CumInCAD is a Cumulative Index about publications in Computer Aided Architectural Design
supported by the sibling associations ACADIA, CAADRIA, eCAADe, SIGraDi, ASCAAD and CAAD futures

PDF papers
References

Hits 1 to 20 of 607

_id ecaade2014_060
id ecaade2014_060
authors Koki Akiyoshi and Hiroya Tanaka
year 2014
title Local-reconfigurable Freeform surface with plywood - From the perspective of Japanese Tsugite-Shiguchi
source Thompson, Emine Mine (ed.), Fusion - Proceedings of the 32nd eCAADe Conference - Volume 1, Department of Architecture and Built Environment, Faculty of Engineering and Environment, Newcastle upon Tyne, England, UK, 10-12 September 2014, pp. 527-535
doi https://doi.org/10.52842/conf.ecaade.2014.1.527
wos WOS:000361384700052
summary This research exhibits a novel construction method for Freeform surfaces with plywood, without using metal joints and bending. By introducing the perspective of Japanese Tsugite-Shiguchi, the research aims for a drastic change from node-oriented thinking to module-oriented thinking. This paper focuses on the investigation of how to simplify fabrication processes, how to realize the environmental capabilities of Freeform wood structures, and how to provide redundancy and stability to the whole architectural system. In order to challenge these problems, we examined three discretion methods. As a result, we have been successful to produce a double-layered surface, filled with triangular mesh, implemented only by cutting one sheet of plywood. Moreover, the system has also acquired a new nature: local-reconfigurability, wherein it can react and adapt to fit local parameters and requirements.
keywords Digital fabrication; freeform timber; without metal and bending; discrete surface; minimal components for mega-assembly
series eCAADe
email
last changed 2022/06/07 07:51

_id cdrf2023_526
id cdrf2023_526
authors Eric Peterson, Bhavleen Kaur
year 2023
title Printing Compound-Curved Sandwich Structures with Robotic Multi-Bias Additive Manufacturing
source Proceedings of the 2023 DigitalFUTURES The 5st International Conference on Computational Design and Robotic Fabrication (CDRF 2023)
doi https://doi.org/https://doi.org/10.1007/978-981-99-8405-3_44
summary A research team at Florida International University Robotics and Digital Fabrication Lab has developed a novel method for 3d-printing curved open grid core sandwich structures using a thermoplastic extruder mounted on a robotic arm. This print-on-print additive manufacturing (AM) method relies on the 3d modeling software Rhinoceros and its parametric software plugin Grasshopper with Kuka-Parametric Robotic Control (Kuka-PRC) to convert NURBS surfaces into multi-bias additive manufacturing (MBAM) toolpaths. While several high-profile projects including the University of Stuttgart ICD/ITKE Research Pavilions 2014–15 and 2016–17, ETH-Digital Building Technologies project Levis Ergon Chair 2018, and 3D printed chair using Robotic Hybrid Manufacturing at Institute of Advanced Architecture of Catalonia (IAAC) 2019, have previously demonstrated the feasibility of 3d printing with either MBAM or sandwich structures, this method for printing Compound-Curved Sandwich Structures with Robotic MBAM combines these methods offering the possibility to significantly reduce the weight of spanning or cantilevered surfaces by incorporating the structural logic of open grid-core sandwiches with MBAM toolpath printing. Often built with fiber reinforced plastics (FRP), sandwich structures are a common solution for thin wall construction of compound curved surfaces that require a high strength-to-weight ratio with applications including aerospace, wind energy, marine, automotive, transportation infrastructure, architecture, furniture, and sports equipment manufacturing. Typical practices for producing sandwich structures are labor intensive, involving a multi-stage process including (1) the design and fabrication of a mould, (2) the application of a surface substrate such as FRP, (3) the manual application of a light-weight grid-core material, and (4) application of a second surface substrate to complete the sandwich. There are several shortcomings to this moulded manufacturing method that affect both the formal outcome and the manufacturing process: moulds are often costly and labor intensive to build, formal geometric freedom is limited by the minimum draft angles required for successful removal from the mould, and customization and refinement of product lines can be limited by the need for moulds. While the most common material for this construction method is FRP, our proof-of-concept experiments relied on low-cost thermoplastic using a specially configured pellet extruder. While the method proved feasible for small representative examples there remain significant challenges to the successful deployment of this manufacturing method at larger scales that can only be addressed with additional research. The digital workflow includes the following steps: (1) Create a 3D digital model of the base surface in Rhino, (2) Generate toolpaths for laminar printing in Grasshopper by converting surfaces into lists of oriented points, (3) Generate the structural grid-core using the same process, (4) Orient the robot to align in the direction of the substructure geometric planes, (5) Print the grid core using MBAM toolpaths, (6) Repeat step 1 and 2 for printing the outer surface with appropriate adjustments to the extruder orientation. During the design and printing process, we encountered several challenges including selecting geometry suitable for testing, extruder orientation, calibration of the hot end and extrusion/movement speeds, and deviation between the computer model and the physical object on the build platen. Physical models varied from their digital counterparts by several millimeters due to material deformation in the extrusion and cooling process. Real-time deviation verification studies will likely improve the workflow in future studies.
series cdrf
email
last changed 2024/05/29 14:04

_id caadria2014_177
id caadria2014_177
authors Jonas, Katrin; Alan Penn and Paul Shepherd
year 2014
title Designing with Discrete Geometry
source Rethinking Comprehensive Design: Speculative Counterculture, Proceedings of the 19th International Conference on Computer-Aided Architectural Design Research in Asia (CAADRIA 2014) / Kyoto 14-16 May 2014, pp. 513–522
doi https://doi.org/10.52842/conf.caadria.2014.513
summary There has been a shift in aesthetics from the modern orthogonal building envelope to more elaborate curved and folded forms. Non_orthogonal forms are often associated with complete freedom of geometry, entrusting the advancement in custom manufacturing and robotic fabrication of one-off building parts to realise the design. This paper presents a methodology that allows non_orthogonal surfaces to be designed using a constrained library of discrete, tessellating parts. The method enables the designer both to produce ‘approximations’ of freeform designs in a top_down manner or to generate ‘candidate’ designs in a bottom_up process. It addresses the challenge in the field of design engineering to generate architectural surfaces which are complex, yet simple and economical to construct. The system relates to the notion that complexity derives from simple parts and simple rules of interaction. Here complexity relates to the holistic understanding of a structure as an interaction between its local parts, global form and visual, as well as functional performance.
keywords Geometry system; form generation; form growth; discrete growth model; design tool; complex geometry
series CAADRIA
email
last changed 2022/06/07 07:52

_id caadria2014_288
id caadria2014_288
authors Bacinoglu, Zeynep and Sema Alacam
year 2014
title A Context Based Approach to Digital Architectural Modelling Education
source Rethinking Comprehensive Design: Speculative Counterculture, Proceedings of the 19th International Conference on Computer-Aided Architectural Design Research in Asia (CAADRIA 2014) / Kyoto 14-16 May 2014, pp. 811–820
doi https://doi.org/10.52842/conf.caadria.2014.811
summary This paper presents a context based framework for introducing digital modelling and fabrication to architecture students. Modelling has being taught either as a separate skill, or introduced within a comprehensive context of conventional design approaches. We argue that, a ‘digestive context’ might guide students to gain designing experience with/in digital media in a gradual and a cumulative way. This paper is based on a series of modelling and fabrication exercises as part of a one-semester digital design and modelling studio course for postgraduate students. We focus on the impact the initial exercises we assigned our students had on the final design product; We discuss the affordance and adaptability of the method that was developed by the students.
keywords Digital design; fabrication; architectural education
series CAADRIA
email
last changed 2022/06/07 07:54

_id ascaad2014_002
id ascaad2014_002
authors Burry, Mark
year 2014
title BIM and the Building Site: Assimilating digital fabrication within craft traditions
source Digital Crafting [7th International Conference Proceedings of the Arab Society for Computer Aided Architectural Design (ASCAAD 2014 / ISBN 978-603-90142-5-6], Jeddah (Kingdom of Saudi Arabia), 31 March - 3 April 2014, pp. 27-36
summary This paper outlines a particular component of very well known project: Antoni Gaudí’s Sagrada Família Basilica in Barcelona (1882– on-going but scheduled for completion in 2026). At the time of writing the realisation of the project has proceeded for 87 years since Gaudí's death (1852-1926). As a building site it has been a living laboratory for the nexus between traditional construction offsite manufacturing and digital fabrication since the computers were first introduced to the project:CAD in 1989 closely followed by CAAD two years later. More remarkably CAD/CAM commenced its significant influence in 1991 with the take-up of sem robotised stone cutting and carving. The subject of this paper is an elevated auditorium space that is one of the relatively few ‘sketchy’ areas that Gaudí bequeathed the successors for the design of his magnum opus.
series ASCAAD
email
last changed 2016/02/15 13:09

_id caadria2014_201
id caadria2014_201
authors Cabrinha, Mark N.
year 2014
title Lattice Shell Methodologies
source Rethinking Comprehensive Design: Speculative Counterculture, Proceedings of the 19th International Conference on Computer-Aided Architectural Design Research in Asia (CAADRIA 2014) / Kyoto 14-16 May 2014, pp. 191–200
doi https://doi.org/10.52842/conf.caadria.2014.191
summary This paper outlines a working methodology for the parametric development of lattice shell structures combining surface topology and form-finding with the material constraints of straight lath members woven into a geodesic network. By employing non-uniform grid spacing, a wider typology of spatial types can be employed than can be achieved with traditional flat-matt lattice shell construction. As a parametric design tool and working methodology, some of the heavy lifting in form-finding and geodesic analysis can be off-loaded to the tool, such that a more comprehensive attention can be placed on other design criteria such as spatial development and environmental response while maintaining the elegance and economy of lattice shells.
keywords gridshells; geodesics; form-finding; bending-active structures; wood; digital fabrication
series CAADRIA
email
last changed 2022/06/07 07:54

_id ecaade2014_232
id ecaade2014_232
authors Daniel Baerlecken and Sabri Gokmen
year 2014
title Emphatic Lines - Surface structuring based on Walter Crane's pattern making methods
source Thompson, Emine Mine (ed.), Fusion - Proceedings of the 32nd eCAADe Conference - Volume 2, Department of Architecture and Built Environment, Faculty of Engineering and Environment, Newcastle upon Tyne, England, UK, 10-12 September 2014, pp. 107-114
doi https://doi.org/10.52842/conf.ecaade.2014.2.107
wos WOS:000361385100010
summary The paper introduces a method for structuring and ornamenting double-curved geometry, which is developed through the lens of Walter Crane. Crane's method for pattern making is based on underlying scaffolds and infill patterns for two dimensional surfaces. The presented research uses his method and applies it through digitals means to three dimensional surfaces. The scaffold is used to solve the problem of curvature: it creates flat facets. This approach is tested through a prototypical installation at the Musee d'Jurassien d'Art and d'histoire using aluminium sheet metal and water-jet cutting, but can also be transferred to other architectural applications.
keywords Tendrils; patterning; making; facets
series eCAADe
email
last changed 2022/06/07 07:55

_id ecaade2014_054
id ecaade2014_054
authors Domenico D'Uva
year 2014
title Morphogenesis and panelling, the use of generative tools beyond academia. - Case studies and limits of the method.
source Thompson, Emine Mine (ed.), Fusion - Proceedings of the 32nd eCAADe Conference - Volume 2, Department of Architecture and Built Environment, Faculty of Engineering and Environment, Newcastle upon Tyne, England, UK, 10-12 September 2014, pp. 81-87
doi https://doi.org/10.52842/conf.ecaade.2014.2.081
wos WOS:000361385100007
summary The increasing complexity in architectural design brought a parallel evolution of tools for shape generation and management. Digital tools which better fulfil this need are the generative design software. The aim of this work is finding and testing real life uses of generative design software beyond academic edges. The specific target is transform a complex surface into a similar surface mostly made of flat panels. As a testing ground it has been chosen the support in construction of complex shapes made with ordinary and well known tools. The combination of software used is Rhinoceros, with its plugin Grasshopper, and a couple of opensource add-on, Lunchbox and Paneling tool. The cases are listed from the simplest to the most complex, and the first four are solved with the automated procedure, the fifth, manually. Based on the cases studied it is possible to confirm that the method is applicable to the majority of the complex surfaces.
keywords Generative; panelling; discretization
series eCAADe
email
last changed 2022/06/07 07:55

_id acadia14_573
id acadia14_573
authors Ekmekjian, Nazareth
year 2014
title From Surface to Volume: An Approach to Poche` with Composites
source ACADIA 14: Design Agency [Proceedings of the 34th Annual Conference of the Association for Computer Aided Design in Architecture (ACADIA) ISBN 9781926724478]Los Angeles 23-25 October, 2014), pp. 573-578
doi https://doi.org/10.52842/conf.acadia.2014.573
summary While the digital era has brought with it a vast assortment of tools from which we can generate form and geometry, often the result is a tendency to focus primarily on either surfaces or solids as a means of modeling for representation or fabrication which consequently impact the various fabrication and construction techniques deployed in order to realize such digital models. This paper presents an approach to coalesce techniques of surface generation via computational tools, and strategies for constructing volumetric elements through a process of backfilling with composite materials.
keywords Robotics and Autonomous Design Systems, Craft in a Digital Age, Material Logics and Tectonics, Digital Fabrication and Construction, Computational Design Research, Generative Design.
series ACADIA
type Normal Paper
email
last changed 2022/06/07 07:55

_id ecaade2014_233
id ecaade2014_233
authors Evangelos Pantazis and David Gerber
year 2014
title Material Swarm Articulations - New View Reciprocal Frame Canopy
source Thompson, Emine Mine (ed.), Fusion - Proceedings of the 32nd eCAADe Conference - Volume 1, Department of Architecture and Built Environment, Faculty of Engineering and Environment, Newcastle upon Tyne, England, UK, 10-12 September 2014, pp. 463-473
doi https://doi.org/10.52842/conf.ecaade.2014.1.463
wos WOS:000361384700046
summary Material Swarm Articulations, is an experiment in developing a multi-objective optimization system that incorporates bottom up approaches for informing architectural design. The paper presents an initial built project that demonstrates the combination of a structural form finding method, with an agent based design system through the digital fabrication processes. The objective of this research is to develop a workflow combined with material and construction constraints that has the potential to increase performance objectives while enabling geometric complexity and design driven articulation of a traditional tectonic system. The emphasis of the research at this stage is to take advantage of material properties and assembly methods applied to a digital design and simulation workflow that enables emergent patterns to influence the performance of the space.The paper illustrates the research through a prototype of a self standing canopy structure in 1:1 scale. It presents results of the form finding, generative patterning, digital fabrication affordances and sets and agenda for next steps in the use of multi-agent systems for design purposes.
keywords Computational design; agent-based system; digital fabrication; parametric design; reciprocal frames; form finding; multi-objective optimization, multi-agent systems for design
series eCAADe
email
last changed 2022/06/07 07:55

_id ecaade2014_029
id ecaade2014_029
authors Filipa Osório, Alexandra Paio and Sancho Oliveira
year 2014
title Interaction with a Kinetic Folded Surface
source Thompson, Emine Mine (ed.), Fusion - Proceedings of the 32nd eCAADe Conference - Volume 2, Department of Architecture and Built Environment, Faculty of Engineering and Environment, Newcastle upon Tyne, England, UK, 10-12 September 2014, pp. 605-612
doi https://doi.org/10.52842/conf.ecaade.2014.2.605
wos WOS:000361385100063
summary Kinetic systems offers new perspectives and design innovation in research and practice. These systems have been used by architects as an approach that embeds computation intelligence to create flexible and adaptable architectural spaces according to users changing needs and desires as a way to respond to an increasingly technological society. The presented research attempts to answer to this question based on the results of a multidisciplinary on-going work developed at digital fabrication laboratory Vitruvius Fablab-IUL in Lisbon. The main goal is to explore the transformation of the shape of a construction by mechanisms which allow adaptation either to environmental conditions or to the needs of the user. This paper reports the initial development of a kinetic system based on an origami foldable surface actuated by a user. The user can manipulate a small scale model of the surface and evaluate at all times if it is achieving the desired geometry.
keywords Kinetic systems; interactive architecture; responsive surfaces; origami geometry; folded surfaces
series eCAADe
email
last changed 2022/06/07 07:50

_id caadria2014_264
id caadria2014_264
authors Gannon, Madeline and Eric Brockmeyer
year 2014
title Teaching CAD/CAM Workflows to Nascent Designers
source Rethinking Comprehensive Design: Speculative Counterculture, Proceedings of the 19th International Conference on Computer-Aided Architectural Design Research in Asia (CAADRIA 2014) / Kyoto 14-16 May 2014, pp. 801–810
doi https://doi.org/10.52842/conf.caadria.2014.801
summary The following paper presents a suite of custom software environments that make advanced techniques in digital fabrication accessible to novice, first-year designers. The collective design aides facilitate a number of digital-to-physical workflows, including 3D modeling for CNC milling and 3D printing, 2D patterning for laser cutting, and interactive visualization for projection mapping. Each of the workflows illustrate pedagogical principles for embedding tacit and tactile knowledge into computational frameworks: balancing complexity against functional limits, revealing the underlying abstractions connecting digital geometry to CNC machines, engaging the designer through intuitive and responsive environments, and leveraging generative and interactive digital modeling for serial variation. These digital design and fabrication aides have been used to facilitate formal and material explorations for groups of pre-college and freshmen students, aged 16 to 19. Their resulting tangible artifacts—made from foam, birch plywood, paper, plastic, and light—show that CAD/CAM workflows can be an accessible subject matter for students without prior experience in digital modeling or fabrication.
keywords CAD/CAM; computational design education; digital fabrication; design aides; generative design
series CAADRIA
email
last changed 2022/06/07 07:50

_id caadria2014_120
id caadria2014_120
authors Hack, Norman; Willi Viktor Lauer, Fabio Gramazio and Matthias Kohler
year 2014
title Mesh Mould: Differentiation for Enhanced Performance
source Rethinking Comprehensive Design: Speculative Counterculture, Proceedings of the 19th International Conference on Computer-Aided Architectural Design Research in Asia (CAADRIA 2014) / Kyoto 14-16 May 2014, pp. 139–148
doi https://doi.org/10.52842/conf.caadria.2014.139
summary Mesh-Mould is a novel robotic fabrication system for complex, non-standard concrete structures. The system folds together formwork and reinforcement, the two most labour intensive aspects of concrete constructions and offers an alternative approach to the current modes of prefabrication by suggesting an in-situ fabrication process (Figure 1). The paper outlines the development of the Form-work/Reinforcing Meshes through several iterations of physical and digital tests. Initially starting from simple triangulated 3D lattices, the structures evolved to become more complex and differentiated. The incorporating of flow enhancing ducts and surface perimeters with diverse surface aperture densities facilitates an optimal concrete flow and material distribution within the mesh.
keywords Robotic fabrication; concrete formwork; differentiation; spatial extrusion
series CAADRIA
email
last changed 2022/06/07 07:50

_id ascaad2014_027
id ascaad2014_027
authors Hadilou, Arman
year 2014
title Flexible Formwork: A methodology for casting funicular structures
source Digital Crafting [7th International Conference Proceedings of the Arab Society for Computer Aided Architectural Design (ASCAAD 2014 / ISBN 978-603-90142-5-6], Jeddah (Kingdom of Saudi Arabia), 31 March - 3 April 2014, pp. 345-352
summary This paper describes a method for design and fabrication of funicular structures from discrete precast concrete components. It has a critical look over traditional casting techniques and proposes a new methodology to fabricate a flexible formwork. The design process is engaged with a thorough series of analytical models and employs digital computation techniques to test their structural efficiency. Scripting, modeling and prototyping have been integrated to investigate several case studies through which a set of criteria was developed. Digital modeling tries to keep a limited number of varied components that have certain conditions at joints and flexible in other parts. This variation helps to meet the structural criterion and the flexibility of formwork results the efficiency of fabrication.
series ASCAAD
email
last changed 2016/02/15 13:09

_id caadria2014_002
id caadria2014_002
authors Haeusler, M. Hank; Danny Nguyen and Margaret Goldsack
year 2014
title Ruled Surface Media Facades
source Rethinking Comprehensive Design: Speculative Counterculture, Proceedings of the 19th International Conference on Computer-Aided Architectural Design Research in Asia (CAADRIA 2014) / Kyoto 14-16 May 2014, pp. 689–698
doi https://doi.org/10.52842/conf.caadria.2014.689
summary Traditionally media facades have been created using 2D surfaces, not dissimilar to televisions. As computational architecture continues to explore non-Euclidian shapes it is a logical process to investigate the use and possibilities of emerging complex curved surfaces for the display of media content to match architectural design aspirations with demands of ubiquitous city concepts of penetrating surfaces with information. Drawing on existing architectural knowledge of ruled surfaces the paper outlines the implementation of adopting existing principles from architecture and mathematics to contemporary discussions in media architecture. It demonstrates that ruled surfaces can function as media facades by simulating ten different ruled surface types in Grasshopper and overlaying them with different video content. Based on the results the team proceeded to build a 1:1 prototype of a hyperbolic paraboloid to test if the simulated results in the computer matched with the physical model. The prototype was further tested using media content to observe the visibility of the display from various viewing positions. Based on the findings the paper concludes that ruled surface media facades are feasible. This investigation, its proposed hypothesis, methodology, implications, significance and evaluation are presented in the paper.
keywords Media facades; responsive architecture; ruled surfaces; non-Euclidian spaces
series CAADRIA
email
last changed 2022/06/07 07:49

_id caadria2014_173
id caadria2014_173
authors Lim, Jason; Ammar Mirjan, Fabio Gramazio and Matthias Kohler
year 2014
title Robotic Metal Aggregations
source Rethinking Comprehensive Design: Speculative Counterculture, Proceedings of the 19th International Conference on Computer-Aided Architectural Design Research in Asia (CAADRIA 2014) / Kyoto 14-16 May 2014, pp. 159–168
doi https://doi.org/10.52842/conf.caadria.2014.159
summary The recent convergence of computational design and digital fabrication has made new forms of architectural materialization possible. A workshop conducted at the Royal Melbourne Institute of Technology investigated how differentiated lightweight metal structures may be designed and fabricated under these new conditions. The workshop aim was to complete three such structures; each one is aggregated from aluminum profiles that are robotically assembled according to computationally driven geometric logics. The key challenge was to enable participants, assumed to lack programming and robotic fabrication experience, to design and construct their structures within imposed time constraints. This paper describes the subsequent development of accessible computational design tools and a robust robotic fabrication method for the workshop, and highlights the key decisions taken with their implementation. The workshop results are discussed and the design tools evaluated with respect to them. The paper concludes by recommending an approach to developing computational design tools which emphasizes the importance of usability and integration with the fabrication process.
keywords Robotic fabrication; computational design; visual programming; lightweight structures
series CAADRIA
email
last changed 2022/06/07 07:59

_id caadria2014_114
id caadria2014_114
authors Nakano, Akito and Akira Wakita
year 2014
title ASOM
source Rethinking Comprehensive Design: Speculative Counterculture, Proceedings of the 19th International Conference on Computer-Aided Architectural Design Research in Asia (CAADRIA 2014) / Kyoto 14-16 May 2014, pp. 117–126
doi https://doi.org/10.52842/conf.caadria.2014.117
summary Recently more researches on tangible objects have been conducted that enhance the intuitive polygonal or surface modelling of designers in digital and physical worlds. However, a few researches have been done that augment the digital solid modelling with tangible objects. In this paper, we present the Augmented Solid Modeller (ASoM) which helps designers create more complex shapes by a combination of Boolean operations between a different type of 3D-printed tangible objects, which is different from the conventional single shape type bottom-up modelling approaches. When multiple objects intersect each other at a given position and angle, the interference or removed shape is often unexpected for designers. Also, as 3D-printed objects are used for designers only to configure and discuss the shape of final digital 3D model in existing CAAD, ASoM changes the role of 3D-printed objects from the replicas to reusable tools for other modelling opportunities. We offered ASoM to students majoring or interested in CAAD and interviewed them to get comments. Since the speed and precision of 3D-printing will achieve immediate improvement, ASoM is a pioneer in developing cutting-edge approach for designers to model both in digital and physical worlds.
keywords Solid Modeller; Boolean operations; 3D-printing; CAD
series CAADRIA
email
last changed 2022/06/07 07:59

_id sigradi2014_284
id sigradi2014_284
authors Orciuoli, Affonso; Pablo Baquero
year 2014
title Teaching strategies for Digital fabrication
source SiGraDi 2014 [Proceedings of the 18th Conference of the Iberoamerican Society of Digital Graphics - ISBN: 978-9974-99-655-7] Uruguay- Montevideo 12,13,14 November 2014, pp. 345-349
summary Most designers have adapted their methods of designing to digital technics. This article explains the strategies used for develop a panel, realized with three different techniques of digital manufacture.
keywords 3D-Printing; CNC milling; Laser cutting; Teaching
series SIGRADI
email
last changed 2016/03/10 09:57

_id ecaade2014_167
id ecaade2014_167
authors Pavlos Fereos and Marios Tsiliakos
year 2014
title Isoprototyping - Rapid Robotic Aided Fabrication for Double Curvature Surfaces
source Thompson, Emine Mine (ed.), Fusion - Proceedings of the 32nd eCAADe Conference - Volume 1, Department of Architecture and Built Environment, Faculty of Engineering and Environment, Newcastle upon Tyne, England, UK, 10-12 September 2014, pp. 433-443
doi https://doi.org/10.52842/conf.ecaade.2014.1.433
wos WOS:000361384700043
summary IsoPrototyping is a research initiative, undertaken at the Institute fur experimentelle architektur.hochbau, within the context of the Vertiefung Hochbau and Sonderkapitel des hochbaus courses, which specialize on building construction. Through the case study of an iso-surface spatial configuration, this research targets the exploration of innovative digital prototyping methodologies, that would allow rapid and cost-efficient fabrication, capable of manufacturing any given double curved surface. The ABB industrial robots of REX-Lab programmed in combination with custom designed, recalibrated dry-mold, surface-producing apparatus, formed the framework for a proficient, yet flexible, process describing and fabricating implicit non-linear systems.
keywords Industrial robots; pin-board; rapid-prototyping; dry-recalibrated mould; digital-fabrication
series eCAADe
email
last changed 2022/06/07 07:59

_id cdrf2023_273
id cdrf2023_273
authors Pixin Gong, Xiaoran Huang, Chenyu Huang, Shiliang Wang
year 2023
title Modeling on Outdoor Thermal Comfort in Traditional Residential Neighborhoods in Beijing Based on GAN
source Proceedings of the 2023 DigitalFUTURES The 5st International Conference on Computational Design and Robotic Fabrication (CDRF 2023)
doi https://doi.org/https://doi.org/10.1007/978-981-99-8405-3_23
summary With the support of new urban science and technology, the bottom-up and human-centered space quality research has become the key to delicacy urban governance, of which the Universal Thermal Climate Index (UTCI) have a severe influence. However, in the studies of actual UTCI, datasets are mostly obtained from on-site measurement data or simulation data, which is costly and ineffective. So, how to efficiently and rapidly conduct a large-scale and fine-grained outdoor environmental comfort evaluation based on the outdoor environment is the problem to be solved in this study. Compared to the conventional qualitative analysis methods, the rapidly developing algorithm-supported data acquisition and machine learning modelling are more efficient and accurate. Goodfellow proposed Generative Adversarial Nets (GANs) in 2014, which can successfully be applied to image generation with insufficient training data. In this paper, we propose an approach based on a generative adversarial network (GAN) to predict UTCI in traditional blocks. 36000 data samples were obtained from the simulations, to train a pix2pix model based on the TensorFlow framework. After more than 300 thousand iterations, the model gradually converges, where the loss of the function gradually decreases with the increase of the number of iterations. Overall, the model has been able to understand the overall semantic information behind the UTCI graphs to a high degree. Study in this paper deeply integrates the method of data augmentation based on GAN and machine learning modeling, which can be integrated into the workflow of detailed urban design and sustainable construction in the future.
series cdrf
email
last changed 2024/05/29 14:04

For more results click below:

this is page 0show page 1show page 2show page 3show page 4show page 5... show page 30HOMELOGIN (you are user _anon_619279 from group guest) CUMINCAD Papers Powered by SciX Open Publishing Services 1.002