CumInCAD is a Cumulative Index about publications in Computer Aided Architectural Design
supported by the sibling associations ACADIA, CAADRIA, eCAADe, SIGraDi, ASCAAD and CAAD futures

PDF papers
References

Hits 1 to 18 of 18

_id caadria2013_023
id caadria2013_023
authors Tessmann, Oliver and Mirco Becker
year 2013
title Extremely Heavy and Incredibly Light – Performative Assemblies in Dynamic Environments
source Open Systems: Proceedings of the 18th International Conference on Computer-Aided Architectural Design Research in Asia (CAADRIA 2013) / Singapore 15-18 May 2013, pp. 469-478
doi https://doi.org/10.52842/conf.caadria.2013.469
wos WOS:000351496100046
summary This research addresses the design and negotiation of two kinds of assemblies that are similar in topology but fundamentally different in performance. Firstly, Topological Interlocking Assemblies (TA) are made of solid elements. Their overall structural integrity relies on each element being kinematical constraint by its neighbours. Secondly, Bell Kites, similar in topology but fundamentally different in performance these kites are made of clusters of tetrahedrons. While TA are heavy, massive and exposed to gravity Bell Kites are super light and dominantly driven by wind forces. These two instances formulate the opposing ends of a spectrum in which a new system, one that is capable of covering the full range of performance, is developed and re-conceptualized in architectural context. The research seeks design-innovation by scrutinizing systems that are not yet part of the architectural ecosystem. Mapping out their performative characteristics and developing their spatial and programmatic potential through conscious design moves explore the potential for architectural applications. The work presented in this paper is the result of a design research studio of the Architecture and Performative Design Class at the Staedelschule in Frankfurt.
keywords Topology, Interlocking, Bell kite, Modular, Adjacency 
series CAADRIA
email
last changed 2022/06/07 07:58

_id caadria2013_083
id caadria2013_083
authors Coorey, Benjamin P. and Julie R. Jupp
year 2013
title A Schema for Capturing and Comparing Parametric Spatial Data
source Open Systems: Proceedings of the 18th International Conference on Computer-Aided Architectural Design Research in Asia (CAADRIA 2013) / Singapore 15-18 May 2013, pp. 509-518
doi https://doi.org/10.52842/conf.caadria.2013.509
wos WOS:000351496100050
summary In this paper, the authors consider the problem of architectural spatial performance indicators for assessing computer generated design, where identification and analysis of meaningful and relevant spatial qualities is the target of assessment. The paper presents a parametric spatial analysis schema and spatial database structure for the restricted, but still significant, domain of residential housing. A process for the capture and comparison of different types of architectural spatial data is described where analysis focuses on a series of 2D metric and topological spatial measures. The process is then demonstrated in our discussion of a descriptive scenario. 
keywords Parametric design, Precedent, Spatial analysis 
series CAADRIA
email
last changed 2022/06/07 07:56

_id caadria2013_259
id caadria2013_259
authors Hansmeyer, Michael and Benjamin Dillenburger
year 2013
title Mesh Grammars – Procedural Articulation of Form
source Open Systems: Proceedings of the 18th International Conference on Computer-Aided Architectural Design Research in Asia (CAADRIA 2013) / Singapore 15-18 May 2013, pp. 821-829
doi https://doi.org/10.52842/conf.caadria.2013.821
wos WOS:000351496100085
summary We introduce a formal grammar as a computational approach to the generation of design. While existing shape-grammars transform primitive shapes as lines or rectangles, the presented production system specifically addresses polyhedral objects described by three-dimensional meshes composed of vertices, edges and faces. The parameters of the transformation rules are sensitive to topological and topographical properties of the selected input mesh. We demonstrate that this approach allows the creation of new ornamental structures and can lead to a new language of architectural forms.  
keywords Generative, Procedural, Subdivision, Shape grammars 
series CAADRIA
email
last changed 2022/06/07 07:50

_id caadria2013_017
id caadria2013_017
authors Lin, Chieh-Jen 
year 2013
title Visual Architectural Topology – An Ontology-Based Visual Language Tool in an Architectural Case Library
source Open Systems: Proceedings of the 18th International Conference on Computer-Aided Architectural Design Research in Asia (CAADRIA 2013) / Singapore 15-18 May 2013, pp. 3-12
doi https://doi.org/10.52842/conf.caadria.2013.003
wos WOS:000351496100001
summary This paper aims to develop a tool entitled “Visual Architectural Topology (VAT)” for encoding topological information within a case library. VAT can annotate design objects and their topological in-formation within the unstructured information of a design case. By applying an ontology-based topological validation mechanism, VAT aims to establish a visual language for representing the “topological knowledge” of architectural design objects in a case library. The pur-pose of VAT is to extend the knowledge representation ability of a de-sign case library, and to provide a foundation for development of a design-assistance tool performing the conversion and processing among semantic and geometric design information. 
keywords Case-based design, Case library, Architectural topology, Semantic ontology, Visual language 
series CAADRIA
email
last changed 2022/06/07 07:59

_id ijac201311401
id ijac201311401
authors Moreno-De-Luca, Leonardo; Oscar Javier Begambre Carrillo
year 2013
title Multi-Objective Heuristic Computation Applied To Architectural And Structural Design: A Review
source International Journal of Architectural Computing vol. 11 - no. 4, 363-392
summary Heuristic computation techniques have been used in a wide range of fields, demonstrating their capacity to solve highly complex optimization problems. This article presents the most common techniques and their extension into the multi-objective optimization field, and emphasizes in the application of them in structural and architectural design by presenting examples within topics like: topological, shape and dimensional optimization of truss structures, roof optimization for sunlight conditions and area minimization, grid structures, façade design, life cycle cost and environmental impact, energy efficiency and construction costs, morphogenetic structural optimization for shell structures, acoustical optimization, evolutionary architectural design, architectural layout design optimization, RC frames optimization, and land use zoning, within others. Finally, the conclusion leads to the recognition of heuristic computation not only as an optimization tool, but also as an important component of a design methodology for creating innovative, creative, efficient, well performing, and aesthetically pleasant architectural/engineering objects.
series journal
last changed 2019/05/24 09:55

_id ecaade2013_144
id ecaade2013_144
authors Schneider, Sven and Donath, Dirk
year 2013
title Topo-Metric Variations for Design Optimization
source Stouffs, Rudi and Sariyildiz, Sevil (eds.), Computation and Performance – Proceedings of the 31st eCAADe Conference – Volume 1, Faculty of Architecture, Delft University of Technology, Delft, The Netherlands, 18-20 September 2013, pp. 487-495
doi https://doi.org/10.52842/conf.ecaade.2013.1.487
wos WOS:000340635300051
summary The conception of a Generative Model (GM) is an important step when applying optimization methods in architectural design. The variant spectrum generable with a GM determines if an optimal solution for the different demands placed on a design can be found. Using the example of optimizing façades (more specifically window-layouts), it is shown that GM that exclusively vary either metric or topological properties of the geometry are not sufficient, because they only cover a highly restricted solution-space. To keep the solution space as large as possible, it is argued, that it is necessary to vary both topological and metric properties. The combination of both properties is called topo-metric properties. A GM for the generation of facade variants is presented, that is able to systematically vary these topo-metric properties. The effectiveness of the developed GM compared to conventional GMs is demonstrated using a simple test scenario.
keywords Design optimization; modeling; evolutionary algorithms, topo-metric properties.
series eCAADe
email
last changed 2022/06/07 07:57

_id caadria2021_044
id caadria2021_044
authors Wu, Shaoji
year 2021
title 3D Space Resilience Analysis of Commercial Complex - Beijing APM as an Example
source A. Globa, J. van Ameijde, A. Fingrut, N. Kim, T.T.S. Lo (eds.), PROJECTIONS - Proceedings of the 26th CAADRIA Conference - Volume 2, The Chinese University of Hong Kong and Online, Hong Kong, 29 March - 1 April 2021, pp. 457-466
doi https://doi.org/10.52842/conf.caadria.2021.2.457
summary Commercial complexes have played an increasingly important role in contemporary cities. Due to the occurrence of crowded people or equipment overhauls, some paths in a commercial complex may become impassable, which can be seen as disruptions to its spatial system. This paper provides a practical method to quantify the spatial resilience of a commercial complex taking Beijing APM as an example. This study can be divided into the following three steps. First, transforming the realistic spatial path system to a directed network model. Second, using topological, metric, and angular distance as edge weight to calculate the centrality and present its distribution. Third, using two disruption processes, randomized and attractor-guided strategy, evaluates the spatial networks resilience. There are three conclusions from this study. The first one is the process of disruption is non-linear, and there is a phase transition process when it reaches the critical threshold. The second one is the most efficient disruption method is the topological BC attractor-guided strategy. The last one is the resilience of a commercial complex, whose 3D spatial networks resilience is lower than the 2D spatial networks resilience by comparison with Duan and Lus (2013) study.
keywords Resilience; Robustness; Network Secience; Commercial Complex
series CAADRIA
email
last changed 2022/06/07 07:57

_id acadia13_121
id acadia13_121
authors Beites, Steven
year 2013
title Morphological Behavior of Shape Memory Polymers Toward a Deployable, Adaptive Architecture
source ACADIA 13: Adaptive Architecture [Proceedings of the 33rd Annual Conference of the Association for Computer Aided Design in Architecture (ACADIA) ISBN 978-1-926724-22-5] Cambridge 24-26 October, 2013), pp. 121-128
doi https://doi.org/10.52842/conf.acadia.2013.121
summary Shape-memory polymers (SMPs) are an emerging class of “smart materials” that have dual-shape capability. They are able to undergo significant deformation when exposed to an external stimulus such as heat or light. SMPs have been widely investigated within the biomedicine and aerospace industries; however, their potential has yet to be explored within an architectural framework. The research presented in this paper begins an investigation into the morphological behavior ofSMPs toward a deployable, adaptive architecture. The structure’s ease of assembly, compact storage, transportability and configurable properties offer promising applications in emergency and disaster relief shelters, lightweight recreational structures and a variety of other applications in the temporary construction and aerospace industry. This paper explores the use of SMPs through the development of a dynamic actuator that links a series of interconnected panels creating overall form to a self-standing structure. The shape-shifting behavior of the SMP allows the dynamic actuator to become flexible when storage and transportability are required. Alternatively, when exposed to the appropriate temperature range, the actuator is capable of returning to its memorized state for on-site deployment. Through a series ofprototypes, this paper will provide a fundamental understanding of the SMP’s thermo-mechanicalproperties toward deployable, adaptive architecture.
keywords next-generation technology, smart materials, shape-memory polymers, material analysis, smart assemblies, dynamic actuator, soft architecture
series ACADIA
type Normal Paper
email
last changed 2022/06/07 07:54

_id cf2013_176
id cf2013_176
authors Burry, Jane; Nicholas Williams, John Cherrey, and Brady Peters
year 2013
title Fabpod: Universal Digital Work_ow, Local Prototype Materialization
source Global Design and Local Materialization[Proceedings of the 15th International Conference on Computer Aided Architectural Design Futures / ISBN 978-3-642-38973-3] Shanghai, China, July 3-5, 2013, pp. 176-186.
summary This paper reports on a research project with the dual aims of 1) linking acoustic simulation to complex custom surface design and 2) realizing a full-scale prototype meeting room within an open knowledge work environment at a very high level of craft, engineering and material specification and differentiation. Here we report on the outcomes of the novel design and materialization processes.
keywords digital workflow, digital fabrication, acoustic performance, sound diffusion, material assemblies
series CAAD Futures
email
last changed 2014/03/24 07:08

_id caadria2014_150
id caadria2014_150
authors Knapp, Chris; Jonathan Neslon and Michael Parsons
year 2014
title Constructing Atmospheres
source Rethinking Comprehensive Design: Speculative Counterculture, Proceedings of the 19th International Conference on Computer-Aided Architectural Design Research in Asia (CAADRIA 2014) / Kyoto 14-16 May 2014, pp. 149–158
doi https://doi.org/10.52842/conf.caadria.2014.149
summary This paper documents and critically reflects upon the design, development, fabrication, and implementation of three pavilion projects developed during 2013-14. The core investigation of this work is the production of architectural spaces characterized by a quality of enveloping, diffuse, visual and spatial atmospheres. The principal activity of the research is aimed at refining methods for software-based exploration of formal complexities and the subsequent need to control variability and efficiency in fabrication output, using Grasshopper for Rhino to develop customized definitions particular to each specific project scenario. Linking the projects together are issues of scale, resolution of effect, and intent to move from disparate assemblies of structure and skin toward composite, manifold construction techniques that address multiple concerns (gravity, bracing, affect, etc) with a minimum of assembly. A material palette common to the current vernacular of CNC-based projects such as plywood, plastics, and other sheet materials is utilised. This work is invested in extending the possibilities of the architect and architecture as a discipline, extrapolating the workflow from these successive projects to the speculative impact of the work upon emerging possibilities of architectural construction and craft.
keywords 3d modelling; Digital fabrication; Rhinoceros; Grasshopper; Tessellation
series CAADRIA
email
last changed 2022/06/07 07:51

_id ecaade2014_144
id ecaade2014_144
authors Michail Georgiou, Odysseas Georgiou and Theresa Kwok
year 2014
title Affordable Complexity - 'God's Eye' - Sukkahville 2013
source Thompson, Emine Mine (ed.), Fusion - Proceedings of the 32nd eCAADe Conference - Volume 2, Department of Architecture and Built Environment, Faculty of Engineering and Environment, Newcastle upon Tyne, England, UK, 10-12 September 2014, pp. 169-177
doi https://doi.org/10.52842/conf.ecaade.2014.2.169
wos WOS:000361385100018
summary The paper presents a novel approach on the design of complex forms by re-formulating the relationships between form, structure, material, fabrication and construction. It is proposed that current design models are supplemented by feedback-enabled frameworks, integrating material properties, fabrication constraints and construction logistics. As such, a series of input parameters based on industry standards, filtered through physical testing and digital simulations, feed a central computational model. The outcome is weighed against a set of objectives towards an optimum design solution which embodies construction logic while ultimately opposing costly inflated ad-hoc solutions. Within the above framework and as part of a broader research conducted at [ARC], this paper illustrates a design methodology implemented at the case study of 'God's Eye', winning entry of Sukkahville 2013 International Design Competition. It is further supported that a high tech, interdisciplinary design process based on efficient material assemblies allows for a complex, yet efficient end result, through low tech affordable construction.
keywords Material-based design; design process; construction logistics; interdisciplinary design; computational design
series eCAADe
email
last changed 2022/06/07 07:58

_id acadia13_327
id acadia13_327
authors Raspall, Felix; Imbern, Matías; Choi, William
year 2013
title Adaptive Tectonic Systems: Parametric Modeling and Digital Fabrication of Precast Roofing Assemblies Toward Site-Specific Design Response
source ACADIA 13: Adaptive Architecture [Proceedings of the 33rd Annual Conference of the Association for Computer Aided Design in Architecture (ACADIA) ISBN 978-1-926724-22-5] Cambridge 24-26 October, 2013), pp. 327-336
doi https://doi.org/10.52842/conf.acadia.2013.327
summary In order to design adaptable systems, the requirements include flexible models to generate a range of alternative configurations, analytical engines to evaluate performance, and well-defined selection criteria to identify suitable options. In most cases, design processes driven by performance concentrate on environmental or structural parameters; fabrication often remains disconnected from the generative process. Nonetheless, as design-to-fabrication methods become more robust, it is possible to extend the digital process to introduce fabrication variables to the definition of the project. The main focus of the research presented in this paper is the development of a digital and material workflow that connects design, structural and climate-specific topics (such as sun lighting and water drainage) toward producing a range of efficient structural and spatial assemblies.A case study serves as the main support for this investigation. Miguel Fisac’s “bones” is a light-weight roof system developed during the 1960’s, which had a very well-calibrated structural, natural-lighting, drainage and construction performance, as well as a highly refined spatial output. The system, despite its intelligence, lacked the flexibility possible today: using digital technologies, it can adapt to a significantly wider range of applications. Using “bones” as a starting point, this research develops a design-to-fabrication workflow that attempts to move forward tools, material systems and processes to enable an adaptable tectonic system.This paper describes the background research, concept, form-finding, construction process, methodology, results and conclusions of the investigation.
keywords complex systems, parametric design, integrated design and fabrication, mass customization, Miguel Fisac bones, adaptive material system
series ACADIA
type Normal Paper
email
last changed 2022/06/07 08:00

_id acadia13_207
id acadia13_207
authors Sanchez, Jose
year 2013
title Gamescapes
source ACADIA 13: Adaptive Architecture [Proceedings of the 33rd Annual Conference of the Association for Computer Aided Design in Architecture (ACADIA) ISBN 978-1-926724-22-5] Cambridge 24-26 October, 2013), pp. 207-216
doi https://doi.org/10.52842/conf.acadia.2013.207
summary While parametrics and form-finding techniques focus on design as an idea of “search,” it is inevitable to wonder if the field is becoming stagnated, converging on similar “solutions” in an ever-shrinking design search space.Initiatives like Minecraft, coming from video game design, reopen the creative desires of players by providing a rigorous algorithmic set of rules and a fully open world coupling algorithmic design and intuition. This is what J.C.R. Licklider would call “man-computer symbiosis”(Licklider 1960).This paper presents how game mechanics suggest a radically different ethos for computational design thinking. It presents the Bloom project, commissioned for the London Olympics in 2012, which combines the use of industrially produced identical components with game mechanics. This project breaks the idea of serialized outcomes and suggests that within the search space of possible formations, there are unforeseeable assemblies and creative outcomes.The Bloom project has become a new research unit at UCL Bartlett, coupling notions of digital modular materials and crowd-farming for assembly, which positions gaming as a design heuristics to open the field of architectural design.
keywords crowd search, game mechanics, combinatorics, open-ended, sandbox, intelligence augmentation.
series ACADIA
type Normal Paper
email
last changed 2022/06/07 07:56

_id acadia13_361
id acadia13_361
authors Scott, Jane
year 2013
title Hierarchy in Knitted Forms: Environmentally Responsive Textiles for Architecture
source ACADIA 13: Adaptive Architecture [Proceedings of the 33rd Annual Conference of the Association for Computer Aided Design in Architecture (ACADIA) ISBN 978-1-926724-22-5] Cambridge 24-26 October, 2013), pp. 361-366
doi https://doi.org/10.52842/conf.acadia.2013.361
summary This paper describes the theoretical framework behind the development of a series of knitted prototypes inspired by the biomimetic model of the hygromorph. Three moisture responsive pieces are described which use the inherent properties of wood veneer as an actuator incorporated into complex knitted forms constructed from linen and wool. These textile/veneer assemblies are environmentally responsive, transformable and constructed from natural, sustainable materials. This represents a new interpretation of shape changing textiles for architecture. The work illustrates the potential of designing hierarchically organised structures where functionalities are incorporated at different levels of material fabrication. The paper argues that the implementation of textile materials and processes offers the potential for the development of environmentally responsive architecture through the development of shape changing textile/veneer assemblies.
keywords complex systems; knit assemblies; biomimicry; responsive systems; hierarchical structures; natural materials
series ACADIA
type Normal Paper
email
last changed 2022/06/07 07:56

_id acadia13_261
id acadia13_261
authors Tibbits, Skylar; Falvello, Ana
year 2013
title BioMolecular, Chiral and Irregular Self-Assemblies
source ACADIA 13: Adaptive Architecture [Proceedings of the 33rd Annual Conference of the Association for Computer Aided Design in Architecture (ACADIA) ISBN 978-1-926724-22-5] Cambridge 24-26 October, 2013), pp. 267-268
doi https://doi.org/10.52842/conf.acadia.2013.267
summary As disciplines converge and new capabilities are developed for programmable materials and self-assembly across length scales and industrial applications, designers will need new models for understanding the fundamental principles within this new paradigm. This paper outlines the key ingredients for self-assembly through a number of recent projects including the BioMolecular Self-Assembly and Chiral Self-Assembly projects. Further possibilities of non-deterministic self-assembly will be highlighted through asymmetrical units, nucleus models and hierarchical assemblies. Finally, opportunities for high-yield self-assembly and future applications for manufacturing and construction scenarios will be outlined. Self-assembly offers a glimpse into a future world of highly programmable, intelligent materials that promise far more adaptive, resilient and efficient built environments.
keywords next generation technology, self-assembly, programmable materials, chirality, non-deterministic assembly
series ACADIA
type Normal Paper
email
last changed 2022/06/07 07:58

_id ecaade2013_108
id ecaade2013_108
authors Zarzycki, Andrzej
year 2013
title Considering Physicality in Digital Models
source Stouffs, Rudi and Sariyildiz, Sevil (eds.), Computation and Performance – Proceedings of the 31st eCAADe Conference – Volume 2, Faculty of Architecture, Delft University of Technology, Delft, The Netherlands, 18-20 September 2013, pp. 425-434
doi https://doi.org/10.52842/conf.ecaade.2013.2.425
wos WOS:000340643600043
summary This paper discusses the integration of physical and digital models in the context of building technology teaching. It showcases projects that explore the design possibilities of a chosen structural system with the use of parametric and behaviour-based computational modelling. It uses detailed mock-ups as vehicles to study, optimize, and evaluate the design as well as to provide feedback for student learning and the direction in which future designers may engage computational design. Finally, it investigates digital-to-physical design translations, the importance of which becomes more and more critical in the context of the current, computer-intensive architectural education and professional practice.
keywords BIM; building information modelling; parametric construction details; construction assemblies.
series eCAADe
email
last changed 2022/06/07 07:57

_id caadria2013_111
id caadria2013_111
authors Zarzycki, Andrzej
year 2013
title Learning with Digital and Physical Mock-ups Using BIM
source Open Systems: Proceedings of the 18th International Conference on Computer-Aided Architectural Design Research in Asia (CAADRIA 2013) / Singapore 15-18 May 2013, pp. 323-332
doi https://doi.org/10.52842/conf.caadria.2013.323
wos WOS:000351496100032
summary Computer-based tools have changed the focus and modes of design thinking in architecture. While often criticized for its overemphasis on formal expressions and its pursuit of the spectacular, digital creativity has begun to take into account a multiplicity of design factors that define architecture. These factors relate to performance simulation and analysis, constructability, and Building Information Modelling (BIM). This paper discusses the use of physical and digital mock-ups in the context of building technology courses. It uses these mock-ups as an important vehicle that provides students with a feedback mechanism regarding often digitally idealized creative thinking.  
keywords BIM, Building information modelling, Parametric construction details, Construction assemblies 
series CAADRIA
email
last changed 2022/06/07 07:57

_id ijac201310206
id ijac201310206
authors Zarzycki, Andrzej
year 2013
title Integrating Physical and Digital Assemblies
source International Journal of Architectural Computing vol. 11 - no. 2, 247-266
summary Computer-based tools have changed the focus and modes of design thinking in architecture. While often criticized for its overemphasis on formal expressions and its pursuit of the spectacular, digital creativity has begun to take into account a multiplicity of design factors that define architecture. These factors relate to performance simulation and analysis, constructability, and building information modeling (BIM). This paper discusses the use of physical and digital mock-ups in the context of building technology courses. It uses these mock-ups as an important vehicle that provides students with a feedback mechanism regarding often digitally idealized creative thinking.
series journal
last changed 2019/05/24 09:55

No more hits.

HOMELOGIN (you are user _anon_778100 from group guest) CUMINCAD Papers Powered by SciX Open Publishing Services 1.002