CumInCAD is a Cumulative Index about publications in Computer Aided Architectural Design
supported by the sibling associations ACADIA, CAADRIA, eCAADe, SIGraDi, ASCAAD and CAAD futures

PDF papers
References

Hits 1 to 20 of 643

_id ecaade2024_167
id ecaade2024_167
authors Alammar, Ammar; Alymani, Abdulrahman; Jabi, Wassim
year 2024
title Building Energy Efficiency Estimations with Random Forest for Single and Multi-Zones
doi https://doi.org/10.52842/conf.ecaade.2024.2.365
source Kontovourkis, O, Phocas, MC and Wurzer, G (eds.), Data-Driven Intelligence - Proceedings of the 42nd Conference on Education and Research in Computer Aided Architectural Design in Europe (eCAADe 2024), Nicosia, 11-13 September 2024, Volume 2, pp. 365–374
summary Surrogate models (SM) present an opportunity for rapid assessment of a building's performance, surpassing the pace of simulation-based methods. Setting up a simulation for a single concept involves defining numerous parameters, disrupting the architect's creative flow due to extended simulation run times. Therefore, this research explores integrating building energy analysis with advanced machine learning techniques to predict heating and cooling loads (KWh/m2) for single and multi-zones in buildings. To generate the dataset, the study adopts a parametric generative workflow, building upon Chou and Bui's (2014) methodology. This dataset encompasses multiple building forms, each with unique topological connections and attributes, ensuring a thorough analysis across varied building scenarios. These scenarios undergo thermal simulation to generate data for machine learning analysis. The study primarily utilizes Random Forest (RF) as a new technique to estimate the heating and cooling loads in buildings, a critical factor in building energy efficiency. Following that, A random search approach is utilized to optimize the hyperparameters, enhancing the robustness and accuracy of the machine learning models employed later in the research. The RF algorithms demonstrate high performance in predicting heating and cooling loads (KWh/m2), contributing to enhanced building energy efficiency. The study underscores the potential of machine learning in optimizing building designs for energy efficiency.
keywords Heating and Cooling loads, Topology, Machine learning, Random Forest
series eCAADe
email
last changed 2024/11/17 22:05

_id caadria2014_034
id caadria2014_034
authors Nguyen, Danny D. and M. Hank Haeusler
year 2014
title Exploring Immersive Digital Environments
doi https://doi.org/10.52842/conf.caadria.2014.087
source Rethinking Comprehensive Design: Speculative Counterculture, Proceedings of the 19th International Conference on Computer-Aided Architectural Design Research in Asia (CAADRIA 2014) / Kyoto 14-16 May 2014, pp. 87–96
summary In contemporary architecture firms, most design drawings are done via use of 3D modelling software. This method requires advanced knowledge of the software in order to produce an accurate representation of space into the digital environment. The paper argues that conventional 3D visualization methods to design and analyse are restrictive to how well the user understands the space on a computer, as drawings are done ex-situ and without testing the design concept in-situ, hence there might be a level of disparity between the design and final fabrication. This is particularly a challenge when designing Urban Interaction Design concepts, as combinations of variables play a role in how the design will be received by the audience. Observing the design challenges for Urban Interaction Design and applying knowledge to architectural representation, potentially an alternative sketching process can be developed to alleviate the disparity between the conceptual design and post fabrication. This paper discusses an experimental process of using wireless spatial sensing devices to digitize physical spaces in real-time and to use on-the-spot analysis. In its conclusion the paper argues that this method enables the designer to gain advanced conceptual understandings of the intended space and thus make more informed decisions.
keywords Spatial Design; Human-Computing Interfacing; Urban Interaction Design; Spatial 3D Visualization; Wireless Sensor Technology
series CAADRIA
email
last changed 2022/06/07 07:58

_id ascaad2014_016
id ascaad2014_016
authors Al-Ratrout, Samer A. and Rana Zureikat
year 2014
title Pedagogic Approach in the Age of Parametric Architecture: Experimental method for teaching architectural design studio to 3rd year level students
source Digital Crafting [7th International Conference Proceedings of the Arab Society for Computer Aided Architectural Design (ASCAAD 2014 / ISBN 978-603-90142-5-6], Jeddah (Kingdom of Saudi Arabia), 31 March - 3 April 2014, pp. 211-226
summary In this era, Architectural Design Practice is faced with a paradigm shift in its conventional approaches towards computational methods. In this regard, it is considered a pedagogic challenge to boost up knowledge and skills of architectural students’ towards an advanced approach of architectural design that emphasizes the potentials and complexity of computational environments and parametric tools for design problem solving. For introducing the concept of Parametric Oriented Design Methods to 3rd year level architectural students, an experimental pedagogic course was designed in the scholastic year of 2012-2013 at German Jordanian University GJU (School of Architecture and Built Environment SABE) to approach this concept. In the preparation phase, the experimental course was designed to incorporate structured instructing and training method to be consecutively performed within experimental lab environment to target predetermined learning outcomes and goals. The involved students were intentionally classified into three levels of previous involvement associated with the related software operating skills and computational design exposure. In the implementation phase, the predetermined instructing and training procedures were performed in the controlled environment according to the planned tasks and time intervals. Preceded tactics were prepared to be executed to resolve various anticipated complication. In this phase also, students’ performance and comprehension capacity were observed and recorded. In data analysis phase, the observed results were verified and correlations were recognized. In the final phase, conclusions were established and recommendations for further related pedagogic experiments were introduced.
series ASCAAD
email
last changed 2016/02/15 13:09

_id ecaade2014_138
id ecaade2014_138
authors Martin Tamke, Ina Blümel, Sebastian Ochmann, Richard Vock and Raoul Wessel
year 2014
title From Point Clouds to Definitions of Architectural Space - Potentials of Automated Extraction of Semantic Information from Point Clouds for the Building Profession
doi https://doi.org/10.52842/conf.ecaade.2014.2.557
source Thompson, Emine Mine (ed.), Fusion - Proceedings of the 32nd eCAADe Conference - Volume 2, Department of Architecture and Built Environment, Faculty of Engineering and Environment, Newcastle upon Tyne, England, UK, 10-12 September 2014, pp. 557-566
summary Regarding interior building topology as an important aspect in building design and management, several approaches to indoor point cloud structuring have been introduced recently. Apart from a high-level semantic segmentation of the formerly unstructured point clouds into stories and rooms, these methods additionally allow the extraction of attributed graphs in which nodes represent rooms (including room properties like area or height), and edges represent connections between rooms (doors or staircases) or indicate neighborhood relationships (separation by walls). In this paper, we investigate possible applications of these approaches in architectural design and building management and comment on the possible benefits for the building profession. While contemporary practice of spatial arrangement is predominantly based on the manual iteration of spatial topologies, we show that the segmentation of buildings in spaces along with the untraditional more abstract graph-based representations can be used for design, management and navigation within building structures.
wos WOS:000361385100058
keywords 3d scanning; point cloud processing; bim; facility management; space syntax
series eCAADe
email
last changed 2022/06/07 07:59

_id ascaad2014_013
id ascaad2014_013
authors Binhomaid, Omar and Tarek Hegazy
year 2014
title Comparison between Genetic Optimization and Heuristic Methods for Prioritizing Infrastructure Rehabilitation Programs
source Digital Crafting [7th International Conference Proceedings of the Arab Society for Computer Aided Architectural Design (ASCAAD 2014 / ISBN 978-603-90142-5-6], Jeddah (Kingdom of Saudi Arabia), 31 March - 3 April 2014, pp. 175-182
summary In recent years, infrastructure rehabilitation has been in the focus of attention in North America and around the world. A large percentage of existing infrastructure assets is deteriorating due to harsh environmental conditions, insufficient capacity, and age. Due to stringent budget limits, however, asset management systems become important to assess the life cycle performance of various assets, and accordingly prioritize the assets for rehabilitation purposes. While many asset management systems have been introduced in the literature, almost no studies have compared the effectiveness of their asset prioritization methods. This paper presents an extensive comparison between heuristic and optimization methods for prioritizing large-scale rehabilitation programs, under budget constraints. The paper first introduces different life cycle cost analysis (LCCA) formulations for three case studies obtained from the literature related to buildings, pavements, and bridges. Based on extensive experiments with the three case studies and on different network sizes, heuristic techniques proved its practicality for handling various network sizes. The performance of genetic optimization, on the other hand, was more efficient on small-scale networks but showed steep degradation in performance with large-scale problems. This research can be beneficial to municipalities and asset managers and can help them design efficient methods to sustain the safety and operability of the civil infrastructure, with least cost.
series ASCAAD
email
last changed 2016/02/15 13:09

_id acadia14_661
id acadia14_661
authors Corazza, Marco; Doshi, Viral; Korner, Axel; Tabassun, Mehnaj
year 2014
title Fiber Composite Fabrication: Experimental Methods of Architectural Applications
doi https://doi.org/10.52842/conf.acadia.2014.661
source ACADIA 14: Design Agency [Proceedings of the 34th Annual Conference of the Association for Computer Aided Design in Architecture (ACADIA) ISBN 9781926724478]Los Angeles 23-25 October, 2014), pp. 661-670
summary Due to availability and the production costs of current fabrication methods, fiber reinforced composites are used primarily in specialized fields with limited applications in architecture. The aim of the research is to present an exploration in low-tech fabrication techniques in conjunction with geometrical optimization of a large-scale typology within extreme environmental conditions.
keywords fiber composites, digital fabrication, material computation, computational fluid dynamics, shell structures, structural optimization
series ACADIA
type Normal Paper
email
last changed 2022/06/07 07:56

_id ecaade2014_233
id ecaade2014_233
authors Evangelos Pantazis and David Gerber
year 2014
title Material Swarm Articulations - New View Reciprocal Frame Canopy
doi https://doi.org/10.52842/conf.ecaade.2014.1.463
source Thompson, Emine Mine (ed.), Fusion - Proceedings of the 32nd eCAADe Conference - Volume 1, Department of Architecture and Built Environment, Faculty of Engineering and Environment, Newcastle upon Tyne, England, UK, 10-12 September 2014, pp. 463-473
summary Material Swarm Articulations, is an experiment in developing a multi-objective optimization system that incorporates bottom up approaches for informing architectural design. The paper presents an initial built project that demonstrates the combination of a structural form finding method, with an agent based design system through the digital fabrication processes. The objective of this research is to develop a workflow combined with material and construction constraints that has the potential to increase performance objectives while enabling geometric complexity and design driven articulation of a traditional tectonic system. The emphasis of the research at this stage is to take advantage of material properties and assembly methods applied to a digital design and simulation workflow that enables emergent patterns to influence the performance of the space.The paper illustrates the research through a prototype of a self standing canopy structure in 1:1 scale. It presents results of the form finding, generative patterning, digital fabrication affordances and sets and agenda for next steps in the use of multi-agent systems for design purposes.
wos WOS:000361384700046
keywords Computational design; agent-based system; digital fabrication; parametric design; reciprocal frames; form finding; multi-objective optimization, multi-agent systems for design
series eCAADe
email
last changed 2022/06/07 07:55

_id ijac201412405
id ijac201412405
authors Gómez Zamora, Paula and Matthew Swarts
year 2014
title Campus Information-and-knowledge Modeling: Embedding Multidisciplinary Knowledge into a Design Environment for University Campus Planning
source International Journal of Architectural Computing vol. 12 - no. 4, 439-458
summary This article gives an overview of our research approach in collecting specific information and multidisciplinary knowledge with the aim of integrating them into a model for the planning of a university, supported by a design environment. Our goal is to develop a strategy for modeling raw information and expert knowledge for the Georgia Tech Campus. This research was divided into three stages: First, we identified a variety of written sources of information for campus planning, extracting and distinguishing raw information from disciplinary knowledge. Second, we selected the elicitation methods to gather knowledge directly from experts, with the objective of performing qualitative assessments –effectiveness,efficiency,andsatisfaction–ofcertainfeaturesof the Georgia Tech Campus. Third, we interpreted the information and knowledge obtained and structured them into Bloom’s taxonomy of factual, conceptual, procedural and meta-cognitive, to define the specific modeling implementation strategies. Currently, we are implementing a Campus Landscape Information Modeling Tabletop in two phases. First, constructing an information-model based on raster and vector models that represent land types and landscape elements respectively, to perform quantitative assessments of campus possible scenarios. Second, embedding knowledge and qualitative aspects into a knowledge-model. The long-term goal is to include quantitative as well as qualitative aspects into a computational model, to support informed and balanced design decisions for university campus planning.This paper specifically focuses on the construction of the knowledge-model for Georgia Tech Landscape planning, its structure, its content, as well as the elicitation methods used to collect it.
series journal
last changed 2019/05/24 09:55

_id ecaade2014_191
id ecaade2014_191
authors Mads Brath Jensen and Isak Worre Foged
year 2014
title Cellular Automata as a learning process in Architecture and Urban design
doi https://doi.org/10.52842/conf.ecaade.2014.1.297
source Thompson, Emine Mine (ed.), Fusion - Proceedings of the 32nd eCAADe Conference - Volume 1, Department of Architecture and Built Environment, Faculty of Engineering and Environment, Newcastle upon Tyne, England, UK, 10-12 September 2014, pp. 297-302
summary This paper explores the application of cellular automata as method for investigating the dynamic parameters and interrelationships that constitute the urban space. With increasing aspects needed for integration during the architectural and urban design process with the relations between these aspects growing in parallel, complexity of the design process and design solution increases. Additionally, aspects and relations are of a transformative character in that they change over time and therefore construct a time-based condition for which problems are presented and solutions are sought. An architectural methodological response to this situation is presented through the development of a conceptual computational design system that allows these dynamics to unfold and to be observed for architectural design decision taking. Reflecting on the development and implementation of a cellular automata based design approach on a master level urban design studio this paper will discuss the strategies for dealing with complexity at an urban scale as well as the pedagogical considerations behind applying computational tools and methods to a urban design education.
wos WOS:000361384700029
keywords Computational design; cellular automata; education; design exploration
series eCAADe
email
last changed 2022/06/07 07:59

_id ascaad2014_023
id ascaad2014_023
authors Al-Maiyah, Sura and Hisham Elkadi
year 2014
title Assessing the Use of Advanced Daylight Simulation Modelling Tools in Enhancing the Student Learning Experience
source Digital Crafting [7th International Conference Proceedings of the Arab Society for Computer Aided Architectural Design (ASCAAD 2014 / ISBN 978-603-90142-5-6], Jeddah (Kingdom of Saudi Arabia), 31 March - 3 April 2014, pp. 303-313
summary In architecture schools, where the ‘studio culture’ lies at the heart of students’ learning, taught courses, particularly technology ones, are often seen as secondary or supplementary units. Successful delivery of such courses, where students can act effectively, be motivated and engaged, is a rather demanding task requiring careful planning and the use of various teaching styles. A recent challenge that faces architecture education today, and subsequently influences the way technology courses are being designed, is the growing trend in practice towards environmentally responsive design and the need for graduates with new skills in sustainable construction and urban ecology (HEFCE’s consultation document, 2005). This article presents the role of innovative simulation modelling tools in the enhancement of the student learning experience and professional development. Reference is made to a teaching practice that has recently been applied at Portsmouth School of Architecture in the United Kingdom and piloted at Deakin University in Australia. The work focuses on the structure and delivery of one of the two main technology units in the second year architecture programme that underwent two main phases of revision during the academic years 2009/10 and 2010/11. The article examines the inclusion of advanced daylight simulation modelling tools in the unit programme, and measures the effectiveness of enhancing its delivery as a key component of the curriculum on the student learning experience. A main objective of the work was to explain whether or not the introduction of a simulation modelling component, and the later improvement of its integration with the course programme and assessment, has contributed to a better learning experience and level of engagement. Student feedback and the grade distribution pattern over the last three academic years were collected and analyzed. The analysis of student feedback on the revised modelling component showed a positive influence on the learning experience and level of satisfaction and engagement. An improvement in student performance was also recorded over the last two academic years and following the implementation of new assessment design.
series ASCAAD
email
last changed 2016/02/15 13:09

_id ecaade2023_000
id ecaade2023_000
authors Dokonal, Wolfgang, Hirschberg, Urs and Wurzer, Gabriel
year 2023
title eCAADe 2023 Digital Design Reconsidered - Volume 1
doi https://doi.org/10.52842/conf.ecaade.2023.1.001
source Dokonal, W, Hirschberg, U and Wurzer, G (eds.), Digital Design Reconsidered - Proceedings of the 41st Conference on Education and Research in Computer Aided Architectural Design in Europe (eCAADe 2023) - Volume 1, Graz, 20-22 September 2023, 905 p.
summary The conference logo is a bird’s eye view of spiral stairs that join and separate – an homage to the famous double spiral staircase in Graz, a tourist attraction of this city and a must-see for any architecturally minded visitor. Carved out of limestone, the medieval construction of the original is a daring feat of masonry as well as a symbolic gesture. The design speaks of separation and reconciliation: The paths of two people that climb the double spiral stairs separate and then meet again at each platform. The relationship between architectural design and the growing digital repertoire of tools and possibilities seems to undergo similar cycles of attraction and rejection: enthusiasm about digital innovations – whether in Virtual Reality, Augmented Reality, Energy Design, Robotic Fabrication, the many Dimensions of BIM or, as right now, in AI and Machine Learning – is typically followed by a certain disillusionment and a realization that the promises were somewhat overblown. But a turn away from these digital innovations can only be temporary. In our call for papers we refer to the first and second ‘digital turns’, a term Mario Carpo coined. Yes, it’s a bit of a pun, but you could indeed see these digital turns in our logo as well. Carpo would probably agree that design and the digital have become inseparably intertwined. While they may be circling in different directions, an innovative rejoinder is always just around the corner. The theme of the conference asked participants to re-consider the relationship between Design and the Digital. The notion of a cycle is already present in the syllable “re”. Indeed, 20 years earlier, in 2003, we held an ECAADE conference in Graz simply under the title “Digital Design” and our re-using – or is it re-cycling? – the theme can be seen as the completion of one of those cycles described above: One level up, we meet again, we’ve come full circle. The question of the relationship between Design and the Digital is still in flux, still worthy of renewed consideration. There is a historical notion implicit in the theme. To reconsider something, one needs to take a step back, to look into the past as well as into the future. Indeed, at this conference we wanted to take a longer view, something not done often enough in the fast-paced world of digital technology. Carefully considering one’s past can be a source of inspiration. In fact, the double spiral stair that inspired our conference logo also inspired many architects through the ages. Konrad Wachsmann, for example, is said to have come up with his famous Grapevine assembly system based on this double spiral stair and its intricate joinery. More recently, Rem Koolhaas deemed the double spiral staircase in Graz important enough to include a detailed model of it in his “elements of architecture” exhibition at the Venice Biennale in 2014. Our interpretation of the stair is a typically digital one, you might say. First of all: it’s a rendering of a virtual model; it only exists inside a computer. Secondly, this virtual model isn’t true to the original. Instead, it does what the digital has made so easy to do: it exaggerates. Where the original has just two spiral stairs that separate and join, our model consists of countless stairs that are joined in this way. We see only a part of the model, but the stairs appear to continue in all directions. The implication is of an endless field of spiral stairs. As the 3D model was generated with a parametric script, it would be very easy to change all parameters of it – including the number of stairs that make it up. Everyone at this conference is familiar with the concept of parametric design: it makes generating models of seemingly endless amounts of connected spiral stairs really easy. Although, of course, if we’re too literal about the term ‘endless’, generating our stair model will eventually crash even the most advanced computers. We know that, too. – That's another truth about the Digital: it makes a promise of infinity, which, in the end, it can’t keep. And even if it could: what’s the point of just adding more of the same: more variations, more options, more possible ways to get lost? Doesn’t the original double spiral staircase contain all those derivatives already? Don’t we know that ‘more’ isn’t necessarily better? In the original double spiral stair the happy end is guaranteed: the lovers’ paths meet at the top as well as when they exit the building. Therefore, the stair is also colloquially known as the Busserlstiege (the kissing stair) or the Versöhnungsstiege (reconciliation stair). In our digitally enhanced version, this outcome is no longer clear: we can choose between multiple directions at each level and we risk losing sight of the one we were with. This is also emblematic of our field of research. eCAADe was founded to promote “good practice and sharing information in relation to the use of computers in research and education in architecture and related professions” (see ecaade.org). That may have seemed a straightforward proposition forty years ago, when the association was founded. A look at the breadth and depth of research topics presented and discussed at this conference (and as a consequence in this book, for which you’re reading the editorial) shows how the field has developed over these forty years. There are sessions on Digital Design Education, on Digital Fabrication, on Virtual Reality, on Virtual Heritage, on Generative Design and Machine Learning, on Digital Cities, on Simulation and Digital Twins, on BIM, on Sustainability, on Circular Design, on Design Theory and on Digital Design Experimentations. We hope you will find what you’re looking for in this book and at the conference – and maybe even more than that: surprising turns and happy encounters between Design and the Digital.
series eCAADe
email
last changed 2023/12/10 10:49

_id ecaade2023_001
id ecaade2023_001
authors Dokonal, Wolfgang, Hirschberg, Urs and Wurzer, Gabriel
year 2023
title eCAADe 2023 Digital Design Reconsidered - Volume 2
doi https://doi.org/10.52842/conf.ecaade.2023.2.001
source Dokonal, W, Hirschberg, U and Wurzer, G (eds.), Digital Design Reconsidered - Proceedings of the 41st Conference on Education and Research in Computer Aided Architectural Design in Europe (eCAADe 2023) - Volume 2, Graz, 20-22 September 2023, 899 p.
summary The conference logo is a bird’s eye view of spiral stairs that join and separate – an homage to the famous double spiral staircase in Graz, a tourist attraction of this city and a must-see for any architecturally minded visitor. Carved out of limestone, the medieval construction of the original is a daring feat of masonry as well as a symbolic gesture. The design speaks of separation and reconciliation: The paths of two people that climb the double spiral stairs separate and then meet again at each platform. The relationship between architectural design and the growing digital repertoire of tools and possibilities seems to undergo similar cycles of attraction and rejection: enthusiasm about digital innovations – whether in Virtual Reality, Augmented Reality, Energy Design, Robotic Fabrication, the many Dimensions of BIM or, as right now, in AI and Machine Learning – is typically followed by a certain disillusionment and a realization that the promises were somewhat overblown. But a turn away from these digital innovations can only be temporary. In our call for papers we refer to the first and second ‘digital turns’, a term Mario Carpo coined. Yes, it’s a bit of a pun, but you could indeed see these digital turns in our logo as well. Carpo would probably agree that design and the digital have become inseparably intertwined. While they may be circling in different directions, an innovative rejoinder is always just around the corner. The theme of the conference asked participants to re-consider the relationship between Design and the Digital. The notion of a cycle is already present in the syllable “re”. Indeed, 20 years earlier, in 2003, we held an ECAADE conference in Graz simply under the title “Digital Design” and our re-using – or is it re-cycling? – the theme can be seen as the completion of one of those cycles described above: One level up, we meet again, we’ve come full circle. The question of the relationship between Design and the Digital is still in flux, still worthy of renewed consideration. There is a historical notion implicit in the theme. To reconsider something, one needs to take a step back, to look into the past as well as into the future. Indeed, at this conference we wanted to take a longer view, something not done often enough in the fast-paced world of digital technology. Carefully considering one’s past can be a source of inspiration. In fact, the double spiral stair that inspired our conference logo also inspired many architects through the ages. Konrad Wachsmann, for example, is said to have come up with his famous Grapevine assembly system based on this double spiral stair and its intricate joinery. More recently, Rem Koolhaas deemed the double spiral staircase in Graz important enough to include a detailed model of it in his “elements of architecture” exhibition at the Venice Biennale in 2014. Our interpretation of the stair is a typically digital one, you might say. First of all: it’s a rendering of a virtual model; it only exists inside a computer. Secondly, this virtual model isn’t true to the original. Instead, it does what the digital has made so easy to do: it exaggerates. Where the original has just two spiral stairs that separate and join, our model consists of countless stairs that are joined in this way. We see only a part of the model, but the stairs appear to continue in all directions. The implication is of an endless field of spiral stairs. As the 3D model was generated with a parametric script, it would be very easy to change all parameters of it – including the number of stairs that make it up. Everyone at this conference is familiar with the concept of parametric design: it makes generating models of seemingly endless amounts of connected spiral stairs really easy. Although, of course, if we’re too literal about the term ‘endless’, generating our stair model will eventually crash even the most advanced computers. We know that, too. – That's another truth about the Digital: it makes a promise of infinity, which, in the end, it can’t keep. And even if it could: what’s the point of just adding more of the same: more variations, more options, more possible ways to get lost? Doesn’t the original double spiral staircase contain all those derivatives already? Don’t we know that ‘more’ isn’t necessarily better? In the original double spiral stair the happy end is guaranteed: the lovers’ paths meet at the top as well as when they exit the building. Therefore, the stair is also colloquially known as the Busserlstiege (the kissing stair) or the Versöhnungsstiege (reconciliation stair). In our digitally enhanced version, this outcome is no longer clear: we can choose between multiple directions at each level and we risk losing sight of the one we were with. This is also emblematic of our field of research. eCAADe was founded to promote “good practice and sharing information in relation to the use of computers in research and education in architecture and related professions” (see ecaade.org). That may have seemed a straightforward proposition forty years ago, when the association was founded. A look at the breadth and depth of research topics presented and discussed at this conference (and as a consequence in this book, for which you’re reading the editorial) shows how the field has developed over these forty years. There are sessions on Digital Design Education, on Digital Fabrication, on Virtual Reality, on Virtual Heritage, on Generative Design and Machine Learning, on Digital Cities, on Simulation and Digital Twins, on BIM, on Sustainability, on Circular Design, on Design Theory and on Digital Design Experimentations. We hope you will find what you’re looking for in this book and at the conference – and maybe even more than that: surprising turns and happy encounters between Design and the Digital.
series eCAADe
type normal paper
email
last changed 2024/08/29 08:36

_id cdrf2023_526
id cdrf2023_526
authors Eric Peterson, Bhavleen Kaur
year 2023
title Printing Compound-Curved Sandwich Structures with Robotic Multi-Bias Additive Manufacturing
doi https://doi.org/https://doi.org/10.1007/978-981-99-8405-3_44
source Proceedings of the 2023 DigitalFUTURES The 5st International Conference on Computational Design and Robotic Fabrication (CDRF 2023)
summary A research team at Florida International University Robotics and Digital Fabrication Lab has developed a novel method for 3d-printing curved open grid core sandwich structures using a thermoplastic extruder mounted on a robotic arm. This print-on-print additive manufacturing (AM) method relies on the 3d modeling software Rhinoceros and its parametric software plugin Grasshopper with Kuka-Parametric Robotic Control (Kuka-PRC) to convert NURBS surfaces into multi-bias additive manufacturing (MBAM) toolpaths. While several high-profile projects including the University of Stuttgart ICD/ITKE Research Pavilions 2014–15 and 2016–17, ETH-Digital Building Technologies project Levis Ergon Chair 2018, and 3D printed chair using Robotic Hybrid Manufacturing at Institute of Advanced Architecture of Catalonia (IAAC) 2019, have previously demonstrated the feasibility of 3d printing with either MBAM or sandwich structures, this method for printing Compound-Curved Sandwich Structures with Robotic MBAM combines these methods offering the possibility to significantly reduce the weight of spanning or cantilevered surfaces by incorporating the structural logic of open grid-core sandwiches with MBAM toolpath printing. Often built with fiber reinforced plastics (FRP), sandwich structures are a common solution for thin wall construction of compound curved surfaces that require a high strength-to-weight ratio with applications including aerospace, wind energy, marine, automotive, transportation infrastructure, architecture, furniture, and sports equipment manufacturing. Typical practices for producing sandwich structures are labor intensive, involving a multi-stage process including (1) the design and fabrication of a mould, (2) the application of a surface substrate such as FRP, (3) the manual application of a light-weight grid-core material, and (4) application of a second surface substrate to complete the sandwich. There are several shortcomings to this moulded manufacturing method that affect both the formal outcome and the manufacturing process: moulds are often costly and labor intensive to build, formal geometric freedom is limited by the minimum draft angles required for successful removal from the mould, and customization and refinement of product lines can be limited by the need for moulds. While the most common material for this construction method is FRP, our proof-of-concept experiments relied on low-cost thermoplastic using a specially configured pellet extruder. While the method proved feasible for small representative examples there remain significant challenges to the successful deployment of this manufacturing method at larger scales that can only be addressed with additional research. The digital workflow includes the following steps: (1) Create a 3D digital model of the base surface in Rhino, (2) Generate toolpaths for laminar printing in Grasshopper by converting surfaces into lists of oriented points, (3) Generate the structural grid-core using the same process, (4) Orient the robot to align in the direction of the substructure geometric planes, (5) Print the grid core using MBAM toolpaths, (6) Repeat step 1 and 2 for printing the outer surface with appropriate adjustments to the extruder orientation. During the design and printing process, we encountered several challenges including selecting geometry suitable for testing, extruder orientation, calibration of the hot end and extrusion/movement speeds, and deviation between the computer model and the physical object on the build platen. Physical models varied from their digital counterparts by several millimeters due to material deformation in the extrusion and cooling process. Real-time deviation verification studies will likely improve the workflow in future studies.
series cdrf
email
last changed 2024/05/29 14:04

_id caadria2014_264
id caadria2014_264
authors Gannon, Madeline and Eric Brockmeyer
year 2014
title Teaching CAD/CAM Workflows to Nascent Designers
doi https://doi.org/10.52842/conf.caadria.2014.801
source Rethinking Comprehensive Design: Speculative Counterculture, Proceedings of the 19th International Conference on Computer-Aided Architectural Design Research in Asia (CAADRIA 2014) / Kyoto 14-16 May 2014, pp. 801–810
summary The following paper presents a suite of custom software environments that make advanced techniques in digital fabrication accessible to novice, first-year designers. The collective design aides facilitate a number of digital-to-physical workflows, including 3D modeling for CNC milling and 3D printing, 2D patterning for laser cutting, and interactive visualization for projection mapping. Each of the workflows illustrate pedagogical principles for embedding tacit and tactile knowledge into computational frameworks: balancing complexity against functional limits, revealing the underlying abstractions connecting digital geometry to CNC machines, engaging the designer through intuitive and responsive environments, and leveraging generative and interactive digital modeling for serial variation. These digital design and fabrication aides have been used to facilitate formal and material explorations for groups of pre-college and freshmen students, aged 16 to 19. Their resulting tangible artifacts—made from foam, birch plywood, paper, plastic, and light—show that CAD/CAM workflows can be an accessible subject matter for students without prior experience in digital modeling or fabrication.
keywords CAD/CAM; computational design education; digital fabrication; design aides; generative design
series CAADRIA
email
last changed 2022/06/07 07:50

_id caadria2014_515
id caadria2014_515
authors Pipe, Nicola
year 2014
title Integration Processes for Advanced Material Fabrication in Architecture
doi https://doi.org/10.52842/conf.caadria.2014.943
source Rethinking Comprehensive Design: Speculative Counterculture, Proceedings of the 19th International Conference on Computer-Aided Architectural Design Research in Asia (CAADRIA 2014) / Kyoto 14-16 May 2014, pp. 943–944
series CAADRIA
type poster
email
last changed 2022/06/07 08:00

_id acadia17_512
id acadia17_512
authors Rossi, Andrea; Tessmann, Oliver
year 2017
title Collaborative Assembly of Digital Materials
doi https://doi.org/10.52842/conf.acadia.2017.512
source ACADIA 2017: DISCIPLINES & DISRUPTION [Proceedings of the 37th Annual Conference of the Association for Computer Aided Design in Architecture (ACADIA) ISBN 978-0-692-96506-1] Cambridge, MA 2-4 November, 2017), pp. 512- 521
summary Current developments in design-to-production workflows aim to allow architects to quickly prototype designs that result from advanced design processes while also embedding the constraints imposed by selected fabrication equipment. However, the enduring physical separation between design space and fabrication space, together with a continuous approach to both design, via NURBs modeling software, and fabrication, through irreversible material processing methods, limit the possibilities to extend the advantages of a “digital” approach (Ward 2010), such as full editability and reversibility, to physical realizations. In response to such issues, this paper proposes a processto allow the concurrent design and fabrication of discrete structures in a collaborative process between human designer and a 6-axis robotic arm. This requires the development of design and materialization procedures for discrete aggregations, including the modeling of assembly constraints, as well as the establishment of a communication platform between human and machine actors. This intends to offer methods to increase the accessibility of discrete design methodologies, as well as to hint at possibilities for overcoming the division between design and manufacturing (Carpo 2011; Bard et al. 2014), thus allowing intuitive design decisions to be integrated directly within assembly processes (Johns 2014).
keywords material and construction; construction/robotics; smart assembly/construction; generative system
series ACADIA
email
last changed 2022/06/07 07:56

_id ecaade2014_094
id ecaade2014_094
authors Ruggero Lancia and Ian Anderson
year 2014
title Digital Curation for CAAD Curricula - Bridging Mainstream and Speculative Design Procedures to promote curatorial competences for Architecture
doi https://doi.org/10.52842/conf.ecaade.2014.1.313
source Thompson, Emine Mine (ed.), Fusion - Proceedings of the 32nd eCAADe Conference - Volume 1, Department of Architecture and Built Environment, Faculty of Engineering and Environment, Newcastle upon Tyne, England, UK, 10-12 September 2014, pp. 313-322
summary As the design processes in Architectural practices switch toward entirely digital workflows, architects are gradually required, because of their legal and commercial liability, to provide for both a relatively long term curation of their own digital products and the deposit of authoritative data. But, despite being the sole curation actors for their data, architects receive little education or training in either pertinent competences nor agreed and established procedures to comply with these duties. In this paper, the design of Digital Curation courses within CAAD Curricula will be discussed against the investigation results of the DEDICATE project, an AHRC funded project hosted at the Humanities Advanced Technology and Information Institute of the University of Glasgow.
wos WOS:000361384700031
keywords Caad curricula; digital curation; generative design; digital fabrication
series eCAADe
email
last changed 2022/06/07 07:56

_id ecaade2014_001
id ecaade2014_001
authors Thompson, Emine Mine (ed.)
year 2014
title Fusion, Volume 2
doi https://doi.org/10.52842/conf.ecaade.2014.1
source Proceedings of the 32nd International Conference on Education and research in Computer Aided Architectural Design in Europe, Department of Architecture and Built Environment, Faculty of Engineering and Environment, Newcastle upon Tyne, England, UK, 10-12 September 2014, 632 p.
summary This is the second volume of the conference proceedings of the 32nd eCAADe conference, held from 10-12 September 2013 at the Department of Architecture and Built Environment, Faculty of Engineering and Environment, Northumbria University in Newcastle upon Tyne, England. Both volumes together contain 130 papers that were submitted and accepted to this conference. The theme of the 32nd eCAADe conference is Fusion- data integration at its best. All quests for data integration in architecture and the construction industry lead ultimately to FUSION, a synthesis of knowledge that transcends mere combination. FUSION is the dream of a knowledge system that will enable multiple sets of data, in manifold formats, to be presented in a unified view. This conference is exploring the possibilities for advanced levels of data integration in the service of the representation and management of the natural environment, and the design, visualisation and making of the built environment. These proceedings are presenting the contributions which explore the elusive goal of FUSION in architecture and related fields. The second volume of the proceedings contains 65 papers grouped under nine sub-themes (Generative Design- Parametric Modelling, Material, Collaboration and Participation, VR, Spatial Analysis, Shape, Form and Geometry 2, BIM, Design Tool 2 and Smart and Responsive Design).
series eCAADe
type normal paper
email
last changed 2022/06/07 07:49

_id ecaade2014_000
id ecaade2014_000
authors Thompson, Emine Mine (ed.)
year 2014
title Fusion, Volume 1
doi https://doi.org/10.52842/conf.ecaade.2014.2
source Proceedings of the 32nd International Conference on Education and research in Computer Aided Architectural Design in Europe, Department of Architecture and Built Environment, Faculty of Engineering and Environment, Newcastle upon Tyne, England, UK, 10-12 September 2014, 668 p.
summary This is the first volume of the conference proceedings of the 32nd eCAADe conference, held from 10-12 September 2013 at the Department of Architecture and Built Environment, Faculty of Engineering and Environment, Northumbria University in Newcastle upon Tyne, England. Both volumes together contain 130 papers that were submitted and accepted to this conference. The theme of the 32nd eCAADe conference is Fusion- data integration at its best. All quests for data integration in architecture and the construction industry lead ultimately to FUSION, a synthesis of knowledge that transcends mere combination. FUSION is the dream of a knowledge system that will enable multiple sets of data, in manifold formats, to be presented in a unified view. This conference is exploring the possibilities for advanced levels of data integration in the service of the representation and management of the natural environment, and the design, visualisation and making of the built environment. These proceedings are presenting the contributions which explore the elusive goal of FUSION in architecture and related fields. The first volume of the proceedings contains 65 papers grouped under seven sub-themes (Towards Smarter Cities, Design Tool 1, CAAD Education, Fabrication, Shape-Form-Geometry, Visualisation and Digital Heritage).
series eCAADe
type normal paper
email
last changed 2022/06/07 07:49

_id ecaade2014_105
id ecaade2014_105
authors Zaid Alwan, Peter Holgate and Paul Jones
year 2014
title Applying BIM to Sustainable Performance Evaluation in Design Projects: An Educational Approach for Architecture Programmes
doi https://doi.org/10.52842/conf.ecaade.2014.2.437
source Thompson, Emine Mine (ed.), Fusion - Proceedings of the 32nd eCAADe Conference - Volume 2, Department of Architecture and Built Environment, Faculty of Engineering and Environment, Newcastle upon Tyne, England, UK, 10-12 September 2014, pp. 437-444
summary The merits and potential of Building Information Modelling (BIM) have been promoted for several years; however, its widespread adoption and development may potentially stagnate on account of a technical skills shortage, with insufficient personnel having the capabilities to successfully deliver projects. This shortfall covers all aspects of BIM, and building performance and life cycle analysis in particular. Programmes such as Ecotect, Revit, Green Building Studio, and Project Vasari, have transformed data capture and analysis, enabling architects and systems engineers to visualise site analyses and to test preliminary designs. As BIM is a relatively new process which continues to develop rapidly, Higher Education Institutions need to respond to currency and change while striving to provide graduates with the advanced skills to satisfy the needs of the building industry. This work presents a case study of the application of Autodesk's Building Performance Analysis Certificate (BPAC) as a driver for learning in support of the integration of BIM into the architectural curriculum.
wos WOS:000361385100046
keywords Virtual building performance i; bim collaboration; data transfer; sustainability education
series eCAADe
email
last changed 2022/06/07 07:57

For more results click below:

this is page 0show page 1show page 2show page 3show page 4show page 5... show page 32HOMELOGIN (you are user _anon_626499 from group guest) CUMINCAD Papers Powered by SciX Open Publishing Services 1.002