CumInCAD is a Cumulative Index about publications in Computer Aided Architectural Design
supported by the sibling associations ACADIA, CAADRIA, eCAADe, SIGraDi, ASCAAD and CAAD futures

PDF papers
References

Hits 1 to 20 of 668

_id caadria2014_000
id caadria2014_000
authors Gu, Ning; Shun Watanabe, Halil Erhan, Matthias Hank Haeusler, Weixin Huang and Ricardo Sosa (eds.)
year 2014
title Rethinking Comprehensive Design: Speculative Counterculture
doi https://doi.org/10.52842/conf.caadria.2014
source Proceedings of the 19th International Conference on Computer-Aided Architectural Design Research in Asia (CAADRIA 2014) / Kyoto 14-16 May 2014, 994 p.
summary Rethinking Comprehensive Design—the 19th International Conference on Computer-Aided Architectural Design Research in Asia (CAADRIA 2014)—emphasises a cross-disciplinary context to challenge the mainstream culture of computational design in architecture. It aims to (re)explore the potential of computational design methods and technologies in architecture from a holistic perspective. The conference provides an international forum where academics and practitioners share their novel research development and reflection for defining the future of computation in architectural design. Hosted by the Department of Design, Engineering and Management at the Kyoto Institute of Technology, CAADRIA 2014 presents 88 peer-reviewed full papers from all over the world. These high-quality research papers are complimented by 34 short work-in-progress papers submitted for the poster session of the conference. The conference proceedings were produced by a motivated team of volunteers from the CAADRIA community through an extensive collaboration. The 88 full papers rigorously double-blind reviewed by the dedicated International Review Committee (consisting of 74 experts), testify to CAADRIA’s highly respectable international standing. Call for abstracts sent out in July 2013 attracted 298 submissions. They were initially reviewed by the Paper Selection Committee who accepted 198 abstracts for further development. Of these, 118 full papers were eventually submitted in the final stage. Each submitted paper was then assessed by at least two members of the International Review Committee. Following the reviewers’ recommendations, 91 papers were accepted by the conference, of which 88 are included in this volume and for presentation in CAADRIA 2014. Collectively, these 88 papers define Rethinking Comprehensive Design in terms of the following research streams: Shape Studies; User Participation in Design; Human-Computer Interaction; Digital Fabrication and Construction; Computational Design Analysis; New Digital Design Concepts and Strategies; Practice-Based and Interdisciplinary Computational Design Research; Collaborative and Collective Design; Generative, Parametric and Evolutionary Design; Design Cognition and Creativity; Virtual / Augmented Reality and Interactive Environments; Computational Design Research and Education; and Theory, Philosophy and Methodology of Computational Design Research. In the following pages, you will find a wide range of scholarly papers organised under these streams that truly capture the quintessence of the research concepts. This volume will certainly inspire you and facilitate your journey in Rethinking Comprehensive Design.
series CAADRIA
last changed 2022/06/07 07:49

_id caadria2014_173
id caadria2014_173
authors Lim, Jason; Ammar Mirjan, Fabio Gramazio and Matthias Kohler
year 2014
title Robotic Metal Aggregations
doi https://doi.org/10.52842/conf.caadria.2014.159
source Rethinking Comprehensive Design: Speculative Counterculture, Proceedings of the 19th International Conference on Computer-Aided Architectural Design Research in Asia (CAADRIA 2014) / Kyoto 14-16 May 2014, pp. 159–168
summary The recent convergence of computational design and digital fabrication has made new forms of architectural materialization possible. A workshop conducted at the Royal Melbourne Institute of Technology investigated how differentiated lightweight metal structures may be designed and fabricated under these new conditions. The workshop aim was to complete three such structures; each one is aggregated from aluminum profiles that are robotically assembled according to computationally driven geometric logics. The key challenge was to enable participants, assumed to lack programming and robotic fabrication experience, to design and construct their structures within imposed time constraints. This paper describes the subsequent development of accessible computational design tools and a robust robotic fabrication method for the workshop, and highlights the key decisions taken with their implementation. The workshop results are discussed and the design tools evaluated with respect to them. The paper concludes by recommending an approach to developing computational design tools which emphasizes the importance of usability and integration with the fabrication process.
keywords Robotic fabrication; computational design; visual programming; lightweight structures
series CAADRIA
email
last changed 2022/06/07 07:59

_id ecaade2015_38
id ecaade2015_38
authors Stavrakantonaki, Marina
year 2015
title A Framework for Input Data Processing During Building Energy Model Calibration. A Case Study
doi https://doi.org/10.52842/conf.ecaade.2015.1.625
source Martens, B, Wurzer, G, Grasl T, Lorenz, WE and Schaffranek, R (eds.), Real Time - Proceedings of the 33rd eCAADe Conference - Volume 1, Vienna University of Technology, Vienna, Austria, 16-18 September 2015, pp. 625-634
summary Key parameter of a reasoning process supporting real time performance is the use of active heuristics that facilitate the achievement of goals in a timely manner (Dodiawala et al. 1989). A real time approach should incorporate speed, timeliness and adaptation during the execution of tasks. Speed and efficient knowledge processing are addressed for the solution of complex building engineering problems, such as the calibration of Building Energy Models (BEM) to the actual performance data. During retrofit projects, calibrated BEM models aid the design process, and provide a solid base for performative assessments. Despite the demand for building performance evaluations, BEM calibration remains a work-intensive task (Lam et al. 2014). This study proposes a time efficient framework for BEM calibration input data management based on the methodology of a blackboard artificial intelligence knowledge processing system. The resulting model was used for sequential data mining for the energy assessment during the renovation of a commercial building.
wos WOS:000372317300068
series eCAADe
email
more https://mh-engage.ltcc.tuwien.ac.at/engage/ui/watch.html?id=e440bdd6-7021-11e5-bdb0-00190f04dc4c
last changed 2022/06/07 07:56

_id caadria2014_029
id caadria2014_029
authors Devilat, Bernadette and Stephen Gage
year 2014
title The Role of the Record and the Paradox of the Original
doi https://doi.org/10.52842/conf.caadria.2014.317
source Rethinking Comprehensive Design: Speculative Counterculture, Proceedings of the 19th International Conference on Computer-Aided Architectural Design Research in Asia (CAADRIA 2014) / Kyoto 14-16 May 2014, pp. 317–326
summary Earthquakes have progressively destroyed the Chilean built heritage over the years, not only due to the initial devastation they produce, but also as a result of the applied reconstruction approaches that follow. The design of reconstruction projects has usually aimed to re-establish the previous built form of historic buildings; generating new ‘heritage’ constructions that try to imitate only the appearance of previous ones rather than understanding that heritage, in the case studied, includes a sustainable mode of construction. This issue occurs in places where previous records are sometimes non-existent, which poses the question of authenticity. Considering the regularity of earthquakes in Chile, the role of accurate recording technologies, such as 3D laser scanning, becomes relevant. Their implications for new and existing architectures in the re-construction process include being a virtual database for demolition, retrofitting, intervention or replica. This paper examines the survey of the church of San Lorenzo de Tarapacá obtained in January 2013, and discusses how this, in conjunction with previous records, might impact on what is considered heritage and the design of future reconstructions.
keywords Earthquakes; 3D scanning; heritage intervention; replica; Tarapacá
series CAADRIA
email
last changed 2022/06/07 07:55

_id ecaade2023_000
id ecaade2023_000
authors Dokonal, Wolfgang, Hirschberg, Urs and Wurzer, Gabriel
year 2023
title eCAADe 2023 Digital Design Reconsidered - Volume 1
doi https://doi.org/10.52842/conf.ecaade.2023.1.001
source Dokonal, W, Hirschberg, U and Wurzer, G (eds.), Digital Design Reconsidered - Proceedings of the 41st Conference on Education and Research in Computer Aided Architectural Design in Europe (eCAADe 2023) - Volume 1, Graz, 20-22 September 2023, 905 p.
summary The conference logo is a bird’s eye view of spiral stairs that join and separate – an homage to the famous double spiral staircase in Graz, a tourist attraction of this city and a must-see for any architecturally minded visitor. Carved out of limestone, the medieval construction of the original is a daring feat of masonry as well as a symbolic gesture. The design speaks of separation and reconciliation: The paths of two people that climb the double spiral stairs separate and then meet again at each platform. The relationship between architectural design and the growing digital repertoire of tools and possibilities seems to undergo similar cycles of attraction and rejection: enthusiasm about digital innovations – whether in Virtual Reality, Augmented Reality, Energy Design, Robotic Fabrication, the many Dimensions of BIM or, as right now, in AI and Machine Learning – is typically followed by a certain disillusionment and a realization that the promises were somewhat overblown. But a turn away from these digital innovations can only be temporary. In our call for papers we refer to the first and second ‘digital turns’, a term Mario Carpo coined. Yes, it’s a bit of a pun, but you could indeed see these digital turns in our logo as well. Carpo would probably agree that design and the digital have become inseparably intertwined. While they may be circling in different directions, an innovative rejoinder is always just around the corner. The theme of the conference asked participants to re-consider the relationship between Design and the Digital. The notion of a cycle is already present in the syllable “re”. Indeed, 20 years earlier, in 2003, we held an ECAADE conference in Graz simply under the title “Digital Design” and our re-using – or is it re-cycling? – the theme can be seen as the completion of one of those cycles described above: One level up, we meet again, we’ve come full circle. The question of the relationship between Design and the Digital is still in flux, still worthy of renewed consideration. There is a historical notion implicit in the theme. To reconsider something, one needs to take a step back, to look into the past as well as into the future. Indeed, at this conference we wanted to take a longer view, something not done often enough in the fast-paced world of digital technology. Carefully considering one’s past can be a source of inspiration. In fact, the double spiral stair that inspired our conference logo also inspired many architects through the ages. Konrad Wachsmann, for example, is said to have come up with his famous Grapevine assembly system based on this double spiral stair and its intricate joinery. More recently, Rem Koolhaas deemed the double spiral staircase in Graz important enough to include a detailed model of it in his “elements of architecture” exhibition at the Venice Biennale in 2014. Our interpretation of the stair is a typically digital one, you might say. First of all: it’s a rendering of a virtual model; it only exists inside a computer. Secondly, this virtual model isn’t true to the original. Instead, it does what the digital has made so easy to do: it exaggerates. Where the original has just two spiral stairs that separate and join, our model consists of countless stairs that are joined in this way. We see only a part of the model, but the stairs appear to continue in all directions. The implication is of an endless field of spiral stairs. As the 3D model was generated with a parametric script, it would be very easy to change all parameters of it – including the number of stairs that make it up. Everyone at this conference is familiar with the concept of parametric design: it makes generating models of seemingly endless amounts of connected spiral stairs really easy. Although, of course, if we’re too literal about the term ‘endless’, generating our stair model will eventually crash even the most advanced computers. We know that, too. – That's another truth about the Digital: it makes a promise of infinity, which, in the end, it can’t keep. And even if it could: what’s the point of just adding more of the same: more variations, more options, more possible ways to get lost? Doesn’t the original double spiral staircase contain all those derivatives already? Don’t we know that ‘more’ isn’t necessarily better? In the original double spiral stair the happy end is guaranteed: the lovers’ paths meet at the top as well as when they exit the building. Therefore, the stair is also colloquially known as the Busserlstiege (the kissing stair) or the Versöhnungsstiege (reconciliation stair). In our digitally enhanced version, this outcome is no longer clear: we can choose between multiple directions at each level and we risk losing sight of the one we were with. This is also emblematic of our field of research. eCAADe was founded to promote “good practice and sharing information in relation to the use of computers in research and education in architecture and related professions” (see ecaade.org). That may have seemed a straightforward proposition forty years ago, when the association was founded. A look at the breadth and depth of research topics presented and discussed at this conference (and as a consequence in this book, for which you’re reading the editorial) shows how the field has developed over these forty years. There are sessions on Digital Design Education, on Digital Fabrication, on Virtual Reality, on Virtual Heritage, on Generative Design and Machine Learning, on Digital Cities, on Simulation and Digital Twins, on BIM, on Sustainability, on Circular Design, on Design Theory and on Digital Design Experimentations. We hope you will find what you’re looking for in this book and at the conference – and maybe even more than that: surprising turns and happy encounters between Design and the Digital.
series eCAADe
email
last changed 2023/12/10 10:49

_id ecaade2023_001
id ecaade2023_001
authors Dokonal, Wolfgang, Hirschberg, Urs and Wurzer, Gabriel
year 2023
title eCAADe 2023 Digital Design Reconsidered - Volume 2
doi https://doi.org/10.52842/conf.ecaade.2023.2.001
source Dokonal, W, Hirschberg, U and Wurzer, G (eds.), Digital Design Reconsidered - Proceedings of the 41st Conference on Education and Research in Computer Aided Architectural Design in Europe (eCAADe 2023) - Volume 2, Graz, 20-22 September 2023, 899 p.
summary The conference logo is a bird’s eye view of spiral stairs that join and separate – an homage to the famous double spiral staircase in Graz, a tourist attraction of this city and a must-see for any architecturally minded visitor. Carved out of limestone, the medieval construction of the original is a daring feat of masonry as well as a symbolic gesture. The design speaks of separation and reconciliation: The paths of two people that climb the double spiral stairs separate and then meet again at each platform. The relationship between architectural design and the growing digital repertoire of tools and possibilities seems to undergo similar cycles of attraction and rejection: enthusiasm about digital innovations – whether in Virtual Reality, Augmented Reality, Energy Design, Robotic Fabrication, the many Dimensions of BIM or, as right now, in AI and Machine Learning – is typically followed by a certain disillusionment and a realization that the promises were somewhat overblown. But a turn away from these digital innovations can only be temporary. In our call for papers we refer to the first and second ‘digital turns’, a term Mario Carpo coined. Yes, it’s a bit of a pun, but you could indeed see these digital turns in our logo as well. Carpo would probably agree that design and the digital have become inseparably intertwined. While they may be circling in different directions, an innovative rejoinder is always just around the corner. The theme of the conference asked participants to re-consider the relationship between Design and the Digital. The notion of a cycle is already present in the syllable “re”. Indeed, 20 years earlier, in 2003, we held an ECAADE conference in Graz simply under the title “Digital Design” and our re-using – or is it re-cycling? – the theme can be seen as the completion of one of those cycles described above: One level up, we meet again, we’ve come full circle. The question of the relationship between Design and the Digital is still in flux, still worthy of renewed consideration. There is a historical notion implicit in the theme. To reconsider something, one needs to take a step back, to look into the past as well as into the future. Indeed, at this conference we wanted to take a longer view, something not done often enough in the fast-paced world of digital technology. Carefully considering one’s past can be a source of inspiration. In fact, the double spiral stair that inspired our conference logo also inspired many architects through the ages. Konrad Wachsmann, for example, is said to have come up with his famous Grapevine assembly system based on this double spiral stair and its intricate joinery. More recently, Rem Koolhaas deemed the double spiral staircase in Graz important enough to include a detailed model of it in his “elements of architecture” exhibition at the Venice Biennale in 2014. Our interpretation of the stair is a typically digital one, you might say. First of all: it’s a rendering of a virtual model; it only exists inside a computer. Secondly, this virtual model isn’t true to the original. Instead, it does what the digital has made so easy to do: it exaggerates. Where the original has just two spiral stairs that separate and join, our model consists of countless stairs that are joined in this way. We see only a part of the model, but the stairs appear to continue in all directions. The implication is of an endless field of spiral stairs. As the 3D model was generated with a parametric script, it would be very easy to change all parameters of it – including the number of stairs that make it up. Everyone at this conference is familiar with the concept of parametric design: it makes generating models of seemingly endless amounts of connected spiral stairs really easy. Although, of course, if we’re too literal about the term ‘endless’, generating our stair model will eventually crash even the most advanced computers. We know that, too. – That's another truth about the Digital: it makes a promise of infinity, which, in the end, it can’t keep. And even if it could: what’s the point of just adding more of the same: more variations, more options, more possible ways to get lost? Doesn’t the original double spiral staircase contain all those derivatives already? Don’t we know that ‘more’ isn’t necessarily better? In the original double spiral stair the happy end is guaranteed: the lovers’ paths meet at the top as well as when they exit the building. Therefore, the stair is also colloquially known as the Busserlstiege (the kissing stair) or the Versöhnungsstiege (reconciliation stair). In our digitally enhanced version, this outcome is no longer clear: we can choose between multiple directions at each level and we risk losing sight of the one we were with. This is also emblematic of our field of research. eCAADe was founded to promote “good practice and sharing information in relation to the use of computers in research and education in architecture and related professions” (see ecaade.org). That may have seemed a straightforward proposition forty years ago, when the association was founded. A look at the breadth and depth of research topics presented and discussed at this conference (and as a consequence in this book, for which you’re reading the editorial) shows how the field has developed over these forty years. There are sessions on Digital Design Education, on Digital Fabrication, on Virtual Reality, on Virtual Heritage, on Generative Design and Machine Learning, on Digital Cities, on Simulation and Digital Twins, on BIM, on Sustainability, on Circular Design, on Design Theory and on Digital Design Experimentations. We hope you will find what you’re looking for in this book and at the conference – and maybe even more than that: surprising turns and happy encounters between Design and the Digital.
series eCAADe
type normal paper
email
last changed 2024/08/29 08:36

_id caadria2014_237
id caadria2014_237
authors Imbern, Matias
year 2014
title (Re)Thinking the Brick: Digital Tectonic Masonry Systems
doi https://doi.org/10.52842/conf.caadria.2014.211
source Rethinking Comprehensive Design: Speculative Counterculture, Proceedings of the 19th International Conference on Computer-Aided Architectural Design Research in Asia (CAADRIA 2014) / Kyoto 14-16 May 2014, pp. 211–220
summary "The introduction of digital tools in the production of architecture undoubtedly constitutes the main force behind contemporary architectural innovation. In addition, the interaction of digital technologies with analog craft manufacturing -a rather unexplored field of study- suggests a wide range of novel opportunities. This research focuses on developing a framework for deploying digital design techniques to the production of bricks under vernacular technology as a medium of achieving geometrical variations and functional complexity in domestic-scale projects. Solid clay bricks are embedded in traditional ceramic-construction culture. Thus, this investigation faces the challenges of making a feasible innovative system in a country where digital fabrication is not an economically viable option, and engaging a design that can be easily implemented with current hand-labour. Consequently, the new bricks would be massively introduced in the construction market, allowing novel formal and functional possibilities for designers.
keywords Ceramics; brick; tectonic; digital tools; fabrication; vernacular technology
series CAADRIA
email
last changed 2022/06/07 07:50

_id caadria2014_164
id caadria2014_164
authors Jemtrud, Michael and Keith G. Ragsdale
year 2014
title Three Little Shacks
doi https://doi.org/10.52842/conf.caadria.2014.883
source Rethinking Comprehensive Design: Speculative Counterculture, Proceedings of the 19th International Conference on Computer-Aided Architectural Design Research in Asia (CAADRIA 2014) / Kyoto 14-16 May 2014, pp. 883–892
summary The paper is premised upon the notion that tools and techniques have the potential to resist the premature prefiguring of problems and solutions in projectbased activity, with particular relevance in collaborative design practices. The architect’s métier and mode of knowledge production is marked by the capacity to make artefacts. Because our age is characterized by the imperative to innovate and evolve technically, architectural ideation must now engage an array of computationally-based tools for imaging, information management, simulation and fabrication. This paper, framed within the theoretical and productive context of a research-creation project, investigates the ontological status of process-work, speed, and the notion of failing fast through the prototyping of three small buildings, or shacks. It does this through a strategic choreography of factual and counterfactual investigations that give rise to fabricative knowledge incapable of being prescribed conceptually from the outset. It will be claimed that, in the case of architecture, the potential of technics to reflectively and playfully re-work things and ideas is also a participatory mode of ethical engagement.
keywords Tools; tool-making; technics; prototyping; architecture
series CAADRIA
email
last changed 2022/06/07 07:52

_id caadria2016_787
id caadria2016_787
authors Knapp, Chris; Jonathan Nelson, Andrew Kudless and Sascha Bohnenberger
year 2016
title Lightweight material prototypes using dense bundled systems to emulate an ambient environment
doi https://doi.org/10.52842/conf.caadria.2016.787
source Living Systems and Micro-Utopias: Towards Continuous Designing, Proceedings of the 21st International Conference on Computer-Aided Architectural Design Research in Asia (CAADRIA 2016) / Melbourne 30 March–2 April 2016, pp. 787-796
summary This paper describes and reflects upon a computational de- sign and digital fabrication research project that was developed and implemented over 2014-2015, with subsequent development continu- ing for applications at present. The aim of the research was to develop methods of modelling, analysis, and fabrication that facilitate integra- tive approaches to architectural design and construction. In this con- text, the development of material prototypes, digital simulations, and parametric frameworks were pursued in parallel in order to inform and reform successive iterations throughout the process, leading to a re- fined workflow for engineering, production, and speculation upon fu- ture directions of the work.
keywords Digital fabrication; biomimicry; ambient environments; grasshopper; computational design
series CAADRIA
email
last changed 2022/06/07 07:51

_id ecaade2014_144
id ecaade2014_144
authors Michail Georgiou, Odysseas Georgiou and Theresa Kwok
year 2014
title Affordable Complexity - 'God's Eye' - Sukkahville 2013
doi https://doi.org/10.52842/conf.ecaade.2014.2.169
source Thompson, Emine Mine (ed.), Fusion - Proceedings of the 32nd eCAADe Conference - Volume 2, Department of Architecture and Built Environment, Faculty of Engineering and Environment, Newcastle upon Tyne, England, UK, 10-12 September 2014, pp. 169-177
summary The paper presents a novel approach on the design of complex forms by re-formulating the relationships between form, structure, material, fabrication and construction. It is proposed that current design models are supplemented by feedback-enabled frameworks, integrating material properties, fabrication constraints and construction logistics. As such, a series of input parameters based on industry standards, filtered through physical testing and digital simulations, feed a central computational model. The outcome is weighed against a set of objectives towards an optimum design solution which embodies construction logic while ultimately opposing costly inflated ad-hoc solutions. Within the above framework and as part of a broader research conducted at [ARC], this paper illustrates a design methodology implemented at the case study of 'God's Eye', winning entry of Sukkahville 2013 International Design Competition. It is further supported that a high tech, interdisciplinary design process based on efficient material assemblies allows for a complex, yet efficient end result, through low tech affordable construction.
wos WOS:000361385100018
keywords Material-based design; design process; construction logistics; interdisciplinary design; computational design
series eCAADe
email
last changed 2022/06/07 07:58

_id caadria2016_809
id caadria2016_809
authors Nakapan, Walaiporn
year 2016
title Using the SAMR Model to transform mobile learning in a History of Art and Architecture Classroom
doi https://doi.org/10.52842/conf.caadria.2016.809
source Living Systems and Micro-Utopias: Towards Continuous Designing, Proceedings of the 21st International Conference on Computer-Aided Architectural Design Research in Asia (CAADRIA 2016) / Melbourne 30 March–2 April 2016, pp. 809-818
summary This paper presents the progress of a pilot classroom, which uses mobile devices to enhance instructor-student classroom interac- tions and students’ learning of the History of Art and Architecture. The main objective of this research was to find a way of improving classroom activities, for the coming year, by making the best possible use of technology to enable students to learn more successfully and improve their understanding of the lesson content. In this paper, class- room activities during 2014 and 2015 are analysed using the SAMR Model coupled with Bloom’s revised taxonomy and the EdTech Quin- tet Model. In addition, a plan for the redesign and improvement of ac- tivities in 2016 is proposed, the effectiveness of the SAMR model at improving in class activities is discussed and a perspective on how to develop the classroom using the “SAMR ladder” is included. The re- sults show that in 2015, 25% of the students in the class achieved an A grade, and less than 5% were graded F compared to 26% in 2012.
keywords Design education; mobile-based learning; History of Art and Architecture; SAMR model
series CAADRIA
email
last changed 2022/06/07 07:59

_id ecaade2014_018
id ecaade2014_018
authors Nils Seifert, Michael Mühlhaus, Gerhard Schubert, Dietrich Fink and Frank Petzold
year 2014
title Decision support for inner-city development - An interactive customizable environment for decision-making processes in urban planning.
doi https://doi.org/10.52842/conf.ecaade.2014.1.043
source Thompson, Emine Mine (ed.), Fusion - Proceedings of the 32nd eCAADe Conference - Volume 1, Department of Architecture and Built Environment, Faculty of Engineering and Environment, Newcastle upon Tyne, England, UK, 10-12 September 2014, pp. 43-52
summary Re-densification of inner-city areas is a highly topical socio-political issue. In order to meet the increasing demand for centrally located living space, the cities have to amend building laws. At present, there are no analytical means of directly comparing and assessing different strategies and measures aimed at identifying the potential for internal development in specific urban quarters and learning about the consequences for the citizens. In this publication, we describe an interactive digital tool that monitors the key building codes and visualizes their effects on the urban structure in real-time, so that this can serve as an informed basis for debate and argumentation in the political decision-making and planning process, consequently supporting the development of re-densification strategies that are well-suited to their urban context.
wos WOS:000361384700003
keywords Urban planning; redensification; decision support; visual programming; versioning
series eCAADe
email
last changed 2022/06/07 07:58

_id caadria2020_249
id caadria2020_249
authors Poustinchi, Ebrahim, Fehrenbach, Joshua and Holmes, Tyler
year 2020
title Ro-Puzzle - A robotic proposal for moving architecture
doi https://doi.org/10.52842/conf.caadria.2020.2.433
source D. Holzer, W. Nakapan, A. Globa, I. Koh (eds.), RE: Anthropocene, Design in the Age of Humans - Proceedings of the 25th CAADRIA Conference - Volume 2, Chulalongkorn University, Bangkok, Thailand, 5-6 August 2020, pp. 433-442
summary This paper presents a project-based research study called Ro-puzzle-a robotic architectural "puzzle," using robotic solutions to illustrate the possibility of an animated/dynamic architectural composition and configurations in the physical world. Through studying super-comportment (Wiscombe, 2014) in both dynamic and static scenarios, this research proposes a new reading to the traditional robotic task of "pick-and-place", through an intuitive motion design process using a custom-made bridge software, Oriole. By revisiting the notion of robotics in the field of design/architecture, Ro-Puzzle investigates the design possibilities of robotics, not merely as fabrication tools, but possibly as physical extensions of the design software into the physical world of architecture, and as a way to expand the digital design imaginations/possibilities beyond the digital screens. In this manuscript and initially tested at the desktop scale, Ro-Puzzle research investigation demonstrated the possibilities of robots as architectural "components" within the architecture/building. This research shows that through the development of custom software/hardware platforms, it is possible to domesticize robotic technology as an active agent in the design process through physical simulation.
keywords Robotics; Design; Animation; Robotic Architecture; Dynamic Architecture
series CAADRIA
email
last changed 2022/06/07 08:00

_id ecaade2022_431
id ecaade2022_431
authors Sieder-Semlitsch, Jakob and Nicholas, Paul
year 2022
title Self-Serveying Multi-Robot System for Remote Deposition Modelling
doi https://doi.org/10.52842/conf.ecaade.2022.1.233
source Pak, B, Wurzer, G and Stouffs, R (eds.), Co-creating the Future: Inclusion in and through Design - Proceedings of the 40th Conference on Education and Research in Computer Aided Architectural Design in Europe (eCAADe 2022) - Volume 1, Ghent, 13-16 September 2022, pp. 233–240
summary The need for increased automation of the AEC sector has been extensively documented within the architectural discipline over recent years. Far beyond economic perspectives, current advances in technology offer an increased and more direct implementation of sustainable materials. Within this research, the potential for the re-use of material with low embodied energy within automated construction will be examined. Herefore, Remote Material Deposition (RDM, firstly described in Dörfler et al., 2014) is utilized as main fabrication method, deploying varying compositions of local building debris, lime mortar, and sand, via a throwing arm. This research explores a method of continuous verification of material deployment and removal of material oversaturation to guarantee accuracy. Herefore, all instances of the robot ecology are in direct communication with one another and the user for verification, adaptation, and information. The proposed framework is examined through experimentation by designing, building, and implementing an inter-communicative network of bespoke semi-autonomous robots with all proposed parts of the system.
keywords Construction Automation, Material Reuse, Onsite Construction, Self Verifying System, Robot Ecology, Additive Manufacturing
series eCAADe
email
last changed 2024/04/22 07:10

_id ecaade2024_167
id ecaade2024_167
authors Alammar, Ammar; Alymani, Abdulrahman; Jabi, Wassim
year 2024
title Building Energy Efficiency Estimations with Random Forest for Single and Multi-Zones
doi https://doi.org/10.52842/conf.ecaade.2024.2.365
source Kontovourkis, O, Phocas, MC and Wurzer, G (eds.), Data-Driven Intelligence - Proceedings of the 42nd Conference on Education and Research in Computer Aided Architectural Design in Europe (eCAADe 2024), Nicosia, 11-13 September 2024, Volume 2, pp. 365–374
summary Surrogate models (SM) present an opportunity for rapid assessment of a building's performance, surpassing the pace of simulation-based methods. Setting up a simulation for a single concept involves defining numerous parameters, disrupting the architect's creative flow due to extended simulation run times. Therefore, this research explores integrating building energy analysis with advanced machine learning techniques to predict heating and cooling loads (KWh/m2) for single and multi-zones in buildings. To generate the dataset, the study adopts a parametric generative workflow, building upon Chou and Bui's (2014) methodology. This dataset encompasses multiple building forms, each with unique topological connections and attributes, ensuring a thorough analysis across varied building scenarios. These scenarios undergo thermal simulation to generate data for machine learning analysis. The study primarily utilizes Random Forest (RF) as a new technique to estimate the heating and cooling loads in buildings, a critical factor in building energy efficiency. Following that, A random search approach is utilized to optimize the hyperparameters, enhancing the robustness and accuracy of the machine learning models employed later in the research. The RF algorithms demonstrate high performance in predicting heating and cooling loads (KWh/m2), contributing to enhanced building energy efficiency. The study underscores the potential of machine learning in optimizing building designs for energy efficiency.
keywords Heating and Cooling loads, Topology, Machine learning, Random Forest
series eCAADe
email
last changed 2024/11/17 22:05

_id ecaade2014_072
id ecaade2014_072
authors Serdar Aydin, Tian Tian Lo and Marc Aurel Schnabel
year 2014
title Gamification of Shape Grammars - Collaborative and Participatory Mass-Housing Design for Kashgar Old Town
doi https://doi.org/10.52842/conf.ecaade.2014.1.603
source Thompson, Emine Mine (ed.), Fusion - Proceedings of the 32nd eCAADe Conference - Volume 1, Department of Architecture and Built Environment, Faculty of Engineering and Environment, Newcastle upon Tyne, England, UK, 10-12 September 2014, pp. 603-612
summary This paper describes the framework of an ongoing research, titled 'quasiGRAMMARS', seeking a participatory mass-housing approach. In the context of the city of Kashgar, China, where the convergence of Islamic-Chinese-Turkic cultures has been shaped within a unique style since the 10th century, mass-housing becomes a 3D puzzle that requires each piece to be placed with full of care, motivation, participation, analysis, strategy, art and finally design. Gamification is about designing collaboration and participation for mass-housing, whereas shape grammars are meant for analysis and design. This game finally turns into a strategic game to be scrutinised further in relation to game theory that is mathematically concerned with the economics too. However, the present study aims at proving a participatory design strategy that incentivises valuable action through gamification techniques. Focusing on its specific design development, it reveals some of these techniques to gamify mass-housing for Kashgar in eight steps. While unveiling gamification term for use in architecture domain, the paper discusses the limitations and future directions of the research.
wos WOS:000361384700060
keywords Shape grammars; gamification; mass-housing; participatory decision-making; kashgar
series eCAADe
email
last changed 2022/06/07 07:56

_id ecaade2015_18
id ecaade2015_18
authors Agkathidis, Asterios
year 2015
title Generative Design Methods - Implementing Computational Techniques in Undergraduate Architectural Education
doi https://doi.org/10.52842/conf.ecaade.2015.2.047
source Martens, B, Wurzer, G, Grasl T, Lorenz, WE and Schaffranek, R (eds.), Real Time - Proceedings of the 33rd eCAADe Conference - Volume 2, Vienna University of Technology, Vienna, Austria, 16-18 September 2015, pp. 47-55
summary In continuation to the Deceptive Landscape Installation research project (Agkathidis, Kocatürk 2014), this paper investigates the implementation of generative design techniques in undergraduate architectural design education. After reviewing the main definitions of generative design synoptically, we have assessed the application of a modified generative method on a final year, undergraduate design studio, in order to evaluate its potential and its suitability within the framework of a research led design studio, leading to an RIBA accredited Part I degree. Our research findings based on analysis of the design outputs, student performance, external examiners reports as well as student course evaluation surveys indicate a positive outcome on the studio's design approach, as well as its suitability for an undergraduate design studio. They initiate a flourishing debate about accomplishments and failures of a design methodology, which still remains alien to many undergraduate curricula.
wos WOS:000372316000007
series eCAADe
email
more https://mh-engage.ltcc.tuwien.ac.at/engage/ui/watch.html?id=e6f673d4-6e8e-11e5-be22-93874392c2e4
last changed 2022/06/07 07:54

_id ecaade2014_086
id ecaade2014_086
authors Ahmed Sarhan and Peter Rutherford
year 2014
title Integrating Sustainability in the Architectural Design Education Process - Taxonomy of Challenges and Guidelines
doi https://doi.org/10.52842/conf.ecaade.2014.1.323
source Thompson, Emine Mine (ed.), Fusion - Proceedings of the 32nd eCAADe Conference - Volume 1, Department of Architecture and Built Environment, Faculty of Engineering and Environment, Newcastle upon Tyne, England, UK, 10-12 September 2014, pp. 323-332
summary The last decade have seen substantial calls and increasing pressure for developing an integrated design teaching framework, where sustainability is an imperative priority. This paper focuses on presenting a taxonomy of the main challenges encountered within the educational domain, in the attempt to reach an effective integration. The paper also presents a set guidelines to address and try to resolve the noted challenges. As the use of Building Performance Simulation (BPS) applications is a central approach in this process aiming to reach energy efficient buildings, the paper focuses on the shortcomings noted as a result of the use of these applications in the design studios, with particular emphasis on the thermal and lighting aspects of the simulation. The taxonomy presented is a summary of the findings from literature review, as well as the surveys results which were part of the author's research project discussed in the paper.
wos WOS:000361384700032
keywords Environmental design; building performance simulation; architectural design education
series eCAADe
email
last changed 2022/06/07 07:54

_id ascaad2014_017
id ascaad2014_017
authors Al-Ubaidy, Huda Salman
year 2014
title Experimenting with CAAD: As a means to solve conceptual design by architecture and architecture technology students
source Digital Crafting [7th International Conference Proceedings of the Arab Society for Computer Aided Architectural Design (ASCAAD 2014 / ISBN 978-603-90142-5-6], Jeddah (Kingdom of Saudi Arabia), 31 March - 3 April 2014, pp. 227-239
summary This study sought to characterise students’ design activity while designing with Computer Aided Design (CAAD) professional programs and its impact on the students’ design process. The design protocol participants were final year students (architectural design and architectural technology), who have spent at least four years in a school of architecture and were confident CAAD users. The analysis represents four CAAD-based protocols of final year students at a school of architecture. The analysed protocols varied in more than one aspect. This variation includes: (1) programs, (2) the mode of using programs whether single or multiple, (3) protocol segments (total number, duration and frequencies), and (4) design categories and total time spent in designing. In light of the study results, the participants demonstrated that, for the same design problem, restraining the conceptual design medium would not necessarily bind them to a certain design strategy. However, there are some disciplinary differences between AD and AT final year students, on how CAAD is used during to solve conceptual design.
series ASCAAD
email
last changed 2016/02/15 13:09

_id sigradi2014_155
id sigradi2014_155
authors Andrade, Max; Cristina Matsunaga
year 2014
title Avaliação Automática de Valor no Processo de Projeto de Habitação de Interesse Social no Brasi [Alignment Automated Assessment of Value in Brazilian’s Housing Design]
source SiGraDi 2014 [Proceedings of the 18th Conference of the Iberoamerican Society of Digital Graphics - ISBN: 978-9974-99-655-7] Uruguay - Montevideo 12 - 14 November 2014, pp. 393-397
summary The method proposed in this paper addresses the management of values and the cost estimate, based on target costing approach, and integrated with Building Information Model (BIM). This design method must incorporate mechanisms of automated assessment associated with desired value at cost during the design process. The paper will try to show, in brief, that there is a real possibility of inclusion of methodological tools of design, allowing assessment of values in real time during the design actions.
keywords Building Information Modeling; Desired value; Automatic Assessment; Target Costing
series SIGRADI
email
last changed 2016/03/10 09:47

For more results click below:

this is page 0show page 1show page 2show page 3show page 4show page 5... show page 33HOMELOGIN (you are user _anon_546904 from group guest) CUMINCAD Papers Powered by SciX Open Publishing Services 1.002