CumInCAD is a Cumulative Index about publications in Computer Aided Architectural Design
supported by the sibling associations ACADIA, CAADRIA, eCAADe, SIGraDi, ASCAAD and CAAD futures

PDF papers
References

Hits 1 to 20 of 157

_id caadria2014_249
id caadria2014_249
authors Krietemeyer, Bess
year 2014
title An Adaptive Decision-Making Framework for Designing Material Behaviours
source Rethinking Comprehensive Design: Speculative Counterculture, Proceedings of the 19th International Conference on Computer-Aided Architectural Design Research in Asia (CAADRIA 2014) / Kyoto 14-16 May 2014, pp. 55–64
doi https://doi.org/10.52842/conf.caadria.2014.055
summary This paper describes an adaptive decision-making design framework for investigating the synergies between aesthetically-driven and performance-driven criteria, specifically in designing the material behaviour of an electroresponsive building envelope system. An immersive and interactive simulation environment developed in the C++ programming language provides a computational tool for testing the visual and energetic performance of a dynamic building envelope as it negotiates bioclimatic energy flows with participants’ aesthetic preferences and interactions. Experiments in bioresponsive feedback loops examine the impacts that user engagement and real-time energy performance feedback have on participants’ design choices. Preliminary results demonstrate that exposure to energy performance feedback and to the collective design choices of multiple users leads to adaptive decision-making that favours synergistic system performance with the potential for increased socio-ecological connections. Critically, this research provides new methods for supporting the design of emerging material behaviours for dynamic building envelopes that can negotiate multiple performance criteria.
keywords Participatory design; decision-making tool; interactive environment; dynamic building envelopes; immersive simulation
series CAADRIA
email
last changed 2022/06/07 07:51

_id ecaade2016_048
id ecaade2016_048
authors Abramovic, Vasilija and Achten, Henri
year 2016
title From Moving Cube to Urban Interactive Structures - A case study
source Herneoja, Aulikki; Toni Österlund and Piia Markkanen (eds.), Complexity & Simplicity - Proceedings of the 34th eCAADe Conference - Volume 1, University of Oulu, Oulu, Finland, 22-26 August 2016, pp. 661-668
doi https://doi.org/10.52842/conf.ecaade.2016.1.661
wos WOS:000402063700071
summary When thinking about the future vision of a city, having in mind recent development in digital technologies and digital design tools we are inclined to expect new building structures which incorporate this technology to better help us manage the complexity of life, and to simplify our daily lives and tasks. The idea behind this research paper lies in design of such structures, which could be put inside an urban context and engage in creating a built environment that can add more to the quality of life. For us Interactive architecture is architecture that is responsive, flexible, changing, always moving and adapting to the needs of today. The world is becoming more dynamic, society is constantly changing and the new needs it develops need to be accommodated. As a result architecture has to follow. Spaces have to become more adaptive, responsive and nature concerned, while having the ability for metamorphosis, flexibility and interactivity. Taken as a starting point of this idea is a specific module from graduation project in 2014 "The Unexpected city", where it was possible to test out first ideas about interactive and flexible objects in an urban environment.
keywords Flexible architecture; Interactive architecture; Responsive systems
series eCAADe
email
last changed 2022/06/07 07:54

_id caadria2014_156
id caadria2014_156
authors Iwata, Shouto; Mikiya Takei and Shiro Matsushima
year 2014
title Enhanced 3D-Space-Scanning System by Robotic Technology
source Rethinking Comprehensive Design: Speculative Counterculture, Proceedings of the 19th International Conference on Computer-Aided Architectural Design Research in Asia (CAADRIA 2014) / Kyoto 14-16 May 2014, pp. 347–356
doi https://doi.org/10.52842/conf.caadria.2014.347
summary This study, which scans an architectural space with two-wheel vehicle robot technology that allows the flexible collection of three-dimensional (3D) data, may initiate the interaction between human beings and architecture in the future. It focuses on extracting building geometry and capturing human behavior in order to allow a space to communicate with human behavior. The current project extracts building geometry and human behavior data to create designs through a two-wheel robot; it was a collaborative project among the students of different majors, including mechanical engineering, human interaction, computer sciences, and architectural design. In this paper, the adaptive possibility of the RGB-Depth camera is examined in extracting building geometry.
keywords human behavior; robot; design process; scan
series CAADRIA
email
last changed 2022/06/07 07:50

_id sigradi2014_282
id sigradi2014_282
authors Kerestes, James
year 2014
title Design Out of Necessity - Architectural Approach to Extreme Climatic Conditions
source SIGraDi 2014 [Proceedings of the 18th Conference of the Iberoamerican Society of Digital Graphics - ISBN: 978-9974-99-655-7] Uruguay- Montevideo 12,13,14 November 2014, pp. 130-133
summary This paper is the culmination of the first phase of research in the development of adaptive surface conditions which can mitigate extreme climatic scenarios, specifically air pollution. How can the discipline of architecture address worst-case climate scenarios within inhabitable structures? The question asked throughout this case study and research project was essentially based on a critique of the architectural community’s utilization of sustainable technologies in design, and whether current design initiatives were in fact aggressive enough in their approach to “green” building. While assessing the probable environmental changes likely to affect the architectural discipline in the future, this research project developed computational simulations of polluted atmospheres in order to develop surfaces which would respond formally.
keywords Adaptive; Behavioral; Responsive; Ecological; Generative
series SIGRADI
email
last changed 2016/03/10 09:53

_id ascaad2014_001
id ascaad2014_001
authors Kolarevic, Branko
year 2014
title Building Dynamics: Exploring Architecture of Change
source Digital Crafting [7th International Conference Proceedings of the Arab Society for Computer Aided Architectural Design (ASCAAD 2014 / ISBN 978-603-90142-5-6], Jeddah (Kingdom of Saudi Arabia), 31 March - 3 April 2014, pp. 15-26
summary This paper surveys essential concepts and significant past and current projects that deal with interactive, responsive environments, i.e. buildings that can change their configuration, appearance, and environmental conditions in response to patterns of occupation and context (and in return can shape those too). It discusses what may seem to be rather obvious: responsive, adaptive, flexible, etc., architectures are all about change, which in turn, is all about time. The principal argument is that change in architecture is far from being adequately addressed or explored theoretically, experimentally, or phenomenologically.
series ASCAAD
email
last changed 2016/02/15 13:09

_id ecaade2014_155
id ecaade2014_155
authors Martina Decker and Andrzej Zarzycki
year 2014
title Designing Resilient Buildings with Emergent Materials
source Thompson, Emine Mine (ed.), Fusion - Proceedings of the 32nd eCAADe Conference - Volume 2, Department of Architecture and Built Environment, Faculty of Engineering and Environment, Newcastle upon Tyne, England, UK, 10-12 September 2014, pp. 179-184
doi https://doi.org/10.52842/conf.ecaade.2014.2.179
wos WOS:000361385100019
summary This paper looks at two distinct approaches to kinetic façades and smart building assemblies reminiscent of designs for the Institut du Monde Arabe and for Hoberman's Simon Center. The first approach uses Arduino microcontroller-guided kinetic components with a distinct assemblage of elements, each performing a dedicated function such as sensor, actuator, or logical processing unit. The second approach incorporates custom-designed smart materials-shape memory alloys (SMAs)-that not only complement or replace the need for electrically operated sensors or actuators, but also eliminate a microcontroller, since in this arrangement the material itself performs computational functions. The paper will discuss case studies that use physical computing and smart-material models as vehicles to discuss the value of each approach to adaptive design in architecture. Building on these observations, the paper looks into conceptual aspects of an integrated hybrid system that combines both computation approaches and unique opportunities inherent to these hybrid designs.
keywords Adaptable designs; arduino microcontrollers; shape memory alloys (smas); smart materials; programmable matter
series eCAADe
email
last changed 2022/06/07 07:59

_id ascaad2014_021
id ascaad2014_021
authors Sushant, Verma and Pradeep Devadass
year 2014
title Adaptive [skins]: Adaptation through smart systems
source Digital Crafting [7th International Conference Proceedings of the Arab Society for Computer Aided Architectural Design (ASCAAD 2014 / ISBN 978-603-90142-5-6], Jeddah (Kingdom of Saudi Arabia), 31 March - 3 April 2014, pp. 275-289
summary The project investigates responsive building skin systems that adapt to the dynamic environmental conditions to regulate internal conditions in a habitable space over different periods of time by exhibiting a state of motion and dynamism. Passive and active building skins are developed using shape memory alloys and pneumatic actuators through investigations of smart systems that integrate smart materials and smart geometries. Nitinol springs are integrated in tensegrity systems to actuate the adaptive behaviour, which forms the passive roof system. Owing to the complexity of the multi-parametric system, genetic algorithms are developed for system optimization and calibrated with physical prototypes at varied scales. The developed systems are tested against two distinct climatic models- New Delhi and Barcelona, and evaluated for performance, based on heat and light, which are quantified as solar gain and illuminance as principles, and daylight factor for evaluation purpose. New tool-sets are developed in the process by combining various digital tools, to create a real-time feedback and memory loop system.
series ASCAAD
email
last changed 2016/02/15 13:09

_id sigradi2014_263
id sigradi2014_263
authors Wit, Andrew John
year 2014
title Towards an Intelligent Architecture “Creating Adaptive Building Systems for Inhabitation”
source SiGraDi 2014 [Proceedings of the 18th Conference of the Iberoamerican Society of Digital Graphics - ISBN: 978-9974-99-655-7] Uruguay- Montevideo 12,13,14 November 2014, pp. 328-332
summary Existing typologies of emergency housing rely heavily on conventional designs, materials and labor-intensive construction methodologies, which in post-disaster environments place large amounts of strain on the surrounding communities, material manufacturers and financial systems. With ever more unpredictable environmental conditions, should our new housing prototypes not also have the ability to simultaneously adapt to rapidly changing environmental conditions? This paper investigates the potential of developing a new typology of rapidly deployable emergency housing prototypes through the creation of a system which relies on embedded design intelligence, advanced fabrication and adaptable systems, rather than attempting to make existing building systems smarter.
keywords Adaptable; Housing; Skin; Robotics; Pneumatic
series SIGRADI
email
last changed 2016/03/10 10:03

_id ecaadesigradi2019_459
id ecaadesigradi2019_459
authors Bourdakis, Vassilis and Tsangrassoulis, Aris
year 2019
title Dynamic Façade Design Studio - From sketches to microcontrollers
source Sousa, JP, Xavier, JP and Castro Henriques, G (eds.), Architecture in the Age of the 4th Industrial Revolution - Proceedings of the 37th eCAADe and 23rd SIGraDi Conference - Volume 2, University of Porto, Porto, Portugal, 11-13 September 2019, pp. 725-730
doi https://doi.org/10.52842/conf.ecaade.2019.2.725
summary The paper presents the outcome of two semesters running a dynamic façade design studio (2014 and 2018) to 3rd and 4th year undergraduates, using computational design, simulation and visualization tools in designing environmentally activated building envelopes. The paper discusses the problems faced by the students and the teaching team throughout the design process and finally suggests ways of integrating microcontrollers as a teaching tool enabling students to comprehend the logic, complexities and overall mechanics of responsive environmental design.
series eCAADeSIGraDi
email
last changed 2022/06/07 07:54

_id ecaade2014_104
id ecaade2014_104
authors Estefania Tapias and Shubham Soni
year 2014
title Building-up urban open spaces from shadow range analyses
source Thompson, Emine Mine (ed.), Fusion - Proceedings of the 32nd eCAADe Conference - Volume 1, Department of Architecture and Built Environment, Faculty of Engineering and Environment, Newcastle upon Tyne, England, UK, 10-12 September 2014, pp. 129-135
doi https://doi.org/10.52842/conf.ecaade.2014.1.129
wos WOS:000361384700012
summary This paper explores an alternative approach for the creation of new built forms based on solar access analysis. Consolidated on urban areas under development, the denominated 'inverted' approach is focused on the generation of recreational open spaces based on shadow conditions caused by existing built forms, and as a starting point for the construction of new urban envelopes as possible development areas. Unlike the existing method of the 'solar envelope', the 'inverted' approach shows an alternative procedure for the construction of built forms, based on pedestrian comfort caused by solar access in urban spaces rather than on indoor performance affected by the penetration of sunlight into buildings. As a method for the creation of urban envelopes, this approach attempts to enhance pedestrian comfort according to the study of solar access in urban areas. The 'inverted' approach is based on sun path data and is developed as a generative procedure, where the results of shadow range analyses and the different urban objectives work as input parameters for the generation of urban envelopes. Based on this methodology, two Grasshopper® custom components are developed.
keywords Urban open spaces; solar access; shadow range simulation; generative modelling
series eCAADe
email
last changed 2022/06/07 07:52

_id ascaad2014_007
id ascaad2014_007
authors Al-Rawi, Osama
year 2014
title Evolutionary Algorithms in Islamic Architecture
source Digital Crafting [7th International Conference Proceedings of the Arab Society for Computer Aided Architectural Design (ASCAAD 2014 / ISBN 978-603-90142-5-6], Jeddah (Kingdom of Saudi Arabia), 31 March - 3 April 2014, pp. 99-107
summary The cosmological nature of Islamic architecture makes it a useful case study for the capability of the adaptation, assimilation and accommodation with the development of evolutionary algorithms and their applications in architectural design. Genetic algorithm derives its structure from the observation of nature. We shall review the concept of intelligent agents and their organization into complex adaptive systems as well as genetic-type algorithms for learning and evolution. Since algorithmic art consists of generation of images on the basis of algorithms, algorithms can be viewed as a notation, and notation is something that music has but visual artefacts in general miss. This paper aims to discover the role of evolutionary algorithms in historical Islamic architecture. Also, we shall try to investigate the way in which the future development could occur not only through the discovery of new facts or theories, but also through the rise and dissemination of new visions having different explanation of Islamic architecture that considers it as a result of serious application of formation through evolutionary genetic algorithms.
series ASCAAD
email
last changed 2016/02/15 13:09

_id acadia14_409
id acadia14_409
authors Bard, Joshua; Gannon, Madeline; Jacobson-Weaver, Zachary; Jeffers, Michael; Smith, Brian; Contreras, Mauricio
year 2014
title Seeing is Doing: Synthetic Tools for Robotically Augmented Fabrication in High-Skill Domains
source ACADIA 14: Design Agency [Proceedings of the 34th Annual Conference of the Association for Computer Aided Design in Architecture (ACADIA) ISBN 9781926724478]Los Angeles 23-25 October, 2014), pp. 409-416
doi https://doi.org/10.52842/conf.acadia.2014.409
summary The historical split between visualization and actualization in architectural design has encouraged a disciplinary split between representation (the domain of the designer) and construction (a domain entirely removed from the Architect’s purview). This split between seeing and doing in architectural design can be questioned in the context of contemporary robotic technologies where physical and digital workflows comingle in high-skill, collaborative domains.
keywords Architectural Robotics, Human-Robot Collaboration, MOCAP, Adaptive Fabrication, High-Skill Domain, Robotics and Autonomous Design Systems
series ACADIA
type Normal Paper
email
last changed 2022/06/07 07:54

_id acadia14_709
id acadia14_709
authors Cantrell, Bradley; Holzman, Justine
year 2014
title Synthetic Ecologies: protocols, simulation, and manipulation for indeterminate landscapes
source ACADIA 14: Design Agency [Proceedings of the 34th Annual Conference of the Association for Computer Aided Design in Architecture (ACADIA) ISBN 9781926724478]Los Angeles 23-25 October, 2014), pp. 709-718
doi https://doi.org/10.52842/conf.acadia.2014.709
summary This paper positions the design and curation of synthetic ecologies through the lens of simulation and monitoring as a way to develop logics of interaction and proposes autonomous decision-making, manipulations, and management of the landscape to establish adaptive and indeterminate landscapes.
keywords Synthetic Ecologies, Responsive System, Monitoring, Simulation, Feedback Loop, Protocological Control, Intelligent Environments
series ACADIA
type Normal Paper
email
last changed 2022/06/07 07:54

_id ecaade2014_221
id ecaade2014_221
authors Charles Avis
year 2014
title Shared Space Navigation
source Thompson, Emine Mine (ed.), Fusion - Proceedings of the 32nd eCAADe Conference - Volume 1, Department of Architecture and Built Environment, Faculty of Engineering and Environment, Newcastle upon Tyne, England, UK, 10-12 September 2014, pp. 173-179
doi https://doi.org/10.52842/conf.ecaade.2014.1.173
wos WOS:000361384700017
summary Shared space is a concept of urban planning in which all barriers between cars and pedestrians, such as curbs and crosswalks, is removed to encourage heightened awareness of drivers and pedestrians, thus making city streets safer. The system has been highly successful, but can be highly stressful due to the lack of rules and signage. Thus, an adaptive feedback system that guides one safely through shared space could be essential for a shared space on the city scale. This paper imagines shared space at the city scale, and uses computational strategies to develop a system of adaptive collision-avoidance. By abstracting the movement of cars and pedestrians to properties of moving 'agents', collision detection and adaptive path finding models are developed, and then prototyped in an immersive environment that experiments with variable visual feedback based on user interactions.
keywords Shared space; movement; visual feedback; traffic; urban
series eCAADe
email
last changed 2022/06/07 07:55

_id ecaade2014_192
id ecaade2014_192
authors David Stasiuk and Mette Ramsgaard Thomsen
year 2014
title Learning to be a Vault - Implementing learning strategies for design exploration in inter-scalar systems
source Thompson, Emine Mine (ed.), Fusion - Proceedings of the 32nd eCAADe Conference - Volume 1, Department of Architecture and Built Environment, Faculty of Engineering and Environment, Newcastle upon Tyne, England, UK, 10-12 September 2014, pp. 381-390
doi https://doi.org/10.52842/conf.ecaade.2014.1.381
wos WOS:000361384700038
summary Parametric design models enable the production of dynamic form, responsive material assemblies, and numerically and geometrically analytical feedback. The value potential for design produced through the procedural transformation of input parameters (or features) through algorithmic models has been repeatedly demonstrated and epistemically refined. However, despite their capacity to improve productivity and iteration, parametric models are nonetheless prone to inflexibility and reduction, both of which obscure processes of invention and discovery that are central to an effective design practice. This paper presents an experimental approach for the application of multiple, parallel computational design modelling strategies which are tested in the production of an inter-scalar model array that synthesises design intent, the simulation of material behaviours, performance-driven adaptation, and open-ended processes of discovery and categorical description. It is particularly focused on the computational potentials embedded in interdependent applications of simulation and machine learning algorithms as generative and descriptive drivers of form, performance, and architectural quality. It ultimately speculates towards an architectural design modelling method that privileges open model topologies and emergent feature production as critical operators in the generation of flexible and adaptive design solutions.
keywords Parametric design; computational modelling; machine learning; multi-objective optimisation; k-means clustering
series eCAADe
email
last changed 2022/06/07 07:55

_id acadia14_417
id acadia14_417
authors Fox, Michael
year 2014
title Peristalsis: A Real-World Lesson in Adaptable Space
source ACADIA 14: Design Agency [Proceedings of the 34th Annual Conference of the Association for Computer Aided Design in Architecture (ACADIA) ISBN 9781926724478]Los Angeles 23-25 October, 2014), pp.417-426
doi https://doi.org/10.52842/conf.acadia.2014.417
summary This paper outlines the design, prototyping and construction process of a dynamically morphing, spatially adaptable wedding hall / event space.
keywords Kinetic Design, Interactive Architecture, Arduino Prototyping, Adaptive Design, Adaptable Space, Performance in Design
series ACADIA
type Normal Paper
email
last changed 2022/06/07 07:51

_id ijac201412203
id ijac201412203
authors Heinzelmann, Florian; Telesilla Bristogianni, Patrick Teuffel
year 2014
title Adaptive Liquid Lens and Sunlight Redirection
source International Journal of Architectural Computing vol. 12 - no. 2, 129-154
summary The paper describes a novel system to alter and redirect sunlight under large roofs with the help of a liquid lens system. Focus lies on the computational design, testing, measurement and evaluation of the performance of a physical prototype. The results in terms of daylight and illumination of the interior, as well as the possibility for sunlight redirection, lead to an array of adaptive natural light spotlights, which are rather promising.The journal article is an extension of previously reported work.
series journal
last changed 2019/05/24 09:55

_id caadria2014_037
id caadria2014_037
authors Khoo, Chin Koi
year 2014
title Designing a Responsive Material System with Physical Computing
source Rethinking Comprehensive Design: Speculative Counterculture, Proceedings of the 19th International Conference on Computer-Aided Architectural Design Research in Asia (CAADRIA 2014) / Kyoto 14-16 May 2014, pp. 97–106
doi https://doi.org/10.52842/conf.caadria.2014.097
summary This paper focuses on an investigation to explore architectural design potentials with a responsive material system and physical computing. Contemporary architects and designers are seeking to integrate physical computing in responsive architectural designs; however, they have largely borrowed from engineering technology’s mechanical devices and components. There is the opportunity to investigate an unexplored design approach to exploit the responsive capacity of material properties as alternatives to the current focus on mechanical components and discrete sensing devices. This opportunity creates a different design paradigm for responsive architecture that investigates the potential to integrate physical computing with responsive materials as one integrated material system. Instead of adopting highly intricate and expensive materials, this approach is explored through accessible and off-the-shelf materials to form a responsive material system, called Lumina. Lumina is implemented as an architectural installation called Cloud that serves as a morphing architectural skin. Cloud is a proof of concept to embody a responsive material system with physical computing to create a reciprocal and luminous architectural intervention for a selected dark corridor. It represents a different design paradigm for responsive architecture through alternative exploitation of contemporary materials and parametric design tools.
keywords Physical computing; responsive material systems; adaptive architecture
series CAADRIA
email
last changed 2022/06/07 07:52

_id acadia14_463
id acadia14_463
authors Kretzer, Manuel
year 2014
title Architecture in the Era of Accelerating Change
source ACADIA 14: Design Agency [Proceedings of the 34th Annual Conference of the Association for Computer Aided Design in Architecture (ACADIA) ISBN 9781926724478]Los Angeles 23-25 October, 2014), pp. 463-472
doi https://doi.org/10.52842/conf.acadia.2014.463
summary The present paper highlights the necessity for architecture to become more adaptive and emphasizes the potential of Smart Materials in that context. It elaborates upon an educational approach to provide access and understanding towards novel material developments and points out the need for cross-disciplinary collaboration.
keywords Smart Materials, Flexibility, Education, Open Source, Network, Cross-Disciplinarity, Interactive Architecture
series ACADIA
type Normal Paper
email
last changed 2022/06/07 07:51

_id acadia14_427
id acadia14_427
authors Melendez, Frank; Gannon, Madeline; Jacobson-Weaver, Zachary; Toulkeridou, Varvara
year 2014
title Adaptive Pneumatic Frameworks
source ACADIA 14: Design Agency [Proceedings of the 34th Annual Conference of the Association for Computer Aided Design in Architecture (ACADIA) ISBN 9781926724478]Los Angeles 23-25 October, 2014), pp. 426-434
doi https://doi.org/10.52842/conf.acadia.2014.426
summary This paper and work-in-progress research project explores potential workflows for the integration of pneumatic systems in architecture that adapt to human interaction and environmental phenomena.
keywords Pneumatics, Fluidic Actuation, Elastomers, Adaptive, Physical Computing, Sensing, Works in Progress
series ACADIA
type Normal Paper
email
last changed 2022/06/07 07:58

For more results click below:

this is page 0show page 1show page 2show page 3show page 4show page 5... show page 7HOMELOGIN (you are user _anon_945073 from group guest) CUMINCAD Papers Powered by SciX Open Publishing Services 1.002