CumInCAD is a Cumulative Index about publications in Computer Aided Architectural Design
supported by the sibling associations ACADIA, CAADRIA, eCAADe, SIGraDi, ASCAAD and CAAD futures

PDF papers
References

Hits 1 to 6 of 6

_id sigradi2014_345
id sigradi2014_345
authors Shiordia Lopez, Rodrigo; Dr. David Jason Gerber
year 2014
title Context-Aware Multi-Agent Systems: Negotiating Intensive Fields
source SIGraDi 2014 [Proceedings of the 18th Conference of the Iberoamerican Society of Digital Graphics - ISBN: 978-9974-99-655-7] Uruguay- Montevideo 12,13,14 November 2014, pp. 138-143
summary This paper presents research into a technique using context-aware agent based branching L-systems to design explore an urban development scheme in an area of peripheral Mexico City. The design research demonstrates a viable approach to engaging design with specific agent driven objectives that negotiate across highly differentiated fields of data sets. These data sets are the driving force behind this technique, to generate highly differentiated infrastructure and urban networks that are simulated to be autonomous and emergent. The described system consists of simulated robotic autonomous agents that sample and negotiate across data from the site, and react to differences in order to deploy an irrigation network for a polluted and highly saline former lake-bed east of Mexico City.
keywords Multi-Agent Systems; L-Systems; Generative Urban Design; Multi-Objective Optimization: Design Agency
series SIGRADI
email
last changed 2016/03/10 10:00

_id acadia14projects_139
id acadia14projects_139
authors Shiordia, Rodrigo; Gerber, David Jason
year 2014
title Context-Aware Multi-Agent Systems: Negotiating Intensive Fields
doi https://doi.org/10.52842/conf.acadia.2014.139
source ACADIA 14: Design Agency [Projects of the 34th Annual Conference of the Association for Computer Aided Design in Architecture (ACADIA) ISBN 9789126724478]Los Angeles 23-25 October, 2014), pp. 139-142
summary This poster presents an implementation of a context aware L-System for simulating a generative method for deploying irrigation networks in a brownfield in Mexico City. A custom system was designed with the constraints that a discrete data sensing logic imposes on a generative strategy based on a scheme responding to soil salinity.
keywords Multi-Agent Systems in Design, Generative Design, Big Data, Robotics and Autonomous Design Systems, Collective Intelligence in Design, L-System
series ACADIA
type Research Projects
email
last changed 2022/06/07 07:56

_id acadia14_153
id acadia14_153
authors Lopez, Rodrigo Shiordia; Gerber, David
year 2014
title Context-Aware Multi-Agent Systems: Negotiating Intensive Fields
doi https://doi.org/10.52842/conf.acadia.2014.153
source ACADIA 14: Design Agency [Proceedings of the 34th Annual Conference of the Association for Computer Aided Design in Architecture (ACADIA) ISBN 9781926724478]Los Angeles 23-25 October, 2014), pp. 153-162
summary This paper presents research and experimentation with context-aware multi-agent based design systems to simulate and propose urban schemes that specifically utilize fields of differentiated intensity data in order to propose an infrastructure to support urban revitalization
keywords Parametric Design, Generative Design, Multidisciplinary Design Optimization (MDO), Multi-Agent Systems, Autonomous Systems, Regenerative Urbanism
series ACADIA
type Normal Paper
email
last changed 2022/06/07 07:59

_id ecaade2014_233
id ecaade2014_233
authors Evangelos Pantazis and David Gerber
year 2014
title Material Swarm Articulations - New View Reciprocal Frame Canopy
doi https://doi.org/10.52842/conf.ecaade.2014.1.463
source Thompson, Emine Mine (ed.), Fusion - Proceedings of the 32nd eCAADe Conference - Volume 1, Department of Architecture and Built Environment, Faculty of Engineering and Environment, Newcastle upon Tyne, England, UK, 10-12 September 2014, pp. 463-473
summary Material Swarm Articulations, is an experiment in developing a multi-objective optimization system that incorporates bottom up approaches for informing architectural design. The paper presents an initial built project that demonstrates the combination of a structural form finding method, with an agent based design system through the digital fabrication processes. The objective of this research is to develop a workflow combined with material and construction constraints that has the potential to increase performance objectives while enabling geometric complexity and design driven articulation of a traditional tectonic system. The emphasis of the research at this stage is to take advantage of material properties and assembly methods applied to a digital design and simulation workflow that enables emergent patterns to influence the performance of the space.The paper illustrates the research through a prototype of a self standing canopy structure in 1:1 scale. It presents results of the form finding, generative patterning, digital fabrication affordances and sets and agenda for next steps in the use of multi-agent systems for design purposes.
wos WOS:000361384700046
keywords Computational design; agent-based system; digital fabrication; parametric design; reciprocal frames; form finding; multi-objective optimization, multi-agent systems for design
series eCAADe
email
last changed 2022/06/07 07:55

_id caadria2014_161
id caadria2014_161
authors Heydarian, Arsalan; Joao P. Carneiro,David Gerber, Burcin Becerik-Gerber, Timothy Hayes and Wendy Wood
year 2014
title Immersive Virtual Environments: Experiments on Impacting Design and Human Building Interaction
doi https://doi.org/10.52842/conf.caadria.2014.729
source Rethinking Comprehensive Design: Speculative Counterculture, Proceedings of the 19th International Conference on Computer-Aided Architectural Design Research in Asia (CAADRIA 2014) / Kyoto 14-16 May 2014, pp. 729–738
summary This research prefaces the need for engaging with endusers in early stages of design as means to achieve higher performing designs with an increased certainty for enduser satisfaction. While the architecture, engineering, and construction (AEC) community has previously used virtual reality, the primary use has been for coordination and visualization of Building Information Models (BIM). This work builds upon the value of use of virtual environments in AEC processes but asks the research question "how can we better test and measure design alternatives through the integration of immersive virtual reality into our digital and physical mock up workflows? " The work is predicated on the need for design exploration through associative parametric design models, as well as, testing and measuring design alternatives with human subjects. The paper focuses on immersive virtual environments (IVEs) and presents a literature review of the use of virtual environments for integrating enduser feedback during the design stage. In a controlled pilot experiment, the authors find that human participants perform similarly in IVE and the physical environment in everyday tasks. The participants indicated they felt a strong sense of "presence" in IVE. In the future, the authors plan on using IVE to explore the integration of multi agent systems to impact building design performance and occupant satisfaction.
keywords Virtual Reality; Prototyping; Design Technology; Immersive Virtual Environments; Feedback
series CAADRIA
email
last changed 2022/06/07 07:51

_id acadia14projects_127
id acadia14projects_127
authors Pantazis, Evangelos; Gerber, David Jason; Pantazis, Jason
year 2014
title Material Swarm Articulations: The New View Reciprocal Frame Canopy
doi https://doi.org/10.52842/conf.acadia.2014.127
source ACADIA 14: Design Agency [Projects of the 34th Annual Conference of the Association for Computer Aided Design in Architecture (ACADIA) ISBN 9789126724478]Los Angeles 23-25 October, 2014), pp. 127-130
summary NEW VIEW is a pavilion structure that explores how a swarm driven and form found tectonic system is applied to a non-uniform parametric reciprocal frame structure can be combined with material properties, the vernacular and fabrication techniques in order to design and construct novel spatial structures through a material swarm articulation.
keywords Form Finding, Generative Design, Parametric design, Digital Fabrication, Agent Based Systems, Craft in a Digital Age, Material Tectonics
series ACADIA
type Research Projects
email
last changed 2022/06/07 08:00

No more hits.

HOMELOGIN (you are user _anon_62348 from group guest) CUMINCAD Papers Powered by SciX Open Publishing Services 1.002