CumInCAD is a Cumulative Index about publications in Computer Aided Architectural Design
supported by the sibling associations ACADIA, CAADRIA, eCAADe, SIGraDi, ASCAAD and CAAD futures

PDF papers
References

Hits 1 to 20 of 360

_id ascaad2014_004
id ascaad2014_004
authors Afsari, Kereshmeh; Matthew E. Swarts and T. Russell Gentry
year 2014
title Integrated Generative Technique for Interactive Design of Brickworks
source Digital Crafting [7th International Conference Proceedings of the Arab Society for Computer Aided Architectural Design (ASCAAD 2014 / ISBN 978-603-90142-5-6], Jeddah (Kingdom of Saudi Arabia), 31 March - 3 April 2014, pp. 49-64
summary Bricks have been used in the construction industry as a building medium for millennia. Distinct patterns of bricks depict the unique aesthetic intentions found in Roman, Gothic and Islamic architecture. In contemporary practice, the use of digital tools in design has enabled methodologies for creating new forms in architecture. CAD and BIM systems provide new opportunities for designers to create parametric objects for building form generation. In masonry design, there exists an inherent contradiction between traditional patterns in brick design, which are formal and prescribed, and the potential for new patterns generated using design scripting. In addition, current tools do not provide interactive techniques for the design of brickwork patterns that can manage constant changes parametrically, to inform and influence design process, by providing design feedback on the constructive and structural aspects of the proposed brick pattern and geometry. This research looks into the parametric techniques that can be applied to create different kinds of patterns on brick walls. It discusses a methodology for an interactive brickwork design within generative techniques. By integrating data between two computational platforms – the first based on image analysis and the second on parametric modeling, we demonstrate a methodology and application that can generate interactive arbitrary patterns and map it to the brick wall in real-time.
series ASCAAD
email
last changed 2016/02/15 13:09

_id sigradi2014_021
id sigradi2014_021
authors Araujo, André L.; Wilson Barbosa Neto, Gabriela Celani
year 2014
title Treliças espaciais metálicas: combinação de parâmetros formais e materiais nos estágios iniciais do processo de projeto [Spatial steel trusses: Integrating structural pre-dimensioning requirements in the early stages of the parametric design]
source SiGraDi 2014 [Proceedings of the 18th Conference of the Iberoamerican Society of Digital Graphics - ISBN: 978-9974-99-655-7] Uruguay - Montevideo 12 - 14 November 2014, pp. 355-359
summary The integration of structural considerations in architectural geometry processing is among the topics most discussed in the complex shapes design. While some design tools allow the designer to begin with an inefficient form and then turn it into a more efficient one, other tools allow exploring and creating structural forms considering both formal and structural aspects from the beginning. This paper presents a parametric design approach to create spatial steel trusses with the combination of two strategies: (1) shell surface to set out structural elements; (2) cross section properties to ensure structural stability aspects. In this paper we discuss how the combination of these strategies can contribute to the use of parametric design techniques in the early stages of the design process, taking into account both structural optimization and production aspects.
keywords Structural design; Spatial Structures; Tubular trusses; Parametric Design; Dimensioning
series SIGRADI
email
last changed 2016/03/10 09:47

_id caadria2014_145
id caadria2014_145
authors Aydin, Serdar and Marc Aurel Schnabel
year 2014
title A Survey on the Visual Communication Skills of BIM Tools
doi https://doi.org/10.52842/conf.caadria.2014.337
source Rethinking Comprehensive Design: Speculative Counterculture, Proceedings of the 19th International Conference on Computer-Aided Architectural Design Research in Asia (CAADRIA 2014) / Kyoto 14-16 May 2014, pp. 337–346
summary Building Information Modelling (BIM) applications are supported by various modelling tools, being expansive to deliver visualised geometry and databases simultaneously. But there is still a gap in visual communication amongst its professionals. Articulating the advantages of fully Web-based collaboration, this paper looks into how BIM tools make contribution to visual communication between different parties working collaboratively. A hybrid model of low-level and high-level interactions is tentatively conceptualised. Based on the hybridised model, a survey is conducted to elucidate a few experiential matters such as visual aesthetics, cognition and motivational impacts of visualisation in BIM tools. Following the survey, a discussion is oriented towards a new storytelling methodology with a novel term, namely gamification. Seeking motivating and efficient means of visual communication between human-human, human-tool and human-model interactions, the present study focuses on an enhanced legibility and appreciation of tools by those who are involved in BIM projects.
keywords Narrative visualisation; infinite computing; information aesthetics; gamification; hybrid model of interaction
series CAADRIA
email
last changed 2022/06/07 07:54

_id ijac201412302
id ijac201412302
authors Baerlecken, Daniel; Russell Gentry, Matthew Swarts, et al.
year 2014
title Structural, Deployable Folds - Design and Simulation of Biological Inspired Folded Structures
source International Journal of Architectural Computing vol. 12 - no. 3, 243-262
summary This paper presents a concept of folding as a form-generator for a structural system that allows the ability to deploy large spanning structures. The presented approach studies the embedded kinetic possibilities of folded structures and focuses on a parametric modeling process that allows structural performance evaluation of different types of the same origami family in order to optimize the geometry for a given scenario. The workflow between scripting based form generation - within Rhinoceros and Excel - and LS-DYNA is presented in detail. Additionally, within the context of an architectural project we discuss the question of scalability from a thin microstructure to a thickened roof structure.
series journal
last changed 2019/05/24 09:55

_id sigradi2014_338
id sigradi2014_338
authors Borges de Vasconselos, Tássia; Adriane Borda Almeida da Silva, Luisa Rodrigues Félix Dalla Vecchia
year 2014
title A parametrização como experiência prévia para a estruturação de métodos projetuais em arquitetura [Parametrization as previous experience for structuring design methods in Architecture]
source SiGraDi 2014 [Proceedings of the 18th Conference of the Iberoamerican Society of Digital Graphics - ISBN: 978-9974-99-655-7] Uruguay - Montevideo 12 - 14 November 2014, pp. 297-301
summary This study describes a didactic method for the introduction of parametric design in graphic and digital geometry courses in architectural training. It started with the recognition of the concept of parametric design and the investment in the appropriation of Grasshopper associated with Rhinoceros. Paper folding exercises were configured both physically and in the digital space. Through an interactive dynamic between traditional processes, by hand and digital, and parametric design, a learning path was defined in a playful manner which highlights the differences between methods of representation and its implications for the design action starting from a first semester of training.
keywords Parametric Design; Teaching/learning; Graphic and Digital Geometry; Architecture; Paper Folding
series SIGRADI
email
last changed 2016/03/10 09:47

_id ecaade2014_232
id ecaade2014_232
authors Daniel Baerlecken and Sabri Gokmen
year 2014
title Emphatic Lines - Surface structuring based on Walter Crane's pattern making methods
doi https://doi.org/10.52842/conf.ecaade.2014.2.107
source Thompson, Emine Mine (ed.), Fusion - Proceedings of the 32nd eCAADe Conference - Volume 2, Department of Architecture and Built Environment, Faculty of Engineering and Environment, Newcastle upon Tyne, England, UK, 10-12 September 2014, pp. 107-114
summary The paper introduces a method for structuring and ornamenting double-curved geometry, which is developed through the lens of Walter Crane. Crane's method for pattern making is based on underlying scaffolds and infill patterns for two dimensional surfaces. The presented research uses his method and applies it through digitals means to three dimensional surfaces. The scaffold is used to solve the problem of curvature: it creates flat facets. This approach is tested through a prototypical installation at the Musee d'Jurassien d'Art and d'histoire using aluminium sheet metal and water-jet cutting, but can also be transferred to other architectural applications.
wos WOS:000361385100010
keywords Tendrils; patterning; making; facets
series eCAADe
email
last changed 2022/06/07 07:55

_id ijac201412305
id ijac201412305
authors Davis, Daniel
year 2014
title Quantitatively Analysing Parametric Models
source International Journal of Architectural Computing vol. 12 - no. 3, 307-320
summary Architectural practices regularly work with parametric models, yet almost nothing is known about the general properties of these models. We do not know how large a typical model is, or how complicated, or even what the typical parametric model does. These knowledge gaps are the focus of this article, which documents the first large-scale quantitative parametric model survey. In this paper three key quantitative metrics - dimensionality, size, and cyclomatic complexity - are applied to a collection of 2002 parametric models created by 575 designers. The results show that parametric models generally exhibit a number of strong correlations, which reveal a practice of parametric modelling that has as much to do with the management of data as it does with the modelling of geometry. These findings demonstrate the utility of software engineering metrics in the description and analysis of parametric models.
series journal
last changed 2019/05/24 09:55

_id caadria2014_147
id caadria2014_147
authors Dounas, Theodoros and A. Benjamin Spaeth
year 2014
title Universal Dovetail Joint
doi https://doi.org/10.52842/conf.caadria.2014.409
source Rethinking Comprehensive Design: Speculative Counterculture, Proceedings of the 19th International Conference on Computer-Aided Architectural Design Research in Asia (CAADRIA 2014) / Kyoto 14-16 May 2014, pp. 409–418
summary The paper presents the geometrical investigation of a three-dimensional dovetail joint that can lead (timber) frame construction to more than two-dimensional frames; the creation of timber construction with timber members meeting at irregular angles can be shown to be feasible, simplifying overall construction. Traditional joints in timber construction usually work only in two dimensions, in other words in planar surfaces, resulting thus in complicated assemblies in three-dimensions. Stemming from traditional timber dovetail joints, the universal joint under investigation is produced under revolution of the geometry of a dovetail fastener through its middle axis. The resulting concave disk can connect timber elements under irregular angles, without the need for the structural members to lie in the same plane. The joint works due to friction between members rather than using any other element of bonding, allowing for the assembly of joints and structural members with no specialized tools. The paper explores the geometric constraints and degrees of freedom that such a disk creates in timber construction, and consequently in similar linear construction systems.
keywords Universal Joint; timber construction; geometric investigation
series CAADRIA
email
last changed 2022/06/07 07:55

_id ecaade2014_029
id ecaade2014_029
authors Filipa Osório, Alexandra Paio and Sancho Oliveira
year 2014
title Interaction with a Kinetic Folded Surface
doi https://doi.org/10.52842/conf.ecaade.2014.2.605
source Thompson, Emine Mine (ed.), Fusion - Proceedings of the 32nd eCAADe Conference - Volume 2, Department of Architecture and Built Environment, Faculty of Engineering and Environment, Newcastle upon Tyne, England, UK, 10-12 September 2014, pp. 605-612
summary Kinetic systems offers new perspectives and design innovation in research and practice. These systems have been used by architects as an approach that embeds computation intelligence to create flexible and adaptable architectural spaces according to users changing needs and desires as a way to respond to an increasingly technological society. The presented research attempts to answer to this question based on the results of a multidisciplinary on-going work developed at digital fabrication laboratory Vitruvius Fablab-IUL in Lisbon. The main goal is to explore the transformation of the shape of a construction by mechanisms which allow adaptation either to environmental conditions or to the needs of the user. This paper reports the initial development of a kinetic system based on an origami foldable surface actuated by a user. The user can manipulate a small scale model of the surface and evaluate at all times if it is achieving the desired geometry.
wos WOS:000361385100063
keywords Kinetic systems; interactive architecture; responsive surfaces; origami geometry; folded surfaces
series eCAADe
email
last changed 2022/06/07 07:50

_id caadria2014_264
id caadria2014_264
authors Gannon, Madeline and Eric Brockmeyer
year 2014
title Teaching CAD/CAM Workflows to Nascent Designers
doi https://doi.org/10.52842/conf.caadria.2014.801
source Rethinking Comprehensive Design: Speculative Counterculture, Proceedings of the 19th International Conference on Computer-Aided Architectural Design Research in Asia (CAADRIA 2014) / Kyoto 14-16 May 2014, pp. 801–810
summary The following paper presents a suite of custom software environments that make advanced techniques in digital fabrication accessible to novice, first-year designers. The collective design aides facilitate a number of digital-to-physical workflows, including 3D modeling for CNC milling and 3D printing, 2D patterning for laser cutting, and interactive visualization for projection mapping. Each of the workflows illustrate pedagogical principles for embedding tacit and tactile knowledge into computational frameworks: balancing complexity against functional limits, revealing the underlying abstractions connecting digital geometry to CNC machines, engaging the designer through intuitive and responsive environments, and leveraging generative and interactive digital modeling for serial variation. These digital design and fabrication aides have been used to facilitate formal and material explorations for groups of pre-college and freshmen students, aged 16 to 19. Their resulting tangible artifacts—made from foam, birch plywood, paper, plastic, and light—show that CAD/CAM workflows can be an accessible subject matter for students without prior experience in digital modeling or fabrication.
keywords CAD/CAM; computational design education; digital fabrication; design aides; generative design
series CAADRIA
email
last changed 2022/06/07 07:50

_id caadria2014_096
id caadria2014_096
authors Grobman, Yasha and Roy Kozlovsky
year 2014
title On the Shores of Architecture
doi https://doi.org/10.52842/conf.caadria.2014.853
source Rethinking Comprehensive Design: Speculative Counterculture, Proceedings of the 19th International Conference on Computer-Aided Architectural Design Research in Asia (CAADRIA 2014) / Kyoto 14-16 May 2014, pp. 853–862
summary This paper explores the implications of complex geometry enabled by computational technology to architectural theory and practice. It reviews the different design paradigms engaged breaking the horizontality of the floor and ceiling or fusing them together. It argues that current advances in fluid dynamics simulations open a new frontier in the conception of the usable architectural surface, in which the architectural product is no longer a fixed object, but the interaction between a fluid, changing environment and built form. The paper presents a case study in which computational fluid dynamics are utilized to reconvert a disused breakwater into a ‘blue garden’. The morphology of the breakwater and its texture are calculated to produce the conditions amiable for supporting a varied marine ecosystem, and to shape the waves to generate aesthetically meaningful sensations. The essay discusses the technical and conceptual challenges of controlling the nonlinear behaviour of fluids. It then speculates on the theoretical ramifications of having the surface interact with exterior forces and the subject's imagination to produce an event enfolding in time.
keywords Computational fluid dynamics; curvilinear surfaces; performance design theory; habitat engineering; coastal infrastructure
series CAADRIA
email
last changed 2022/06/07 07:51

_id caadria2014_156
id caadria2014_156
authors Iwata, Shouto; Mikiya Takei and Shiro Matsushima
year 2014
title Enhanced 3D-Space-Scanning System by Robotic Technology
doi https://doi.org/10.52842/conf.caadria.2014.347
source Rethinking Comprehensive Design: Speculative Counterculture, Proceedings of the 19th International Conference on Computer-Aided Architectural Design Research in Asia (CAADRIA 2014) / Kyoto 14-16 May 2014, pp. 347–356
summary This study, which scans an architectural space with two-wheel vehicle robot technology that allows the flexible collection of three-dimensional (3D) data, may initiate the interaction between human beings and architecture in the future. It focuses on extracting building geometry and capturing human behavior in order to allow a space to communicate with human behavior. The current project extracts building geometry and human behavior data to create designs through a two-wheel robot; it was a collaborative project among the students of different majors, including mechanical engineering, human interaction, computer sciences, and architectural design. In this paper, the adaptive possibility of the RGB-Depth camera is examined in extracting building geometry.
keywords human behavior; robot; design process; scan
series CAADRIA
email
last changed 2022/06/07 07:50

_id caadria2014_177
id caadria2014_177
authors Jonas, Katrin; Alan Penn and Paul Shepherd
year 2014
title Designing with Discrete Geometry
doi https://doi.org/10.52842/conf.caadria.2014.513
source Rethinking Comprehensive Design: Speculative Counterculture, Proceedings of the 19th International Conference on Computer-Aided Architectural Design Research in Asia (CAADRIA 2014) / Kyoto 14-16 May 2014, pp. 513–522
summary There has been a shift in aesthetics from the modern orthogonal building envelope to more elaborate curved and folded forms. Non_orthogonal forms are often associated with complete freedom of geometry, entrusting the advancement in custom manufacturing and robotic fabrication of one-off building parts to realise the design. This paper presents a methodology that allows non_orthogonal surfaces to be designed using a constrained library of discrete, tessellating parts. The method enables the designer both to produce ‘approximations’ of freeform designs in a top_down manner or to generate ‘candidate’ designs in a bottom_up process. It addresses the challenge in the field of design engineering to generate architectural surfaces which are complex, yet simple and economical to construct. The system relates to the notion that complexity derives from simple parts and simple rules of interaction. Here complexity relates to the holistic understanding of a structure as an interaction between its local parts, global form and visual, as well as functional performance.
keywords Geometry system; form generation; form growth; discrete growth model; design tool; complex geometry
series CAADRIA
email
last changed 2022/06/07 07:52

_id acadia14projects_209
id acadia14projects_209
authors Knapp, Chris; Nelson, Jonathan
year 2014
title Cellular Tessallation
doi https://doi.org/10.52842/conf.acadia.2014.209.2
source ACADIA 14: Design Agency [Projects of the 34th Annual Conference of the Association for Computer Aided Design in Architecture (ACADIA) ISBN 9789126724478]Los Angeles 23-25 October, 2014), pp. 209-212
summary Cellular Tessellation is a small yet generous pavilion put on display as part of the Sydney Vivid Light festival in 2014. The project is both spatial and aesthetic, bringing the quality of architectural inhabitation and visceral experience to an urban festival which is typically limited to visual engagement.
keywords light, computational form, geometry, digital fabrication, aluminum
series ACADIA
type Practice Projects
email
last changed 2022/06/07 07:51

_id caadria2014_003
id caadria2014_003
authors Kobayashi, Yuki; Naoki Katoh, Tomohiro Okano and Atsushi Takizawa
year 2014
title An Inductive Construction of Minimally Rigid Panel-Hinge Graphs and Application to Design Form
doi https://doi.org/10.52842/conf.caadria.2014.493
source Rethinking Comprehensive Design: Speculative Counterculture, Proceedings of the 19th International Conference on Computer-Aided Architectural Design Research in Asia (CAADRIA 2014) / Kyoto 14-16 May 2014, pp. 493–502
summary A panel-hinge framework is a structure composed of rigid panels connected by hinges. It was recently proved that for a so-called generic position, the rigidity of panel-hinge frameworks can be tested by examining the combinatorial property of the underlying graph. In this study, we apply such combinatorial characteristics to create design forms. However, such characterization is only valid for so-called "generic" panel-hinge frameworks. When considering the application of design forms, we need to take into account non-generic cases. In this paper, we develop the method to inductively generate non-generic rigid panel-hinge frameworks consisting of orthogonal panels and to inductively generate rigid panel-hinge frameworks based on fractal geometry coupled with space filling 3-dimensional convex polyhedron as a construction unit. We give examples of forms by the proposed method to demonstrate the applicability to design forms.
keywords Panel-hinge framework; Panel-hinge graph; Combinatorial rigidity; Algorithmic design
series CAADRIA
email
last changed 2022/06/07 07:51

_id acadia14projects_193
id acadia14projects_193
authors Koerner, Julia; Boltenstern, Marie; Al-Rawi, Kais
year 2014
title Cellular Complexity "Evolve"
doi https://doi.org/10.52842/conf.acadia.2014.193
source ACADIA 14: Design Agency [Projects of the 34th Annual Conference of the Association for Computer Aided Design in Architecture (ACADIA) ISBN 9789126724478]Los Angeles 23-25 October, 2014), pp. 193-196
summary Cellular Complexity “Evolve” is an installation, which exhibits the potential of cellular geometries at a spatial architectural scale. The complex twisted geometry was generatively designed and digitally fabricated and stands out for cutting edge digital design concept and strategy.
keywords cellular geometries, biological systems, performative parameters
series ACADIA
type Practice Projects
email
last changed 2022/06/07 07:51

_id caadria2014_060
id caadria2014_060
authors Kuma, Taichi
year 2014
title Shrink Film Architecture
doi https://doi.org/10.52842/conf.caadria.2014.181
source Rethinking Comprehensive Design: Speculative Counterculture, Proceedings of the 19th International Conference on Computer-Aided Architectural Design Research in Asia (CAADRIA 2014) / Kyoto 14-16 May 2014, pp. 181–190
summary This paper is about designing a process to create a lightweight building envelope using a shrinkfilm. The advantage of using this material for architecture is that we can simply construct the complex geometry without requiring an expensive formwork. In addition to this, this research illustrates the methodology to control the 3-dimensional form of the shrink-film by using simple 2-dimensional patterns. These patterns enable us to easily manipulate the form. In this paper, the simulation and the prototyping are conducted in both physical and computational methods.
keywords Material Computation; responsive material; form-finding
series CAADRIA
email
last changed 2022/06/07 07:52

_id caadria2014_085
id caadria2014_085
authors Leitão, António M.
year 2014
title Improving Generative Design by Combining Abstract Geometry and Higher-Order Programming
doi https://doi.org/10.52842/conf.caadria.2014.575
source Rethinking Comprehensive Design: Speculative Counterculture, Proceedings of the 19th International Conference on Computer-Aided Architectural Design Research in Asia (CAADRIA 2014) / Kyoto 14-16 May 2014, pp. 575–584
summary Generative Design (GD) involves the use of algorithms that compute designs. To take advantage of the computational power of computers, these algorithms must be implemented in a programming language. Although most programming languages have the same computational power, they have very different expressive powers. In this paper we focus on exploring the expressive power of languages and we argue that (1) the ability to use abstract geometry as input and (2) the use of higher-order programming dramatically simplifies the implementation of GD algorithms. We illustrate these concepts using a large and complex example that was developed as a case-study.
keywords Generative design; abstract geometry; higher-order programs
series CAADRIA
email
last changed 2022/06/07 07:52

_id maver_113
id maver_113
authors Maver, Tom
year 2014
title The Impact of the Information Technologies in Architectural Design
source Designology: Studies in Planning for Action, the International Annual of Practical Philosophy and Methodology. ISBN 978-1-4128-5475-7
summary The last three decades have seen the greatest transformations in architecture since the introduction of persecutive geometry some 400 years ago. This Chapter gives an account of the transformations in architectural education and practice and of the current research and development that presages what promises to be even greater agents of change facing educators and practitioners.
email
last changed 2018/03/20 11:45

_id sigradi2014_136
id sigradi2014_136
authors Pastor, Andrés Martín; Roberto Narvaez Rodriguez, Jorge Torres Holguín, Jorge Galindo Díaz
year 2014
title Los workshops de geometría en Cad3d y prefabricación digital como estrategia docente en la enseñanza de la geometría para la arquitectura. geometría y proyecto [Workshops about geometry, 3dCad and digital fabrication as a teaching strategy for architectural geometry learning. geometry and design studio]
source SIGraDi 2014 [Proceedings of the 18th Conference of the Iberoamerican Society of Digital Graphics - ISBN: 978-9974-99-655-7] Uruguay - Montevideo 12 - 14 November 2014, pp. 213-216
summary This paper shows the approaches and results of an innovation teaching project carried out in the University of Seville and the National University of Colombia. The purpose is to teach architectural geometry within collaborative teams of professors and groups of 25 students. Through a guided exercise, students work on the relationship between geometry and all the phases of the typical architectural process, applying geometry to solve real problems. It begins with the ideation, digital construction and resolution of construction, to conclude with the physical execution of the project.
keywords Architectural Geometry; Teaching Innovation; Digital Fabrication; Collaborative Work; Generative Design
series SIGRADI
email
last changed 2016/03/10 09:57

For more results click below:

this is page 0show page 1show page 2show page 3show page 4show page 5... show page 17HOMELOGIN (you are user _anon_416243 from group guest) CUMINCAD Papers Powered by SciX Open Publishing Services 1.002