametrization can be considered as a tool able to translate intentions into shape; it is necessary, for this aim, the widening of the meaning of the word singularity.
wos WOS:000340643600032
keywords Urban environment; distinctiveness; non-standard roofing structures.
series eCAADe
email
last changed 2022/06/07 07:56

_id ecaade2013_171
id ecaade2013_171
authors Yazici, Sevil
year 2013
title Performance Based Pavilion Design
doi https://doi.org/10.52842/conf.ecaade.2013.2.127
source Stouffs, Rudi and Sariyildiz, Sevil (eds.), Computation and Performance – Proceedings of the 31st eCAADe Conference – Volume 2, Faculty of Architecture, Delft University of Technology, Delft, The Netherlands, 18-20 September 2013, pp. 127-135
summary This paper investigates the design process of a performance based pavilion from concept towards construction phases, by challenging conventional form and fabrication techniques. The proposed project is considered as a temporary structure, located in Antalya, Turkey. A free-form structure and a parametrically defined cladding are designed to serve as an installation unit, a shading element and urban furniture. The pavilion geometry, performance assessments and proposed fabrication schemes are clearly described in the paper. The method integrates form, performance, material and fabrication constraints and exposes how environmental and structural performances, including Solar Access Analysis and Static Structural Analysis, may inform the design project.
wos WOS:000340643600012
keywords Parametric design; performance; architectural geometry; material; fabrication.
series eCAADe
email
last changed 2022/06/07 07:57

_id caadria2014_042
id caadria2014_042
authors Alam, Jack and Jeremy J. Ham
year 2014
title Towards a BIM-Based Energy Rating System
doi https://doi.org/10.52842/conf.caadria.2014.285
source Rethinking Comprehensive Design: Speculative Counterculture, Proceedings of the 19th International Conference on Computer-Aided Architectural Design Research in Asia (CAADRIA 2014) / Kyoto 14-16 May 2014, pp. 285–294
summary Governments in Australia are faced with policy implementation that mandates higher energy efficient housing (Foran, Lenzen & Dey 2005). To this effect, the National Construction Code (NCC) 2013 stipulates the minimum energy performance for residential buildings as 114MJ/m2 per annum or 6 stars on an energy rating scale. Compliance with this minimum is mandatory but there are several methods through which residential buildings can be rated to comply with the deemed to satisfy provisions outlined in the NCC. FirstRate5 is by far the most commonly used simulation software used in Victoria, Australia. Meanwhile, Building Information Modelling (BIM), using software such as ArchiCAD has gained a foothold in the industry. The energy simulation software within ArchiCAD, EcoDesigner, enables the reporting on the energy performance based on BIM elements that contain thermal information. This research is founded on a comparative study between FirstRate5 and EcoDesigner. Three building types were analysed and compared. The comparison finds significant differences between simulations, being, measured areas, thermal loads and potentially serious shortcomings within FirstRate5, that are discussed along with the future potential of a fully BIM-integrated model for energy rating certification in Victoria.
keywords Building Information Modelling, energy rating, FirstRate 5, ArchiCAD EcoDesigner, Building Energy Model
series CAADRIA
email
last changed 2022/06/07 07:54

_id sigradi2013_259
id sigradi2013_259
authors Barbosa Curi, Camila; Neander Furtado Silva
year 2013
title Habitação na Sociedade de Informação: Configurador de Design para o Mercado Imobiliário Brasileiro [Housing in the Information Society: Design Configurator for the Brazilian Real Estate Market]
source SIGraDi 2013 [Proceedings of the 17th Conference of the Iberoamerican Society of Digital Graphics - ISBN: 978-956-7051-86-1] Chile - Valparaíso 20 - 22 November 2013, pp. 76 - 80
summary In this paper, we present preliminary specifications for a computer design tool for the application of mass customization in middle class apartment design in Brazil. Believing that in the digital era, network communication and digital design tools combined may create a design environment that considers consumer needs and preferences, we present a simple drafting of a computer tool that makes use of those concepts. And therefore we believe to contribute for the future construction of a design system that redefines problem scenarios, rather than providing individual solutions, repositioning architects and clients in the design process.
series SIGRADI
email
last changed 2016/03/10 09:47

_id caadria2013_083
id caadria2013_083
authors Coorey, Benjamin P. and Julie R. Jupp
year 2013
title A Schema for Capturing and Comparing Parametric Spatial Data
doi https://doi.org/10.52842/conf.caadria.2013.509
source Open Systems: Proceedings of the 18th International Conference on Computer-Aided Architectural Design Research in Asia (CAADRIA 2013) / Singapore 15-18 May 2013, pp. 509-518
summary In this paper, the authors consider the problem of architectural spatial performance indicators for assessing computer generated design, where identification and analysis of meaningful and relevant spatial qualities is the target of assessment. The paper presents a parametric spatial analysis schema and spatial database structure for the restricted, but still significant, domain of residential housing. A process for the capture and comparison of different types of architectural spatial data is described where analysis focuses on a series of 2D metric and topological spatial measures. The process is then demonstrated in our discussion of a descriptive scenario. 
wos WOS:000351496100050
keywords Parametric design, Precedent, Spatial analysis 
series CAADRIA
email
last changed 2022/06/07 07:56

_id cf2013_118
id cf2013_118
authors Dritsas, Stylianos and Mark Goulthorpe
year 2013
title An Automated Robotic Manufacturing Process: For the Thermoplastic Panel Building Technology
source Global Design and Local Materialization[Proceedings of the 15th International Conference on Computer Aided Architectural Design Futures / ISBN 978-3-642-38973-3] Shanghai, China, July 3-5, 2013, pp. 118-129.
summary This paper presents the design-computation digital fabrication research for a thermoplastic panel technology for housing applications; a high-performance, low-cost building product based on parametric design methodology, glass fiber reinforced composite materials, and numerically controlled robotic fabrication processes. We present a highly integrated schematic design to production workflow, and discuss the potential and challenges of robotic prototyping and fabrication.
keywords Digital Fabrication, Architectural Robotics, Computer Aided Manufacturing, Building Composites, Thermoplastic Manufacturing
series CAAD Futures
email
last changed 2014/03/24 07:08

_id ecaade2013_024
id ecaade2013_024
authors Jabi, Wassim; Grochal, Barbara and Richardson, Adam
year 2013
title The Potential of Evolutionary Methods in Architectural Design
doi https://doi.org/10.52842/conf.ecaade.2013.2.217
source Stouffs, Rudi and Sariyildiz, Sevil (eds.), Computation and Performance – Proceedings of the 31st eCAADe Conference – Volume 2, Faculty of Architecture, Delft University of Technology, Delft, The Netherlands, 18-20 September 2013, pp. 217-226
summary In this paper we examine the potential of combining 2D shape packing algorithms and evolutionary methods in the design process. We investigate the ways such algorithms can be used in architectural design and how they may influence it. In the first part of this paper we introduce the theoretical framework of packing algorithms and genetic algorithms as well as the traditional design process and the nature of design problems. In the second part of the paper we introduce a software prototype that tests these algorithms in two contexts: the preliminary design of a shading façade pattern and the design of commercial housing layouts. The aim for both experiments was to generate optimal configurations based on user-defined criteria without resorting to exhaustive search. Several lessons were learned that point to the potential of evolutionary methods in architecture as well as the limitations of such methods. We conclude the paper with recommendations for further developing this research project.
wos WOS:000340643600021
keywords Evolutionary design; genetic algorithm; packing algorithm; scripting.
series eCAADe
email
last changed 2022/06/07 07:52

_id acadia13_079
id acadia13_079
authors Jason Gerber, David; Eve Lin, Shih-Hsin; Amber Ma, Xinyue
year 2013
title Designing-In Performance: A Case Study of Applying Evolutionary Energy-Performance Feedback for Design (EEPFD)
doi https://doi.org/10.52842/conf.acadia.2013.079
source ACADIA 13: Adaptive Architecture [Proceedings of the 33rd Annual Conference of the Association for Computer Aided Design in Architecture (ACADIA) ISBN 978-1-926724-22-5] Cambridge 24-26 October, 2013), pp. 79-86
summary This paper explores the application of a novel Multi-disciplinary Design Optimization (MDO) framework to the early stage design process, through a case study where the designer serves as the primary user and driver. MDO methods have drawn attention from the building design industry as a potential means of overcoming obstacles between design and building performance feedback to support design decision-making. However, precedents exploring MDOs in application to the building design have previously been limited to driving use by engineers or research teams,thereby leaving the incorporation of MDO into a design process by designers largely unexplored. In order to investigate whether MDO can enable the ability to design in a performance environment during the conceptual design stage, a MDO design framework entitled Evolutionary Energy-Performance Feedback for Design (EEPFD) was developed. This paper explores the designer as the primary user by conducting a case study where the application of EEPFD to a single family residential housing unit is incorporated. Through this case study EEPFD demonstrates an ability to assist the designer in identifying higher performing design options while meeting the designer’s aesthetic preferences. In addition the benefits, limitations, concerns and lessons learned in the application of EEPFD are also discussed.
keywords conceptual energy-performance feedback; design decision support; parametric design; multi-disciplinary design optimization; genetic algorithm
series ACADIA
type Normal Paper
email
last changed 2022/06/07 07:52

_id acadia13_395
id acadia13_395
authors Kim, David; Pela, Christopher
year 2013
title Aqua Lung
doi https://doi.org/10.52842/conf.acadia.2013.395
source ACADIA 13: Adaptive Architecture [Proceedings of the 33rd Annual Conference of the Association for Computer Aided Design in Architecture (ACADIA) ISBN 978-1-926724-22-5] Cambridge 24-26 October, 2013), pp. 395-396
summary Aqua Lung is a project motivated by New York City’s growing need for housing and the potential threat of a catastrophic storm surge. Stringing from Lower Manhattan’s Battery Park to the Red Hook Container Terminal in Brooklyn, this mile long residential flood gate aligns itself with the existing Brooklyn-Battery Tunnel below.
keywords complex systems, Lower Manhattan, Hurricane Sandy, housing, ETFE, Brooklyn, Governor’s Island
series ACADIA
type Design Poster
email
last changed 2022/06/07 07:52

_id caadria2013_056
id caadria2013_056
authors Lim, Jason; Fabio Gramazio and Matthias Kohler
year 2013
title A Software Environment for Designing Through Robotic Fabrication – Developing a Graphical Programming Toolkit for the Digital Design and Scaled Robotic Fabrication of High Rises
doi https://doi.org/10.52842/conf.caadria.2013.045
source Open Systems: Proceedings of the 18th International Conference on Computer-Aided Architectural Design Research in Asia (CAADRIA 2013) / Singapore 15-18 May 2013, pp. 45-54
summary The term “robot” was born from a play written almost a century ago. Today robotic fabrication has become an emerging topic in architectural research. As architects work with these technologies, they are challenged with writing a different kind of play: here robots are the actors and the physical materialization of a design is their performance. However current Computer Aided Design (CAD) packages do not provide native robot programming functionalities which architects require to plan and orchestrate these fabrication process. To address this limitation, a Python library for robot programming is written. It is referenced by a toolkit of custom components developed to extend a graphical programming environment commonly used for architectural design. The empirical development of these software tools takes place in the context of a design studio investigating the subject of the high rise. The tools are tested in a workflow that involves the digital design and scaled robotic fabrication of high-rise housing. This paper discusses the considerations underlying the toolkit’s design, the outcomes of its use in the studio, and its impact on the creative design process. 
wos WOS:000351496100005
keywords Robotic fabrication, Architectural model, Software tools, High rise design, Creative computational design 
series CAADRIA
email
last changed 2022/06/07 07:59

_id sigradi2017_062
id sigradi2017_062
authors Lima da Silva, Juliano; Andréa Quadrado Mussi, Lauro André Ribeiro, Thaísa Leal da Silva
year 2017
title Programação em plataforma BIM e a Norma de Desempenho Brasileira: Desenvolvimento de uma aplicação para estimativa de performance acústica em projetos arquitetônicos [BIM platform programming and Brazilian Performance Standard: Development of an application to estimate acoustic performance in architectural design]
source SIGraDi 2017 [Proceedings of the 21th Conference of the Iberoamerican Society of Digital Graphics - ISBN: 978-956-227-439-5] Chile, Concepción 22 - 24 November 2017, pp.423-428
summary The Brazilian Performance Standard (NBR 15.575/2013 – Housing Buildings – Performance) is changing the design process of residential buildings, imposing new acoustic performance criteria. In this Context, the present paper proposes the programming of a Revit plug-in for verifying sound insulation of walls between environments, collecting information of the building’s model from a parameter database, calculating values of the elements’ sound reduction index and allowing to ponder constructive systems’ performance. The application aims to amplify productivity of designers and to provide greater control over technological solutions, assisting in the compliance with performance criteria.
series SIGRADI
email
last changed 2021/03/28 19:58

_id ecaade2013_139
id ecaade2013_139
authors Mendes, Leticia Teixeira; Beirão, José Nuno; Duarte, José Pinto and Celani, Gabriela
year 2013
title A Bottom-Up Social Housing System Described with Shape Grammars
doi https://doi.org/10.52842/conf.ecaade.2013.2.705
source Stouffs, Rudi and Sariyildiz, Sevil (eds.), Computation and Performance – Proceedings of the 31st eCAADe Conference – Volume 2, Faculty of Architecture, Delft University of Technology, Delft, The Netherlands, 18-20 September 2013, pp. 705-714
summary This paper presents the analysis of a bottom-up design system using shape grammars. This research is part of a larger study that proposes the development of a generic grammar to improve the quality of site development in social housing plans, including the improvement of their public spaces. We show the use of shape grammars as an analytical method to study the design of Belapur social housing development, designed by Charles Correa, in 1983.
wos WOS:000340643600073
keywords Design methodology; shape grammar; analytical grammar; low-income housing.
series eCAADe
email
last changed 2022/06/07 07:58

For more results click below:

this is page 0show page 1show page 2show page 3show page 4show page 5... show page 30HOMELOGIN (you are user _anon_192021 from group guest) CUMINCAD Papers Powered by SciX Open Publishing Services 1.002