CumInCAD is a Cumulative Index about publications in Computer Aided Architectural Design
supported by the sibling associations ACADIA, CAADRIA, eCAADe, SIGraDi, ASCAAD and CAAD futures

PDF papers
References

Hits 1 to 20 of 663

_id ascaad2014_023
id ascaad2014_023
authors Al-Maiyah, Sura and Hisham Elkadi
year 2014
title Assessing the Use of Advanced Daylight Simulation Modelling Tools in Enhancing the Student Learning Experience
source Digital Crafting [7th International Conference Proceedings of the Arab Society for Computer Aided Architectural Design (ASCAAD 2014 / ISBN 978-603-90142-5-6], Jeddah (Kingdom of Saudi Arabia), 31 March - 3 April 2014, pp. 303-313
summary In architecture schools, where the ‘studio culture’ lies at the heart of students’ learning, taught courses, particularly technology ones, are often seen as secondary or supplementary units. Successful delivery of such courses, where students can act effectively, be motivated and engaged, is a rather demanding task requiring careful planning and the use of various teaching styles. A recent challenge that faces architecture education today, and subsequently influences the way technology courses are being designed, is the growing trend in practice towards environmentally responsive design and the need for graduates with new skills in sustainable construction and urban ecology (HEFCE’s consultation document, 2005). This article presents the role of innovative simulation modelling tools in the enhancement of the student learning experience and professional development. Reference is made to a teaching practice that has recently been applied at Portsmouth School of Architecture in the United Kingdom and piloted at Deakin University in Australia. The work focuses on the structure and delivery of one of the two main technology units in the second year architecture programme that underwent two main phases of revision during the academic years 2009/10 and 2010/11. The article examines the inclusion of advanced daylight simulation modelling tools in the unit programme, and measures the effectiveness of enhancing its delivery as a key component of the curriculum on the student learning experience. A main objective of the work was to explain whether or not the introduction of a simulation modelling component, and the later improvement of its integration with the course programme and assessment, has contributed to a better learning experience and level of engagement. Student feedback and the grade distribution pattern over the last three academic years were collected and analyzed. The analysis of student feedback on the revised modelling component showed a positive influence on the learning experience and level of satisfaction and engagement. An improvement in student performance was also recorded over the last two academic years and following the implementation of new assessment design.
series ASCAAD
email
last changed 2016/02/15 13:09

_id ecaade2023_000
id ecaade2023_000
authors Dokonal, Wolfgang, Hirschberg, Urs and Wurzer, Gabriel
year 2023
title eCAADe 2023 Digital Design Reconsidered - Volume 1
source Dokonal, W, Hirschberg, U and Wurzer, G (eds.), Digital Design Reconsidered - Proceedings of the 41st Conference on Education and Research in Computer Aided Architectural Design in Europe (eCAADe 2023) - Volume 1, Graz, 20-22 September 2023, 905 p.
doi https://doi.org/10.52842/conf.ecaade.2023.1.001
summary The conference logo is a bird’s eye view of spiral stairs that join and separate – an homage to the famous double spiral staircase in Graz, a tourist attraction of this city and a must-see for any architecturally minded visitor. Carved out of limestone, the medieval construction of the original is a daring feat of masonry as well as a symbolic gesture. The design speaks of separation and reconciliation: The paths of two people that climb the double spiral stairs separate and then meet again at each platform. The relationship between architectural design and the growing digital repertoire of tools and possibilities seems to undergo similar cycles of attraction and rejection: enthusiasm about digital innovations – whether in Virtual Reality, Augmented Reality, Energy Design, Robotic Fabrication, the many Dimensions of BIM or, as right now, in AI and Machine Learning – is typically followed by a certain disillusionment and a realization that the promises were somewhat overblown. But a turn away from these digital innovations can only be temporary. In our call for papers we refer to the first and second ‘digital turns’, a term Mario Carpo coined. Yes, it’s a bit of a pun, but you could indeed see these digital turns in our logo as well. Carpo would probably agree that design and the digital have become inseparably intertwined. While they may be circling in different directions, an innovative rejoinder is always just around the corner. The theme of the conference asked participants to re-consider the relationship between Design and the Digital. The notion of a cycle is already present in the syllable “re”. Indeed, 20 years earlier, in 2003, we held an ECAADE conference in Graz simply under the title “Digital Design” and our re-using – or is it re-cycling? – the theme can be seen as the completion of one of those cycles described above: One level up, we meet again, we’ve come full circle. The question of the relationship between Design and the Digital is still in flux, still worthy of renewed consideration. There is a historical notion implicit in the theme. To reconsider something, one needs to take a step back, to look into the past as well as into the future. Indeed, at this conference we wanted to take a longer view, something not done often enough in the fast-paced world of digital technology. Carefully considering one’s past can be a source of inspiration. In fact, the double spiral stair that inspired our conference logo also inspired many architects through the ages. Konrad Wachsmann, for example, is said to have come up with his famous Grapevine assembly system based on this double spiral stair and its intricate joinery. More recently, Rem Koolhaas deemed the double spiral staircase in Graz important enough to include a detailed model of it in his “elements of architecture” exhibition at the Venice Biennale in 2014. Our interpretation of the stair is a typically digital one, you might say. First of all: it’s a rendering of a virtual model; it only exists inside a computer. Secondly, this virtual model isn’t true to the original. Instead, it does what the digital has made so easy to do: it exaggerates. Where the original has just two spiral stairs that separate and join, our model consists of countless stairs that are joined in this way. We see only a part of the model, but the stairs appear to continue in all directions. The implication is of an endless field of spiral stairs. As the 3D model was generated with a parametric script, it would be very easy to change all parameters of it – including the number of stairs that make it up. Everyone at this conference is familiar with the concept of parametric design: it makes generating models of seemingly endless amounts of connected spiral stairs really easy. Although, of course, if we’re too literal about the term ‘endless’, generating our stair model will eventually crash even the most advanced computers. We know that, too. – That's another truth about the Digital: it makes a promise of infinity, which, in the end, it can’t keep. And even if it could: what’s the point of just adding more of the same: more variations, more options, more possible ways to get lost? Doesn’t the original double spiral staircase contain all those derivatives already? Don’t we know that ‘more’ isn’t necessarily better? In the original double spiral stair the happy end is guaranteed: the lovers’ paths meet at the top as well as when they exit the building. Therefore, the stair is also colloquially known as the Busserlstiege (the kissing stair) or the Versöhnungsstiege (reconciliation stair). In our digitally enhanced version, this outcome is no longer clear: we can choose between multiple directions at each level and we risk losing sight of the one we were with. This is also emblematic of our field of research. eCAADe was founded to promote “good practice and sharing information in relation to the use of computers in research and education in architecture and related professions” (see ecaade.org). That may have seemed a straightforward proposition forty years ago, when the association was founded. A look at the breadth and depth of research topics presented and discussed at this conference (and as a consequence in this book, for which you’re reading the editorial) shows how the field has developed over these forty years. There are sessions on Digital Design Education, on Digital Fabrication, on Virtual Reality, on Virtual Heritage, on Generative Design and Machine Learning, on Digital Cities, on Simulation and Digital Twins, on BIM, on Sustainability, on Circular Design, on Design Theory and on Digital Design Experimentations. We hope you will find what you’re looking for in this book and at the conference – and maybe even more than that: surprising turns and happy encounters between Design and the Digital.
series eCAADe
email
last changed 2023/12/10 10:49

_id ecaade2023_001
id ecaade2023_001
authors Dokonal, Wolfgang, Hirschberg, Urs and Wurzer, Gabriel
year 2023
title eCAADe 2023 Digital Design Reconsidered - Volume 2
source Dokonal, W, Hirschberg, U and Wurzer, G (eds.), Digital Design Reconsidered - Proceedings of the 41st Conference on Education and Research in Computer Aided Architectural Design in Europe (eCAADe 2023) - Volume 2, Graz, 20-22 September 2023, 899 p.
doi https://doi.org/10.52842/conf.ecaade.2023.2.001
summary The conference logo is a bird’s eye view of spiral stairs that join and separate – an homage to the famous double spiral staircase in Graz, a tourist attraction of this city and a must-see for any architecturally minded visitor. Carved out of limestone, the medieval construction of the original is a daring feat of masonry as well as a symbolic gesture. The design speaks of separation and reconciliation: The paths of two people that climb the double spiral stairs separate and then meet again at each platform. The relationship between architectural design and the growing digital repertoire of tools and possibilities seems to undergo similar cycles of attraction and rejection: enthusiasm about digital innovations – whether in Virtual Reality, Augmented Reality, Energy Design, Robotic Fabrication, the many Dimensions of BIM or, as right now, in AI and Machine Learning – is typically followed by a certain disillusionment and a realization that the promises were somewhat overblown. But a turn away from these digital innovations can only be temporary. In our call for papers we refer to the first and second ‘digital turns’, a term Mario Carpo coined. Yes, it’s a bit of a pun, but you could indeed see these digital turns in our logo as well. Carpo would probably agree that design and the digital have become inseparably intertwined. While they may be circling in different directions, an innovative rejoinder is always just around the corner. The theme of the conference asked participants to re-consider the relationship between Design and the Digital. The notion of a cycle is already present in the syllable “re”. Indeed, 20 years earlier, in 2003, we held an ECAADE conference in Graz simply under the title “Digital Design” and our re-using – or is it re-cycling? – the theme can be seen as the completion of one of those cycles described above: One level up, we meet again, we’ve come full circle. The question of the relationship between Design and the Digital is still in flux, still worthy of renewed consideration. There is a historical notion implicit in the theme. To reconsider something, one needs to take a step back, to look into the past as well as into the future. Indeed, at this conference we wanted to take a longer view, something not done often enough in the fast-paced world of digital technology. Carefully considering one’s past can be a source of inspiration. In fact, the double spiral stair that inspired our conference logo also inspired many architects through the ages. Konrad Wachsmann, for example, is said to have come up with his famous Grapevine assembly system based on this double spiral stair and its intricate joinery. More recently, Rem Koolhaas deemed the double spiral staircase in Graz important enough to include a detailed model of it in his “elements of architecture” exhibition at the Venice Biennale in 2014. Our interpretation of the stair is a typically digital one, you might say. First of all: it’s a rendering of a virtual model; it only exists inside a computer. Secondly, this virtual model isn’t true to the original. Instead, it does what the digital has made so easy to do: it exaggerates. Where the original has just two spiral stairs that separate and join, our model consists of countless stairs that are joined in this way. We see only a part of the model, but the stairs appear to continue in all directions. The implication is of an endless field of spiral stairs. As the 3D model was generated with a parametric script, it would be very easy to change all parameters of it – including the number of stairs that make it up. Everyone at this conference is familiar with the concept of parametric design: it makes generating models of seemingly endless amounts of connected spiral stairs really easy. Although, of course, if we’re too literal about the term ‘endless’, generating our stair model will eventually crash even the most advanced computers. We know that, too. – That's another truth about the Digital: it makes a promise of infinity, which, in the end, it can’t keep. And even if it could: what’s the point of just adding more of the same: more variations, more options, more possible ways to get lost? Doesn’t the original double spiral staircase contain all those derivatives already? Don’t we know that ‘more’ isn’t necessarily better? In the original double spiral stair the happy end is guaranteed: the lovers’ paths meet at the top as well as when they exit the building. Therefore, the stair is also colloquially known as the Busserlstiege (the kissing stair) or the Versöhnungsstiege (reconciliation stair). In our digitally enhanced version, this outcome is no longer clear: we can choose between multiple directions at each level and we risk losing sight of the one we were with. This is also emblematic of our field of research. eCAADe was founded to promote “good practice and sharing information in relation to the use of computers in research and education in architecture and related professions” (see ecaade.org). That may have seemed a straightforward proposition forty years ago, when the association was founded. A look at the breadth and depth of research topics presented and discussed at this conference (and as a consequence in this book, for which you’re reading the editorial) shows how the field has developed over these forty years. There are sessions on Digital Design Education, on Digital Fabrication, on Virtual Reality, on Virtual Heritage, on Generative Design and Machine Learning, on Digital Cities, on Simulation and Digital Twins, on BIM, on Sustainability, on Circular Design, on Design Theory and on Digital Design Experimentations. We hope you will find what you’re looking for in this book and at the conference – and maybe even more than that: surprising turns and happy encounters between Design and the Digital.
series eCAADe
type normal paper
email
last changed 2024/08/29 08:36

_id cdrf2023_526
id cdrf2023_526
authors Eric Peterson, Bhavleen Kaur
year 2023
title Printing Compound-Curved Sandwich Structures with Robotic Multi-Bias Additive Manufacturing
source Proceedings of the 2023 DigitalFUTURES The 5st International Conference on Computational Design and Robotic Fabrication (CDRF 2023)
doi https://doi.org/https://doi.org/10.1007/978-981-99-8405-3_44
summary A research team at Florida International University Robotics and Digital Fabrication Lab has developed a novel method for 3d-printing curved open grid core sandwich structures using a thermoplastic extruder mounted on a robotic arm. This print-on-print additive manufacturing (AM) method relies on the 3d modeling software Rhinoceros and its parametric software plugin Grasshopper with Kuka-Parametric Robotic Control (Kuka-PRC) to convert NURBS surfaces into multi-bias additive manufacturing (MBAM) toolpaths. While several high-profile projects including the University of Stuttgart ICD/ITKE Research Pavilions 2014–15 and 2016–17, ETH-Digital Building Technologies project Levis Ergon Chair 2018, and 3D printed chair using Robotic Hybrid Manufacturing at Institute of Advanced Architecture of Catalonia (IAAC) 2019, have previously demonstrated the feasibility of 3d printing with either MBAM or sandwich structures, this method for printing Compound-Curved Sandwich Structures with Robotic MBAM combines these methods offering the possibility to significantly reduce the weight of spanning or cantilevered surfaces by incorporating the structural logic of open grid-core sandwiches with MBAM toolpath printing. Often built with fiber reinforced plastics (FRP), sandwich structures are a common solution for thin wall construction of compound curved surfaces that require a high strength-to-weight ratio with applications including aerospace, wind energy, marine, automotive, transportation infrastructure, architecture, furniture, and sports equipment manufacturing. Typical practices for producing sandwich structures are labor intensive, involving a multi-stage process including (1) the design and fabrication of a mould, (2) the application of a surface substrate such as FRP, (3) the manual application of a light-weight grid-core material, and (4) application of a second surface substrate to complete the sandwich. There are several shortcomings to this moulded manufacturing method that affect both the formal outcome and the manufacturing process: moulds are often costly and labor intensive to build, formal geometric freedom is limited by the minimum draft angles required for successful removal from the mould, and customization and refinement of product lines can be limited by the need for moulds. While the most common material for this construction method is FRP, our proof-of-concept experiments relied on low-cost thermoplastic using a specially configured pellet extruder. While the method proved feasible for small representative examples there remain significant challenges to the successful deployment of this manufacturing method at larger scales that can only be addressed with additional research. The digital workflow includes the following steps: (1) Create a 3D digital model of the base surface in Rhino, (2) Generate toolpaths for laminar printing in Grasshopper by converting surfaces into lists of oriented points, (3) Generate the structural grid-core using the same process, (4) Orient the robot to align in the direction of the substructure geometric planes, (5) Print the grid core using MBAM toolpaths, (6) Repeat step 1 and 2 for printing the outer surface with appropriate adjustments to the extruder orientation. During the design and printing process, we encountered several challenges including selecting geometry suitable for testing, extruder orientation, calibration of the hot end and extrusion/movement speeds, and deviation between the computer model and the physical object on the build platen. Physical models varied from their digital counterparts by several millimeters due to material deformation in the extrusion and cooling process. Real-time deviation verification studies will likely improve the workflow in future studies.
series cdrf
email
last changed 2024/05/29 14:04

_id ecaade2014_001
id ecaade2014_001
authors Thompson, Emine Mine (ed.)
year 2014
title Fusion, Volume 2
source Proceedings of the 32nd International Conference on Education and research in Computer Aided Architectural Design in Europe, Department of Architecture and Built Environment, Faculty of Engineering and Environment, Newcastle upon Tyne, England, UK, 10-12 September 2014, 632 p.
doi https://doi.org/10.52842/conf.ecaade.2014.1
summary This is the second volume of the conference proceedings of the 32nd eCAADe conference, held from 10-12 September 2013 at the Department of Architecture and Built Environment, Faculty of Engineering and Environment, Northumbria University in Newcastle upon Tyne, England. Both volumes together contain 130 papers that were submitted and accepted to this conference. The theme of the 32nd eCAADe conference is Fusion- data integration at its best. All quests for data integration in architecture and the construction industry lead ultimately to FUSION, a synthesis of knowledge that transcends mere combination. FUSION is the dream of a knowledge system that will enable multiple sets of data, in manifold formats, to be presented in a unified view. This conference is exploring the possibilities for advanced levels of data integration in the service of the representation and management of the natural environment, and the design, visualisation and making of the built environment. These proceedings are presenting the contributions which explore the elusive goal of FUSION in architecture and related fields. The second volume of the proceedings contains 65 papers grouped under nine sub-themes (Generative Design- Parametric Modelling, Material, Collaboration and Participation, VR, Spatial Analysis, Shape, Form and Geometry 2, BIM, Design Tool 2 and Smart and Responsive Design).
series eCAADe
type normal paper
email
last changed 2022/06/07 07:49

_id ecaade2014_000
id ecaade2014_000
authors Thompson, Emine Mine (ed.)
year 2014
title Fusion, Volume 1
source Proceedings of the 32nd International Conference on Education and research in Computer Aided Architectural Design in Europe, Department of Architecture and Built Environment, Faculty of Engineering and Environment, Newcastle upon Tyne, England, UK, 10-12 September 2014, 668 p.
doi https://doi.org/10.52842/conf.ecaade.2014.2
summary This is the first volume of the conference proceedings of the 32nd eCAADe conference, held from 10-12 September 2013 at the Department of Architecture and Built Environment, Faculty of Engineering and Environment, Northumbria University in Newcastle upon Tyne, England. Both volumes together contain 130 papers that were submitted and accepted to this conference. The theme of the 32nd eCAADe conference is Fusion- data integration at its best. All quests for data integration in architecture and the construction industry lead ultimately to FUSION, a synthesis of knowledge that transcends mere combination. FUSION is the dream of a knowledge system that will enable multiple sets of data, in manifold formats, to be presented in a unified view. This conference is exploring the possibilities for advanced levels of data integration in the service of the representation and management of the natural environment, and the design, visualisation and making of the built environment. These proceedings are presenting the contributions which explore the elusive goal of FUSION in architecture and related fields. The first volume of the proceedings contains 65 papers grouped under seven sub-themes (Towards Smarter Cities, Design Tool 1, CAAD Education, Fabrication, Shape-Form-Geometry, Visualisation and Digital Heritage).
series eCAADe
type normal paper
email
last changed 2022/06/07 07:49

_id ascaad2014_016
id ascaad2014_016
authors Al-Ratrout, Samer A. and Rana Zureikat
year 2014
title Pedagogic Approach in the Age of Parametric Architecture: Experimental method for teaching architectural design studio to 3rd year level students
source Digital Crafting [7th International Conference Proceedings of the Arab Society for Computer Aided Architectural Design (ASCAAD 2014 / ISBN 978-603-90142-5-6], Jeddah (Kingdom of Saudi Arabia), 31 March - 3 April 2014, pp. 211-226
summary In this era, Architectural Design Practice is faced with a paradigm shift in its conventional approaches towards computational methods. In this regard, it is considered a pedagogic challenge to boost up knowledge and skills of architectural students’ towards an advanced approach of architectural design that emphasizes the potentials and complexity of computational environments and parametric tools for design problem solving. For introducing the concept of Parametric Oriented Design Methods to 3rd year level architectural students, an experimental pedagogic course was designed in the scholastic year of 2012-2013 at German Jordanian University GJU (School of Architecture and Built Environment SABE) to approach this concept. In the preparation phase, the experimental course was designed to incorporate structured instructing and training method to be consecutively performed within experimental lab environment to target predetermined learning outcomes and goals. The involved students were intentionally classified into three levels of previous involvement associated with the related software operating skills and computational design exposure. In the implementation phase, the predetermined instructing and training procedures were performed in the controlled environment according to the planned tasks and time intervals. Preceded tactics were prepared to be executed to resolve various anticipated complication. In this phase also, students’ performance and comprehension capacity were observed and recorded. In data analysis phase, the observed results were verified and correlations were recognized. In the final phase, conclusions were established and recommendations for further related pedagogic experiments were introduced.
series ASCAAD
email
last changed 2016/02/15 13:09

_id ecaade2024_167
id ecaade2024_167
authors Alammar, Ammar; Alymani, Abdulrahman; Jabi, Wassim
year 2024
title Building Energy Efficiency Estimations with Random Forest for Single and Multi-Zones
source Kontovourkis, O, Phocas, MC and Wurzer, G (eds.), Data-Driven Intelligence - Proceedings of the 42nd Conference on Education and Research in Computer Aided Architectural Design in Europe (eCAADe 2024), Nicosia, 11-13 September 2024, Volume 2, pp. 365–374
doi https://doi.org/10.52842/conf.ecaade.2024.2.365
summary Surrogate models (SM) present an opportunity for rapid assessment of a building's performance, surpassing the pace of simulation-based methods. Setting up a simulation for a single concept involves defining numerous parameters, disrupting the architect's creative flow due to extended simulation run times. Therefore, this research explores integrating building energy analysis with advanced machine learning techniques to predict heating and cooling loads (KWh/m2) for single and multi-zones in buildings. To generate the dataset, the study adopts a parametric generative workflow, building upon Chou and Bui's (2014) methodology. This dataset encompasses multiple building forms, each with unique topological connections and attributes, ensuring a thorough analysis across varied building scenarios. These scenarios undergo thermal simulation to generate data for machine learning analysis. The study primarily utilizes Random Forest (RF) as a new technique to estimate the heating and cooling loads in buildings, a critical factor in building energy efficiency. Following that, A random search approach is utilized to optimize the hyperparameters, enhancing the robustness and accuracy of the machine learning models employed later in the research. The RF algorithms demonstrate high performance in predicting heating and cooling loads (KWh/m2), contributing to enhanced building energy efficiency. The study underscores the potential of machine learning in optimizing building designs for energy efficiency.
keywords Heating and Cooling loads, Topology, Machine learning, Random Forest
series eCAADe
email
last changed 2024/11/17 22:05

_id sigradi2014_068
id sigradi2014_068
authors Almeida da Silva, Adriane Borda; Nirce Saffer Medevedosky, Sirlene de Mello Sopeña, Gustavo Alcantara Brod, Thales Teodoro
year 2014
title Contrução de cenários motivacionais sob a perspectiva de tecnologias sociais [Construction of motivational scenarios in the perspective of social technologies]
source SiGraDi 2014 [Proceedings of the 18th Conference of the Iberoamerican Society of Digital Graphics - ISBN: 978-9974-99-655-7] Uruguay - Montevideo 12 - 14 November 2014, pp. 493-496
summary This paper describes the development of actions, denominated motivational scenarios, which sought to motivate behavior change in favor of the requalification of the urban space in a playful manner; the actions were directed to areas of social housing and the appreciation of architectural heritage. The concept of Social Technology and the recognition of advanced technologies of representation and visualization were characterized in this study as theoretical and technological framework respectively. The actions were structured from anamorphosis techniques, augmented reality and natural, tactile and motion-capture interfaces, building interactive virtual scenarios that are provocative in facing the architectural issues outlined
keywords Motivational scenarios; urban requalification; architectural heritage; natural interfaces and augmented realitys
series SIGRADI
email
last changed 2016/03/10 09:47

_id caadria2014_264
id caadria2014_264
authors Gannon, Madeline and Eric Brockmeyer
year 2014
title Teaching CAD/CAM Workflows to Nascent Designers
source Rethinking Comprehensive Design: Speculative Counterculture, Proceedings of the 19th International Conference on Computer-Aided Architectural Design Research in Asia (CAADRIA 2014) / Kyoto 14-16 May 2014, pp. 801–810
doi https://doi.org/10.52842/conf.caadria.2014.801
summary The following paper presents a suite of custom software environments that make advanced techniques in digital fabrication accessible to novice, first-year designers. The collective design aides facilitate a number of digital-to-physical workflows, including 3D modeling for CNC milling and 3D printing, 2D patterning for laser cutting, and interactive visualization for projection mapping. Each of the workflows illustrate pedagogical principles for embedding tacit and tactile knowledge into computational frameworks: balancing complexity against functional limits, revealing the underlying abstractions connecting digital geometry to CNC machines, engaging the designer through intuitive and responsive environments, and leveraging generative and interactive digital modeling for serial variation. These digital design and fabrication aides have been used to facilitate formal and material explorations for groups of pre-college and freshmen students, aged 16 to 19. Their resulting tangible artifacts—made from foam, birch plywood, paper, plastic, and light—show that CAD/CAM workflows can be an accessible subject matter for students without prior experience in digital modeling or fabrication.
keywords CAD/CAM; computational design education; digital fabrication; design aides; generative design
series CAADRIA
email
last changed 2022/06/07 07:50

_id caadria2014_034
id caadria2014_034
authors Nguyen, Danny D. and M. Hank Haeusler
year 2014
title Exploring Immersive Digital Environments
source Rethinking Comprehensive Design: Speculative Counterculture, Proceedings of the 19th International Conference on Computer-Aided Architectural Design Research in Asia (CAADRIA 2014) / Kyoto 14-16 May 2014, pp. 87–96
doi https://doi.org/10.52842/conf.caadria.2014.087
summary In contemporary architecture firms, most design drawings are done via use of 3D modelling software. This method requires advanced knowledge of the software in order to produce an accurate representation of space into the digital environment. The paper argues that conventional 3D visualization methods to design and analyse are restrictive to how well the user understands the space on a computer, as drawings are done ex-situ and without testing the design concept in-situ, hence there might be a level of disparity between the design and final fabrication. This is particularly a challenge when designing Urban Interaction Design concepts, as combinations of variables play a role in how the design will be received by the audience. Observing the design challenges for Urban Interaction Design and applying knowledge to architectural representation, potentially an alternative sketching process can be developed to alleviate the disparity between the conceptual design and post fabrication. This paper discusses an experimental process of using wireless spatial sensing devices to digitize physical spaces in real-time and to use on-the-spot analysis. In its conclusion the paper argues that this method enables the designer to gain advanced conceptual understandings of the intended space and thus make more informed decisions.
keywords Spatial Design; Human-Computing Interfacing; Urban Interaction Design; Spatial 3D Visualization; Wireless Sensor Technology
series CAADRIA
email
last changed 2022/06/07 07:58

_id acadia17_512
id acadia17_512
authors Rossi, Andrea; Tessmann, Oliver
year 2017
title Collaborative Assembly of Digital Materials
source ACADIA 2017: DISCIPLINES & DISRUPTION [Proceedings of the 37th Annual Conference of the Association for Computer Aided Design in Architecture (ACADIA) ISBN 978-0-692-96506-1] Cambridge, MA 2-4 November, 2017), pp. 512- 521
doi https://doi.org/10.52842/conf.acadia.2017.512
summary Current developments in design-to-production workflows aim to allow architects to quickly prototype designs that result from advanced design processes while also embedding the constraints imposed by selected fabrication equipment. However, the enduring physical separation between design space and fabrication space, together with a continuous approach to both design, via NURBs modeling software, and fabrication, through irreversible material processing methods, limit the possibilities to extend the advantages of a “digital” approach (Ward 2010), such as full editability and reversibility, to physical realizations. In response to such issues, this paper proposes a processto allow the concurrent design and fabrication of discrete structures in a collaborative process between human designer and a 6-axis robotic arm. This requires the development of design and materialization procedures for discrete aggregations, including the modeling of assembly constraints, as well as the establishment of a communication platform between human and machine actors. This intends to offer methods to increase the accessibility of discrete design methodologies, as well as to hint at possibilities for overcoming the division between design and manufacturing (Carpo 2011; Bard et al. 2014), thus allowing intuitive design decisions to be integrated directly within assembly processes (Johns 2014).
keywords material and construction; construction/robotics; smart assembly/construction; generative system
series ACADIA
email
last changed 2022/06/07 07:56

_id ecaade2014_094
id ecaade2014_094
authors Ruggero Lancia and Ian Anderson
year 2014
title Digital Curation for CAAD Curricula - Bridging Mainstream and Speculative Design Procedures to promote curatorial competences for Architecture
source Thompson, Emine Mine (ed.), Fusion - Proceedings of the 32nd eCAADe Conference - Volume 1, Department of Architecture and Built Environment, Faculty of Engineering and Environment, Newcastle upon Tyne, England, UK, 10-12 September 2014, pp. 313-322
doi https://doi.org/10.52842/conf.ecaade.2014.1.313
wos WOS:000361384700031
summary As the design processes in Architectural practices switch toward entirely digital workflows, architects are gradually required, because of their legal and commercial liability, to provide for both a relatively long term curation of their own digital products and the deposit of authoritative data. But, despite being the sole curation actors for their data, architects receive little education or training in either pertinent competences nor agreed and established procedures to comply with these duties. In this paper, the design of Digital Curation courses within CAAD Curricula will be discussed against the investigation results of the DEDICATE project, an AHRC funded project hosted at the Humanities Advanced Technology and Information Institute of the University of Glasgow.
keywords Caad curricula; digital curation; generative design; digital fabrication
series eCAADe
email
last changed 2022/06/07 07:56

_id sigradi2014_263
id sigradi2014_263
authors Wit, Andrew John
year 2014
title Towards an Intelligent Architecture “Creating Adaptive Building Systems for Inhabitation”
source SiGraDi 2014 [Proceedings of the 18th Conference of the Iberoamerican Society of Digital Graphics - ISBN: 978-9974-99-655-7] Uruguay- Montevideo 12,13,14 November 2014, pp. 328-332
summary Existing typologies of emergency housing rely heavily on conventional designs, materials and labor-intensive construction methodologies, which in post-disaster environments place large amounts of strain on the surrounding communities, material manufacturers and financial systems. With ever more unpredictable environmental conditions, should our new housing prototypes not also have the ability to simultaneously adapt to rapidly changing environmental conditions? This paper investigates the potential of developing a new typology of rapidly deployable emergency housing prototypes through the creation of a system which relies on embedded design intelligence, advanced fabrication and adaptable systems, rather than attempting to make existing building systems smarter.
keywords Adaptable; Housing; Skin; Robotics; Pneumatic
series SIGRADI
email
last changed 2016/03/10 10:03

_id ecaade2014_105
id ecaade2014_105
authors Zaid Alwan, Peter Holgate and Paul Jones
year 2014
title Applying BIM to Sustainable Performance Evaluation in Design Projects: An Educational Approach for Architecture Programmes
source Thompson, Emine Mine (ed.), Fusion - Proceedings of the 32nd eCAADe Conference - Volume 2, Department of Architecture and Built Environment, Faculty of Engineering and Environment, Newcastle upon Tyne, England, UK, 10-12 September 2014, pp. 437-444
doi https://doi.org/10.52842/conf.ecaade.2014.2.437
wos WOS:000361385100046
summary The merits and potential of Building Information Modelling (BIM) have been promoted for several years; however, its widespread adoption and development may potentially stagnate on account of a technical skills shortage, with insufficient personnel having the capabilities to successfully deliver projects. This shortfall covers all aspects of BIM, and building performance and life cycle analysis in particular. Programmes such as Ecotect, Revit, Green Building Studio, and Project Vasari, have transformed data capture and analysis, enabling architects and systems engineers to visualise site analyses and to test preliminary designs. As BIM is a relatively new process which continues to develop rapidly, Higher Education Institutions need to respond to currency and change while striving to provide graduates with the advanced skills to satisfy the needs of the building industry. This work presents a case study of the application of Autodesk's Building Performance Analysis Certificate (BPAC) as a driver for learning in support of the integration of BIM into the architectural curriculum.
keywords Virtual building performance i; bim collaboration; data transfer; sustainability education
series eCAADe
email
last changed 2022/06/07 07:57

_id ecaade2014_156
id ecaade2014_156
authors Krystian Kwiecinski and Jan Slyk
year 2014
title System for customer participation in the design process of mass-customized houses
source Thompson, Emine Mine (ed.), Fusion - Proceedings of the 32nd eCAADe Conference - Volume 2, Department of Architecture and Built Environment, Faculty of Engineering and Environment, Newcastle upon Tyne, England, UK, 10-12 September 2014, pp. 207-215
doi https://doi.org/10.52842/conf.ecaade.2014.2.207
wos WOS:000361385100022
summary The paper presents an undergoing research that aims at developing a system, which will allow customer participation in a design of mass-customized houses. The system will allow customers to self-configure a house in a preferred way in relation to the site where it is going to be constructed and with a respect to the prescribed architectural rules. Introducing customer participation in the design process of mass-customized houses allows users to find out individual design goals transforming the design process from being ill-defined into goal-oriented. The proposed system for customer participation could become feasible alternative to the traditional process of provisioning affordable houses improving the living quality in these market areas where architectural knowledge is unaffordable and missing.
keywords Housing delivery process; mass customization; customer participation
series eCAADe
type normal paper
email
last changed 2022/06/07 07:52

_id acadia23_v1_174
id acadia23_v1_174
authors Nejur, Andrei
year 2023
title NoeudAL Pavilion: Ultralight folded nodes for bespoke geometries
source ACADIA 2023: Habits of the Anthropocene: Scarcity and Abundance in a Post-Material Economy [Volume 1: Projects Catalog of the 43rd Annual Conference of the Association of Computer Aided Design in Architecture (ACADIA) ISBN 979-8-9860805-8-1]. Denver. 26-28 October 2023. edited by A. Crawford, N. Diniz, R. Beckett, J. Vanucchi, M. Swackhamer 174-179.
summary This research project, conducted at the University of Montreal School of Architecture, presents an innovative approach to the construction of reticulated structures, focusing on the development and application of a novel, ultralight aluminum node. The node, constructed from a folded, laser-cut, 1-mm aluminum sheet, is designed to accommodate wooden linear members with varied rectangular sections, making it adaptable to bespoke geometries and low valence nodes. This innovative design offers a solution to the long-standing challenge in the construction industry of balancing cost, customization, and weight for reticulated structures through novel node designs (Abdelwahab and Tsavdaridis 2019; Dyvik et al. 2023; Chilton 2007; Rochas 2014; Hassani et al. 2020).
series ACADIA
type project
email
last changed 2024/04/17 13:58

_id acadia14projects_83
id acadia14projects_83
authors Peters, Brian
year 2014
title Vertex.3D
source ACADIA 14: Design Agency [Projects of the 34th Annual Conference of the Association for Computer Aided Design in Architecture (ACADIA) ISBN 9789126724478]Los Angeles 23-25 October, 2014), pp. 83-86
doi https://doi.org/10.52842/conf.acadia.2014.083
summary Inspired by geodesic domes, Vertex.3D juxtaposes historic mass production manufacturing techniques and the mass customization possible with 3D printing. This project is an exploration of the feasibility of using standard desktop 3D printing machines and plastic filament to fabricate full scale structures.
keywords Digital fabrication and construction 3D Printing, Parametric Design, Temporary Structure, Geodesic, Tectonics, Materials Logic
series ACADIA
type Research Projects
email
last changed 2022/06/07 08:00

_id ascaad2014_014
id ascaad2014_014
authors Abuelmaatti, Aisha A.; Vian S. Ahmed and Heveine S. Baban
year 2014
title Collaborative Environments in Small and Medium-sized Enterprises in Architecture, Engineering and Construction
source Digital Crafting [7th International Conference Proceedings of the Arab Society for Computer Aided Architectural Design (ASCAAD 2014 / ISBN 978-603-90142-5-6], Jeddah (Kingdom of Saudi Arabia), 31 March - 3 April 2014, pp. 183-193
summary The general picture of Architecture Engineering and Construction (AEC) is of a sector that is a pyramid with control being in the hands of large players with a large base of Small and Medium Enterprises (SMEs). It ensues naturally that SMEs are key players in supporting the large companies. This suggests that, the AEC sector has a continuous demand for collaboration. Collaborative working has been implemented in numerous companies. These efforts have resulted in the wide recognition of the opportunity that emerging technologies offer the AEC sector. It is, however, commonly observed that SMEs are likely to magnify the sector trend and to be less technically forward thinking than large companies. The main focus of this paper is, therefore, to explore the use of IT within AEC, and the barriers and different implementation factors that can influence SMEs to develop, in response to business pressures using the opportunities provided by collaborative technologies.
series ASCAAD
email
last changed 2016/02/15 13:09

_id ascaad2014_004
id ascaad2014_004
authors Afsari, Kereshmeh; Matthew E. Swarts and T. Russell Gentry
year 2014
title Integrated Generative Technique for Interactive Design of Brickworks
source Digital Crafting [7th International Conference Proceedings of the Arab Society for Computer Aided Architectural Design (ASCAAD 2014 / ISBN 978-603-90142-5-6], Jeddah (Kingdom of Saudi Arabia), 31 March - 3 April 2014, pp. 49-64
summary Bricks have been used in the construction industry as a building medium for millennia. Distinct patterns of bricks depict the unique aesthetic intentions found in Roman, Gothic and Islamic architecture. In contemporary practice, the use of digital tools in design has enabled methodologies for creating new forms in architecture. CAD and BIM systems provide new opportunities for designers to create parametric objects for building form generation. In masonry design, there exists an inherent contradiction between traditional patterns in brick design, which are formal and prescribed, and the potential for new patterns generated using design scripting. In addition, current tools do not provide interactive techniques for the design of brickwork patterns that can manage constant changes parametrically, to inform and influence design process, by providing design feedback on the constructive and structural aspects of the proposed brick pattern and geometry. This research looks into the parametric techniques that can be applied to create different kinds of patterns on brick walls. It discusses a methodology for an interactive brickwork design within generative techniques. By integrating data between two computational platforms – the first based on image analysis and the second on parametric modeling, we demonstrate a methodology and application that can generate interactive arbitrary patterns and map it to the brick wall in real-time.
series ASCAAD
email
last changed 2016/02/15 13:09

For more results click below:

this is page 0show page 1show page 2show page 3show page 4show page 5... show page 33HOMELOGIN (you are user _anon_823940 from group guest) CUMINCAD Papers Powered by SciX Open Publishing Services 1.002