CumInCAD is a Cumulative Index about publications in Computer Aided Architectural Design
supported by the sibling associations ACADIA, CAADRIA, eCAADe, SIGraDi, ASCAAD and CAAD futures

PDF papers
References

Hits 1 to 20 of 611

_id caadria2014_000
id caadria2014_000
authors Gu, Ning; Shun Watanabe, Halil Erhan, Matthias Hank Haeusler, Weixin Huang and Ricardo Sosa (eds.)
year 2014
title Rethinking Comprehensive Design: Speculative Counterculture
doi https://doi.org/10.52842/conf.caadria.2014
source Proceedings of the 19th International Conference on Computer-Aided Architectural Design Research in Asia (CAADRIA 2014) / Kyoto 14-16 May 2014, 994 p.
summary Rethinking Comprehensive Design—the 19th International Conference on Computer-Aided Architectural Design Research in Asia (CAADRIA 2014)—emphasises a cross-disciplinary context to challenge the mainstream culture of computational design in architecture. It aims to (re)explore the potential of computational design methods and technologies in architecture from a holistic perspective. The conference provides an international forum where academics and practitioners share their novel research development and reflection for defining the future of computation in architectural design. Hosted by the Department of Design, Engineering and Management at the Kyoto Institute of Technology, CAADRIA 2014 presents 88 peer-reviewed full papers from all over the world. These high-quality research papers are complimented by 34 short work-in-progress papers submitted for the poster session of the conference. The conference proceedings were produced by a motivated team of volunteers from the CAADRIA community through an extensive collaboration. The 88 full papers rigorously double-blind reviewed by the dedicated International Review Committee (consisting of 74 experts), testify to CAADRIA’s highly respectable international standing. Call for abstracts sent out in July 2013 attracted 298 submissions. They were initially reviewed by the Paper Selection Committee who accepted 198 abstracts for further development. Of these, 118 full papers were eventually submitted in the final stage. Each submitted paper was then assessed by at least two members of the International Review Committee. Following the reviewers’ recommendations, 91 papers were accepted by the conference, of which 88 are included in this volume and for presentation in CAADRIA 2014. Collectively, these 88 papers define Rethinking Comprehensive Design in terms of the following research streams: Shape Studies; User Participation in Design; Human-Computer Interaction; Digital Fabrication and Construction; Computational Design Analysis; New Digital Design Concepts and Strategies; Practice-Based and Interdisciplinary Computational Design Research; Collaborative and Collective Design; Generative, Parametric and Evolutionary Design; Design Cognition and Creativity; Virtual / Augmented Reality and Interactive Environments; Computational Design Research and Education; and Theory, Philosophy and Methodology of Computational Design Research. In the following pages, you will find a wide range of scholarly papers organised under these streams that truly capture the quintessence of the research concepts. This volume will certainly inspire you and facilitate your journey in Rethinking Comprehensive Design.
series CAADRIA
last changed 2022/06/07 07:49

_id sigradi2013_194
id sigradi2013_194
authors Smithwick, Daniel; Lawrence Sass
year 2013
title Physical Design Cognition: A Non-Symbolic Formalization for Physical Computing
source SIGraDi 2013 [Proceedings of the 17th Conference of the Iberoamerican Society of Digital Graphics - ISBN: 978-956-7051-86-1] Chile - Valparaíso 20 - 22 November 2013, pp. 27 - 31
summary This paper frames design knowledge as formalizable physical action for developing embodied computational design skills that can more fully exploit current and future digital fabrication prototyping methods.  Digitally integrated prototyping tools reveal the physicality of cognition in computational design activity; however, because current theories of design knowledge define cognition as a mental process, physical computation design skills remain underdeveloped. We identify symbolic formalization as the root of this problem. We present a non-symbolic action-based notation drawing from embodied cognition as an alternative model for design cognition. Designerly knowledge is discussed in terms of reflective action and epistemic action.
keywords Embodied design cognition; Physical computing; Human-computer interaction; Action notation; Motion tracking
series SIGRADI
email
last changed 2016/03/10 10:00

_id ijac201310201
id ijac201310201
authors Verovsek, Spela; Matevz Juvancic, Tadeja Zupancic
year 2013
title Understanding and interpreting urban space (in)formation
source International Journal of Architectural Computing vol. 11 - no. 2, 135-156
summary This paper introduces a novel approach to understanding the complex information and logics of urban spaces by the non-professional public. A model for Interpretation of Qualities in Urban Space (aMIQUS) is proposed. The objectives are threefold: first, to form common, valid and applicable measures to assess features of space design; second, to indicate the developmental trait that considerably affect users' spatial experience which - taken as a consequence - derives from either sustainable/prudent or poor design decisions; and third, to generically recreate and visually represent urban spaces for communicative purposes. The model represents an identification method, not a problem-solving mechanism and is intended as a pragmatic instrument for recognizing crucial information, narrative, embedded in spatial scene. Model is followed by the initial idea to extend it in terms of an educational digital interface for the general public, participating in the process of urban decision-making. The paper concisely summarizes both theoretical and applicative efforts.
keywords Spatial information, interpretation model, public participation, sustainable design, spatial qualities
series journal
last changed 2019/05/24 09:55

_id ijac201310101
id ijac201310101
authors Dade-Robertson, Martyn
year 2013
title Architectural User Interfaces: Themes, Trends and Directions in the Evolution of Architectural Design and Human Computer Interaction
source International Journal of Architectural Computing vol. 11 - no. 1, 1-19
summary This paper reviews the historical and contemporary relationships between architectural design and Human Computer Interaction (hereafter HCI).Through this discussion the paper focuses on the enduring use of architecture as a metaphor in interaction design and the growing recognition that architectural space shapes the territory within which we interact with computational information.The paper begins with a brief discussion of the History of HCI before examining the relationship between the development of the computer Graphical User Interfaces (hereafter GUIs) and more recent work on Ubiquitous and Pervasive Computing.The paper then explores some current themes in HCI with a view to looking for potential overlaps between architectural design and new trends in the design of computational systems.
series journal
last changed 2019/05/24 09:55

_id ijac201311403
id ijac201311403
authors Paranandi, Murali
year 2013
title Making Ripples: Rethinking pedagogy in the digital age
source International Journal of Architectural Computing vol. 11 - no. 4, 415-436
summary This essay presents a pedagogical model for beginning design that introduces digital fabrication methods through an integrated learning framework. Ripples - a wall sculpture made collectively by all second year architecture and interior design students as a joint project between studio, graphics and shop—exemplifies design practice as a collective activity. In this example, solutions emerge out of interactions among multiple stakeholders through iterative experimentation and optimization. The goal of this essay is to provoke a rethinking of the status-quo pedagogical practices in order to incorporate digital fabrication within existing curricular structures as a core skill for beginning design students, rather than merely as a technology course elected by a few students. Conclusions suggest the relevance to broader contexts of lessons learned from this modest experiment.
series journal
last changed 2019/05/24 09:55

_id sigradi2013_215
id sigradi2013_215
authors Abdelmohsen, Sherif M.
year 2013
title Reconfiguring Architectural Space using Generative Design and Digital Fabrication: A Project Based Course
source SIGraDi 2013 [Proceedings of the 17th Conference of the Iberoamerican Society of Digital Graphics - ISBN: 978-956-7051-86-1] Chile - Valparaíso 20 - 22 November 2013, pp. 391 - 395
summary This paper discusses a course that addresses the integration between generative design and digital fabrication in the context of reconfiguring architectural space. The objective of the course, offered for 3rd year architecture students at the Department of Architecture, Ain Shams University, Egypt, was to design and fabricate interior design elements to be installed within the department lobby. Students worked in digital and physical environments to develop 8 group projects that featured concepts of shape grammars, L-systems, fractals and cellular automata. The potential of the realized projects is discussed in terms of 3D development of systems, contextual generative design, and pedagogical objectives.
keywords Contextual generative design; Rule-based systems; Self-organizing systems; Digital fabrication
series SIGRADI
email
last changed 2016/03/10 09:47

_id acadia13_281
id acadia13_281
authors Ahlquist, Sean; Menges, Achim
year 2013
title Frameworks for Computational Design of Textile Micro-Architectures and Material Behavior in Forming Complex Force-Active Structures
doi https://doi.org/10.52842/conf.acadia.2013.281
source ACADIA 13: Adaptive Architecture [Proceedings of the 33rd Annual Conference of the Association for Computer Aided Design in Architecture (ACADIA) ISBN 978-1-926724-22-5] Cambridge 24-26 October, 2013), pp. 281-292
summary Material behavior can be defined as the confluence of associative rules, contextual pressures and constraints of materialization. In more general terms, it can be parameterized as topologies, forces and materiality. Forming behavior means resolving the intricate matrix of deterministic and indeterministic factors that comprise and interrelate each subset of these material- nherent conditions. This requires a concise design framework which accumulates the confluent behavior through successive and cyclical exchange of multiple design modes, rather than through a single design environment or set of prescribed procedures. This paper unfolds a sequencing of individual methods as part of a larger design framework, described through the development of a series of complex hybrid- structure material morphologies. The “hybrid” nature reflects the integration of multiple force-active structural concepts within a single continuous material system, devising both self-organized yet highly articulated spatial conditions. This leads primarily to the development of what is termed a “textile hybrid” system: an equilibrium state of tensile surfaces and bending-active meshes. The research described in this paper looks to expose the structure of the textile as an indeterministic design parameter, where its architecture can be manipulated as means for exploring and differentiating behavior. This is done through experimentation with weft-knitting technologies, in which the variability of individual knit logics is instrumentalized for simultaneously articulating and structuring form. Such relationships are shown through an installation constructed at the ggggallery in Copenhagen, Denmark.
keywords Material Behavior, Spring-based Simulation, CNC Knitting, Form- and Bending-Active, Textile Hybrid Structures.
series ACADIA
type Normal Paper
email
last changed 2022/06/07 07:54

_id sigradi2013_393
id sigradi2013_393
authors Cavieres, Andres; Joseph Goodman
year 2013
title The Role of Functional Knowledge in Multidisciplinary Design: The Case of Solar Energy Integration in Buildings
source SIGraDi 2013 [Proceedings of the 17th Conference of the Iberoamerican Society of Digital Graphics - ISBN: 978-956-7051-86-1] Chile - Valparaíso 20 - 22 November 2013, pp. 333 - 337
summary The paper presents a model-based methodology to support multidisciplinary collaboration for the application of photovoltaic systems to buildings. It focuses on the representation of domain specific knowledge necessary for the design of novel PV racking and mounting structures, based on principles of multi-functionality and functional integration. The proposed representation is based on a language for modeling functional requirements in terms of causal behaviors. These behavioral models provide common ground not only for multidisciplinary design, but also for the elaboration of performance metrics and verification procedures for evaluation of design alternatives. The paper concludes with a discussion on the potential of Model-based approach to support innovation in Design.
keywords Knowledge representation; Functional requirement; Model-based systems Integration; Multidisciplinary design; Solar energy
series SIGRADI
email
last changed 2016/03/10 09:48

_id caadria2013_220
id caadria2013_220
authors Chaszar, André and José Nuno Beirão
year 2013
title Feature Recognition and Clustering for Urban Modelling – Exploration and Analysis in GIS and CAD
doi https://doi.org/10.52842/conf.caadria.2013.601
source Open Systems: Proceedings of the 18th International Conference on Computer-Aided Architectural Design Research in Asia (CAADRIA 2013) / Singapore 15-18 May 2013, pp. 601-610
summary In urban planning exploration and analysis assist the generation, measurement, interpretation and management of the modelled urban environments. This frequently involves categorisation of model elements and identification of element types. Such designation of elements can be achieved through attribution (e.g. ‘tagging’ or ‘layering’) or direct selection by model users. However, for large, complex models the number and arrangement of elements makes these approaches impractical in terms of time/effort and accuracy. This is particularly true of models which include substantial numbers of elements representing existing urban fabric, rather than only newly generated elements (which might be automatically attributed during the generation process). We present methods for identification and categorisation of model elements in models of existing and proposed urban agglomerations. We also suggest how these methods can enable exploration of models, discovery of identities and relationships not otherwise obvious, and acquisition of insights to the models’ structure and contents which are not captured, and may even be obscured, by manual selection or automated pre-attribution.  
wos WOS:000351496100059
keywords City information modelling, Data mining, Feature recognition, Geometric-content-based-search, Urban typologies 
series CAADRIA
email
last changed 2022/06/07 07:55

_id acadia13_301
id acadia13_301
authors Dierichs, Karola; Menges, Achim
year 2013
title Aggregate Architecture: Simulation Models for Synthetic Non-convex Granulates
doi https://doi.org/10.52842/conf.acadia.2013.301
source ACADIA 13: Adaptive Architecture [Proceedings of the 33rd Annual Conference of the Association for Computer Aided Design in Architecture (ACADIA) ISBN 978-1-926724-22-5] Cambridge 24-26 October, 2013), pp. 301-310
summary Aggregate Architectures challenge the common notion of architectural structures as being immutable, permanent and controllable. Aggregate Architectures are understood as material systems consisting of large masses of granules—designed or natural—interacting with each other only through loose, frictional contact. As a consequence, they take the realm of structural stability and architectural planning into entire re-configurability and into merely probable predictions of their prospective behavior. This renders them relevant within the paradigm of Adaptive Architecture.The challenge to the designer is to move away from thinking in terms of clearly defined local and global assembly systems and to acquire tools and modes of design that allow for observation and interaction with the evolving granular architectures. In this context, the focus of the presented researchproject is on the relevance of mathematically based simulations as tools of investigation and design.The paper introduces the field of Aggregate Architectures. Consequently experimental and simulation methods for granulates will be outlined and compared. Different modeling and collision-detection methods for non-convex particles are shown and applied in benchmarking simulations for a full-scale architectural prototype. The potential for micro-mechanical simulation analysis within architectural applications are demonstrated and further areas of research outlined.
keywords Tools and Interfaces; aggregate architecture, designed granular matter, discrete element modeling, non-convex particles
series ACADIA
type Normal Paper
email
last changed 2022/06/07 07:55

_id cf2013_368
id cf2013_368
authors Dounas, Theodoros
year 2013
title Some Notes on the Incompleteness Theorem and Shape Grammars
source Global Design and Local Materialization[Proceedings of the 15th International Conference on Computer Aided Architectural Design Futures / ISBN 978-3-642-38973-3] Shanghai, China, July 3-5, 2013, pp. 368-376.
summary The paper presents a critique of the Shape Grammar paradigm viewed through the lens of the incompleteness theorem of Gödel. Shape Grammars have been extensively researched through many lenses. Their productive systemic nature was the focus of the first papers along with more recent treatises in the field while their use in analysis of known building styles has been extensive and a proven mechanism for style analysis. It is surprising though that use of Shape Grammars in actual design in practice however has been minimal. The architectural community has not actively used the paradigm in the design of real buildings, probably because of the rigid analytical approach to style and rules, following from the academic analysis that the paradigm has been subjected to. However I propose that there is another underlying reason, other than the rigid approach to construct a Shape Grammar. The nature of the concurrent application and creation of the rules lies close to the incompleteness theorem of Gödel, that uses a multitude of Turing Machines to prove that a from a set of True Axioms -A- we will never be able to determine if all sentences are true, without having to invent new axioms, outside the initial set -A-, thus unproven in terms of their true or false nature. Negation of this possibility drives us to the conclusion that true Design can never be feature -complete and thus can never be placed in a trusted framework that we all agree or believe it to be the complete truth.
keywords Incompleteness Theorem, Incomputability of Shape Grammars
series CAAD Futures
email
last changed 2014/03/24 07:08

_id acadia13_129
id acadia13_129
authors Farahi Bouzanjani, Behnaz; Leach, Neil; Huang, Alvin; Fox, Michael
year 2013
title Alloplastic Architecture: The Design of an Interactive Tensegrity Structure
doi https://doi.org/10.52842/conf.acadia.2013.129
source ACADIA 13: Adaptive Architecture [Proceedings of the 33rd Annual Conference of the Association for Computer Aided Design in Architecture (ACADIA) ISBN 978-1-926724-22-5] Cambridge 24-26 October, 2013), pp. 129-136
summary This paper attempts to document the crucial questions addressed and analyze the decisions made in the design of an interactive structure. One of the main contributions of this paper is to explore how a physical environment can change its shape to accommodate various spatial performances based on the movement of the user’s body. The central focus is on the relationship between materials, form and interactive systems of control.Alloplastic Architecture is a project involving an adaptive tensegrity structure that responds to human movement. The intention is to establish a scenario whereby a dancer can dance with the structure such that it reacts to her presence without any physical contact. Thus, three issues within the design process need to be addressed: what kind of structure might be most appropriate for form transformation (structure), how best to make it adaptive (adaptation) and how to control the movement of the structure (control). Lessons learnt from this project, in terms of its structural adaptability, language of soft form transformation and the technique of controlling the interaction will provide new possibilities for enriching human-environment interactions.
keywords tools and interfaces, choreography in space, dynamic tensegrity structure, smart material, SMA, kinect
series ACADIA
type Normal Paper
email
last changed 2022/06/07 07:55

_id sigradi2013_10
id sigradi2013_10
authors Gomez, Paula; Matthew Swarts; Pedro Soza; Jonathan Shaw; James MacDaniel; David Moore
year 2013
title Campus Landscape Information Modeling: Intermediate Scale Model that Embeds Information and Multidisciplinary Knowledge for Landscape Planning
source SIGraDi 2013 [Proceedings of the 17th Conference of the Iberoamerican Society of Digital Graphics - ISBN: 978-956-7051-86-1] Chile - Valparaíso 20 - 22 November 2013, pp. 61 - 65
summary Building Information Modeling (BIM) and Geographic Information Systems (GIS), as their names imply, are models of information at different scales that usually appear segregated. Our proposal is to integrate both scales of information in a Campus Information Model (CIM). This paper focuses on the description of this integration in terms of information and knowledge models, from the point of view of landscape design. We emphasize on the description of CLIM, an interactive tabletop we have developed to support collaboration and planning of landscape, which is constructed using models of information and knowledge to perform assessments, including quantitative aspects of effectiveness, efficiency and satisfaction of certain features of the Georgia Tech Campus.
keywords Campus Information Modeling; Landscape Modeling; Landscape Planning; Knowledge-based Design; Interactive Tabletop
series SIGRADI
email
last changed 2016/03/10 09:52

_id cf2013_084
id cf2013_084
authors Herr, Christiane M. and Thomas Fischer
year 2013
title Generative Column and Beam Layout for Reinforced Concrete Structures in China
source Global Design and Local Materialization[Proceedings of the 15th International Conference on Computer Aided Architectural Design Futures / ISBN 978-3-642-38973-3] Shanghai, China, July 3-5, 2013, pp. 84-95.
summary This paper outlines generative strategies for the design of structural layout patterns of columns and beams in reinforced concrete structures based on contemporary local construction practice in China. Following an introduction to constraints and opportunities of this new potential context for generative design application, possible generative strategies are proposed and discussed, with a view to their viability within the local context. The proposed strategies are illustrated in terms of geometry, generative sequence and plausibility of construction and discussed in terms of visual and overall structural merit.
keywords generative design, algorithmic design, structural design, visual thinking, reinforced concrete structures, China
series CAAD Futures
email
last changed 2014/03/24 07:08

_id sigradi2013_370
id sigradi2013_370
authors Nardelli, Eduardo Sampaio; João Tales Oliveira
year 2013
title BIM e Desempenho no Programa Minha Casa Minha Vida - PMCMV [BIM and Performance in the Brazilian Dwelling Program “My Home My Life”]
source SIGraDi 2013 [Proceedings of the 17th Conference of the Iberoamerican Society of Digital Graphics - ISBN: 978-956-7051-86-1] Chile - Valparaíso 20 - 22 November 2013, pp. 312 - 316
summary This paper describes the current stage of an ongoing research developed at Mackenzie Presbyterian University, with support of FINEP, to use information and communication technologies (ICT) for the production of affordable houses in Brazil, focusing on the government’s program “Minha Casa Minha Vida” (My Home My Life – MCMV). Here we highlight the specific issue of adapting and extending the current BIM library of components provided by the Ministry of Development, Industry and Trade (MDIC), since the validity of the standard NBR 15575/13, which as of 2013, will guide the production of buildings in Brazil through strict performance requirements. We make a brief summary of the MCMV program, the terms of the standard and the structure of that library and then present guidelines for adapting and extending the existing components, taking into account international examples and the requirements from the new standard. As a result, we expect the revised components will facilitate the work of professionals in the building industry when designing and planning buildings.
keywords BIM components; Performance standard; Affordable housing
series SIGRADI
email
last changed 2016/03/10 09:55

_id ecaade2013_131
id ecaade2013_131
authors Nourian, Pirouz; Rezvani, Samaneh and Sariyildiz, Sevil
year 2013
title Designing with Space Syntax
doi https://doi.org/10.52842/conf.ecaade.2013.1.357
source Stouffs, Rudi and Sariyildiz, Sevil (eds.), Computation and Performance – Proceedings of the 31st eCAADe Conference – Volume 1, Faculty of Architecture, Delft University of Technology, Delft, The Netherlands, 18-20 September 2013, pp. 357-365
summary This paper introduces a design methodology and a toolkit developed as a parametric CAD program for configurative design of architectural plan layouts. Using this toolkit, designers can start plan layout process with sketching the way functional spaces need to connect to each other. A tool draws an interactive bubble diagram and a set of tools reveal feasible geometric interpretations of the proposed bubble diagram in terms of plan layout graphs. Offering real-time Space Syntax analyses at the same time, the tools provide feedback on the spatial performance, which is translatable into the likely social performance of the plan layout patterns.
wos WOS:000340635300037
keywords Architectural configuration; graph theory; space syntax; spatial performance; plan layout.
series eCAADe
email
last changed 2022/06/07 08:00

_id ecaade2016_154
id ecaade2016_154
authors Ozer, Derya Gulec and Nagakura, Takehiko
year 2016
title Simplifying Architectural Heritage Visualization - AUGMENTEDparion
doi https://doi.org/10.52842/conf.ecaade.2016.2.521
source Herneoja, Aulikki; Toni Österlund and Piia Markkanen (eds.), Complexity & Simplicity - Proceedings of the 34th eCAADe Conference - Volume 2, University of Oulu, Oulu, Finland, 22-26 August 2016, pp. 521-528
summary Among other historical artifacts, architectural heritage is the most difficult to present in museums. There is a need for a high-tech visualization of cultural heritage since it is important to visualize, share and analyze data for stakeholders such as historians, archaeologists, architects and tourists. This study aims to represent architectural heritage in terms of photogrammetry and AR methods for the Parion Theater, Biga, Turkey, dates back to 1st-2nd century A.D. and has been under excavation since 2005. The study uses MULTIRAMA, a method previously developed by ARC Team (MIT) in 2013, which aims to represent the "unseen" to such users by visualising and documenting via an app. The method supports architectural heritage representation via the processes of, i) documentation, ii) data process and modeling, and iii) presentation. This holistic and low cost approach will focus on the problem of visualizing the digital architectural heritage, and led light to future projects of a historical visualization database throughout Turkey.
wos WOS:000402064400052
keywords Augmented Reality (AR); Cultural Heritage; Photogrammetry; Parion
series eCAADe
email
last changed 2022/06/07 08:00

_id caadria2013_140
id caadria2013_140
authors Park, Juhong and Takehiko Nagakura
year 2013
title A Thousand BIM – A Rapid Value-Simulation Approach to Developing a BIM Tool for Supporting Collaboration During Schematic Design
doi https://doi.org/10.52842/conf.caadria.2013.023
source Open Systems: Proceedings of the 18th International Conference on Computer-Aided Architectural Design Research in Asia (CAADRIA 2013) / Singapore 15-18 May 2013, pp. 23-32
summary A typical architectural design project proceeds as collaboration among professionals who have different expertise, values and priorities. The collaboration is needed to make designs both rich yet feasible, but the professionally different ways of thinking can also be a block on the way of design development. This paper takes the example of the relationship between developers and architects, who tend to have different evaluation criteria, methods, and processes. A BIM-based tool, A Thousand BIM, is introduced as a means to quickly generate possible building typologies on a given project site, with computation of expected total values expressed in simple financial terms. Its aim is to help a group of heterogeneous professionals to communicate in the same language, articulate criteria and priorities in multiple perspectives, and share rapidly simulated evaluations of schematic design variations. The implemented evaluation process considers construction cost per square foot, land value, and sustainability as well as other soft design values such as views and accessibility. It can take various market data as inputs to cost calculation, and the weight to each of the design values is dynamically adjustable. A professional can explicitly set them, and share the criteria, priorities, and results of value simulations with others in an enhanced collaborative process.  
wos WOS:000351496100003
keywords BIM, Pro-forma, Design collaboration, Value simulation 
series CAADRIA
email
last changed 2022/06/07 08:00

_id ecaade2013_262
id ecaade2013_262
authors Rolando, Andrea and D’Uva, Domenico
year 2013
title Hyperdomes
doi https://doi.org/10.52842/conf.ecaade.2013.2.315
source Stouffs, Rudi and Sariyildiz, Sevil (eds.), Computation and Performance – Proceedings of the 31st eCAADe Conference – Volume 2, Faculty of Architecture, Delft University of Technology, Delft, The Netherlands, 18-20 September 2013, pp. 315-324
summary The development of new shapes in architecture has deeply influenced the current perception of the built environment. The analysis of the processes behind this evolution is, therefore, of great interest. At least two well known factors, influencing this development, may be pointed out: the great improvement of digital tools and the tendency toward building distinctiveness.In particular, the innovation of digital tools such as parametric modeling is resulting in an overall diffusion of complex shapes, and the phenomenon is also evident in a clear expressionistic search for architectural singularity, that some might consider as a negative effect of globalization trends.Though, if we can consider as a positive result the fact that parameterization allows a deeper control over design factors in terms of reference to cultural, historical and physical context, at the same time such control possibilities are sometimes so stark to be even auto-referential, stepping over site-specific parameterization, to create unusual shapes just for the sake of complexity.The ever-growing diffusion of generative design processes is in fact going to transform niche procedures, frequently limited to temporary decontextualized structures, into an architectural complexification as an end in itself.The hypothesis of this paper is to demonstrate that site-specific parametrization can be considered as a tool able to translate intentions into shape; it is necessary, for this aim, the widening of the meaning of the word singularity.
wos WOS:000340643600032
keywords Urban environment; distinctiveness; non-standard roofing structures.
series eCAADe
email
last changed 2022/06/07 07:56

_id ecaade2013_257
id ecaade2013_257
authors Trento, Armando and Fioravanti, Antonio
year 2013
title Human Activity Modelling Performed by Means of Use Process Ontologies
doi https://doi.org/10.52842/conf.ecaade.2013.2.385
source Stouffs, Rudi and Sariyildiz, Sevil (eds.), Computation and Performance – Proceedings of the 31st eCAADe Conference – Volume 2, Faculty of Architecture, Delft University of Technology, Delft, The Netherlands, 18-20 September 2013, pp. 385-394
summary Quality, according to Pirsig’s universal statements, does not belong to the object itself, nor to the subject itself, but to both and to their interactions. In architecture it is terribly true as we have a Building Object and Users that interact with it.The problem we approach here, renouncing at the impossible task of modelling the actor’s “libero arbitrio”, focuses on defining a set of occurrences, which dynamically happen in the built environment. If organized in a proper way, use process knowledge allows planners/designers to represent usage scenario, predicting activity inconsistencies and evaluating the building performance in terms of user experience.With the aim of improving both, the quality of buildings and the user experience, this research explores a method for linking process and product ontologies, formalized to support logic synchronization between software for planning functional activities and software for authoring design of infrastructures.
wos WOS:000340643600039
keywords Design knowledge modelling; process ontology; knowledge management.
series eCAADe
email
last changed 2022/06/07 07:57

For more results click below:

this is page 0show page 1show page 2show page 3show page 4show page 5... show page 30HOMELOGIN (you are user _anon_419417 from group guest) CUMINCAD Papers Powered by SciX Open Publishing Services 1.002