CumInCAD is a Cumulative Index about publications in Computer Aided Architectural Design
supported by the sibling associations ACADIA, CAADRIA, eCAADe, SIGraDi, ASCAAD and CAAD futures

PDF papers
References

Hits 1 to 20 of 668

_id caadria2014_291
id caadria2014_291
authors Thomas, Russell C. and John S. Gero
year 2014
title Computational Modelling of Designer-User Interactions and Value Systems
doi https://doi.org/10.52842/conf.caadria.2014.075
source Rethinking Comprehensive Design: Speculative Counterculture, Proceedings of the 19th International Conference on Computer-Aided Architectural Design Research in Asia (CAADRIA 2014) / Kyoto 14-16 May 2014, pp. 75–84
summary This paper develops a multi-agent computational model to simulate the effects of designer-user interactions on the design of products, interactions that are both direct and indirect. The architecture of an agent-based computational system is described, with emphasis on how it models situated design computing and cognition, including both designer and consumer agents. Indicative results obtained from running simulations are presented. The primary contribution is to demonstrate that situated design computing and cognition can be modelled using Computational Social Science methods.
keywords situated design computing; multi-agent systems; agent modelling; designer-user interaction; innovation; simulation
series CAADRIA
email
last changed 2022/06/07 07:58

_id ecaade2014_055
id ecaade2014_055
authors Ahmet Emre Dincer, Gülen Cagdas and Hakan Tong
year 2014
title A Digital Tool for Customized Mass Housing Design
doi https://doi.org/10.52842/conf.ecaade.2014.1.201
source Thompson, Emine Mine (ed.), Fusion - Proceedings of the 32nd eCAADe Conference - Volume 1, Department of Architecture and Built Environment, Faculty of Engineering and Environment, Newcastle upon Tyne, England, UK, 10-12 September 2014, pp. 201-211
summary Innovative design approaches are needed for mass housing implementations. Especially increasing interaction between user and designer is major important in the design decisions of these buildings. For this, it is seriously necessary to benefit from technological advances in computational designs, because digital tools like shape grammar, cellular automata, genetic algorithm, l-systems and agent-based models in this field provide not only to save time and to manage the relationships but also to generate many different alternatives. Accordingly, a digital support tool for designers has been developed by using cellular automata approach and scripts of 3Ds Max software. It produces samples of housing design plans which is generated by cellular automata approach according to the data of users' preferences. In this paper the interface and contributions of the developed model are introduced and discussed.
wos WOS:000361384700020
keywords Computational design; mass customization; innovative housing design; plugin
series eCAADe
email
last changed 2022/06/07 07:54

_id ecaade2014_192
id ecaade2014_192
authors David Stasiuk and Mette Ramsgaard Thomsen
year 2014
title Learning to be a Vault - Implementing learning strategies for design exploration in inter-scalar systems
doi https://doi.org/10.52842/conf.ecaade.2014.1.381
source Thompson, Emine Mine (ed.), Fusion - Proceedings of the 32nd eCAADe Conference - Volume 1, Department of Architecture and Built Environment, Faculty of Engineering and Environment, Newcastle upon Tyne, England, UK, 10-12 September 2014, pp. 381-390
summary Parametric design models enable the production of dynamic form, responsive material assemblies, and numerically and geometrically analytical feedback. The value potential for design produced through the procedural transformation of input parameters (or features) through algorithmic models has been repeatedly demonstrated and epistemically refined. However, despite their capacity to improve productivity and iteration, parametric models are nonetheless prone to inflexibility and reduction, both of which obscure processes of invention and discovery that are central to an effective design practice. This paper presents an experimental approach for the application of multiple, parallel computational design modelling strategies which are tested in the production of an inter-scalar model array that synthesises design intent, the simulation of material behaviours, performance-driven adaptation, and open-ended processes of discovery and categorical description. It is particularly focused on the computational potentials embedded in interdependent applications of simulation and machine learning algorithms as generative and descriptive drivers of form, performance, and architectural quality. It ultimately speculates towards an architectural design modelling method that privileges open model topologies and emergent feature production as critical operators in the generation of flexible and adaptive design solutions.
wos WOS:000361384700038
keywords Parametric design; computational modelling; machine learning; multi-objective optimisation; k-means clustering
series eCAADe
email
last changed 2022/06/07 07:55

_id sigradi2017_082
id sigradi2017_082
authors Itao Palos, Karine; Gisela Belluzzo de Campos
year 2017
title A resiliência na tipografia digital: Interações propiciadas por programas generativos [Resilience in digital typography: Interactions provided by generative programs]
source SIGraDi 2017 [Proceedings of the 21th Conference of the Iberoamerican Society of Digital Graphics - ISBN: 978-956-227-439-5] Chile, Concepción 22 - 24 November 2017, pp.568-574
summary This article aims to describe the ephemeral qualities that typography acquires in the digital context, caused by the polyvalence of the algorithmic code, which, from generative programming, allows the user to interact with the typographic object. These reflection are realized through the study of four projects: “Lettree” (2004), “Pyrographie” (2005), “Falling in Love” (2016) and “He liked Thick Word Soup” (2014). The observations were made by drawing a comparison between the concept of “matter” in the computational scenario proposed by the design philosopher Vilém Flusser (2015) and the quality of “fluidity” observed in the images created by digital generative programs.
keywords Typography; Interaction; Generative Systems; Design; Resilience.
series SIGRADI
email
last changed 2021/03/28 19:58

_id ecaade2014_100
id ecaade2014_100
authors Jesper Thøger Christensen
year 2014
title The generation of possible space layouts
doi https://doi.org/10.52842/conf.ecaade.2014.1.239
source Thompson, Emine Mine (ed.), Fusion - Proceedings of the 32nd eCAADe Conference - Volume 1, Department of Architecture and Built Environment, Faculty of Engineering and Environment, Newcastle upon Tyne, England, UK, 10-12 September 2014, pp. 239-246
summary The general scope of this paper is to present the development of an approach for the generation of possible space layouts in the early stages of design. The approach sets out to bridge the gap between the free form brainstorming of the sketching designer and the deterministic parametric model of the computational designer. A new responsive design tool is developed; applying physical based modelling techniques to a computational environment. Springs and particles automates the initial placement and sizing of the spaces, and allows continuous user and software interaction. Keeping the design process alive, through springs that connects everything to everything and allows topology to change, opposed to the strict hierarchy and constraints of traditional parametric design. Thus instead of the topology being determined by initial constraints, the layout will be generated by probabilities of spaces to connect. Letting the storyline of potential users give answers to possible space layouts.
wos WOS:000361384700023
keywords Space layout; digital aids to design creativity; design tool development; spatial quality; storyline
series eCAADe
email
last changed 2022/06/07 07:52

_id caadria2014_075
id caadria2014_075
authors Fernando, Ruwan A.
year 2014
title Space Planning and Preliminary Design Using Artificial Life
doi https://doi.org/10.52842/conf.caadria.2014.657
source Rethinking Comprehensive Design: Speculative Counterculture, Proceedings of the 19th International Conference on Computer-Aided Architectural Design Research in Asia (CAADRIA 2014) / Kyoto 14-16 May 2014, pp. 657–666
summary The majority of CAD tools are designed for precision modelling of forms. The very earliest stages of design tend to be worked through with traditional media such as sketching with pen or pencil. A reason why this is, stems from the difficulty of drawing or diagramming uncertainty or vague ideas in a traditional CAD application. When a designer is still working through the design, pen and pencil are a means of exploring. While any simple pencil sketch can be imitated using CAD, this is too time consuming and limiting when compared with traditional media. This paper presents research in a prototype for a early stage planning software application using blobs (closed recursively subdivided curves) and ideas from artificial life. While not a replacement for sketching, the aim of this research is to provide a means of diagramming preliminary ideas as exploring the idea of a dialogue between humans and computers. The shapes represented in the software use physics simulations and act as 'soft-bodies' allowing users to manipulate them in various ways. Ideas from artificial life simulations are used to have the shapes interact with each other and produce unexpected configurations. The aim of these interactions is to trigger a response from the user and to allow them to explore configurations that they did not anticipate.
keywords Artificial Life; Space Planning; Generative Design
series CAADRIA
email
last changed 2022/06/07 07:50

_id ecaade2014_187
id ecaade2014_187
authors Asli Cekmis
year 2014
title Fuzzy computing for layout design in ill-defined, uncertain spaces
doi https://doi.org/10.52842/conf.ecaade.2014.1.277
source Thompson, Emine Mine (ed.), Fusion - Proceedings of the 32nd eCAADe Conference - Volume 1, Department of Architecture and Built Environment, Faculty of Engineering and Environment, Newcastle upon Tyne, England, UK, 10-12 September 2014, pp. 277-286
summary Layout design has been supported by some computational tools, where fuzzy systems have been approved as an appropriate method to handle uncertainty in the early design stage. In this paper, a new mathematical model depending on the fuzzy logic and sets theory is proposed to assist in layout design. The model distinctly deals with spatial uncertainty in open planned designs, where there is no clear layout configuration or definite patterns of usage. The model calculates the possibility of occupancy according to space, function and user related parameters and logical rules. It also visualises the architectural plan as being comprised of sub-spaces formed by the distribution of those possibilities. Sub-spaces are characterised as “Fuzzy Architectural Spatial Objects” (FASOs). As a result, layouts are represented as an accumulation of FASOs showing a certain inhabitation pattern. Various layouts can be generated within the identity of FASOs. Architects can evaluate the layouts and propose new ones by organising the FASOs on the plan and considering their relations. After describing the model the paper demonstrates an application which aims to design a proper layout for a major exhibition hall in Istanbul.
wos WOS:000361384700027
keywords Spatial uncertainty; open-plans; inhabitation patterns; layout design; fuzzy architectural spatial objects (fasos)
series eCAADe
email
last changed 2022/06/07 07:54

_id ecaade2014_221
id ecaade2014_221
authors Charles Avis
year 2014
title Shared Space Navigation
doi https://doi.org/10.52842/conf.ecaade.2014.1.173
source Thompson, Emine Mine (ed.), Fusion - Proceedings of the 32nd eCAADe Conference - Volume 1, Department of Architecture and Built Environment, Faculty of Engineering and Environment, Newcastle upon Tyne, England, UK, 10-12 September 2014, pp. 173-179
summary Shared space is a concept of urban planning in which all barriers between cars and pedestrians, such as curbs and crosswalks, is removed to encourage heightened awareness of drivers and pedestrians, thus making city streets safer. The system has been highly successful, but can be highly stressful due to the lack of rules and signage. Thus, an adaptive feedback system that guides one safely through shared space could be essential for a shared space on the city scale. This paper imagines shared space at the city scale, and uses computational strategies to develop a system of adaptive collision-avoidance. By abstracting the movement of cars and pedestrians to properties of moving 'agents', collision detection and adaptive path finding models are developed, and then prototyped in an immersive environment that experiments with variable visual feedback based on user interactions.
wos WOS:000361384700017
keywords Shared space; movement; visual feedback; traffic; urban
series eCAADe
email
last changed 2022/06/07 07:55

_id acadia14projects_99
id acadia14projects_99
authors Jimenez Garcia, Manuel
year 2014
title Soft-Modelling
doi https://doi.org/10.52842/conf.acadia.2014.099
source ACADIA 14: Design Agency [Projects of the 34th Annual Conference of the Association for Computer Aided Design in Architecture (ACADIA) ISBN 9789126724478]Los Angeles 23-25 October, 2014), pp. 99-102
summary SoftModelling is a Java application developed to increase the flexibility of the design process by connecting together two of the most-used design tools; poly-modelling and physical simulation. Its code is open source and easy to manipulate in order to facilitate the creation of multiple versions suitable for different users.
keywords Simulation + Intuition, Open Source in Design, Craft in a Digital Age, Design Decision Making, Computational design research and education, User participation in design, New digital design concepts and strategies
series ACADIA
type Research Projects
email
last changed 2022/06/07 07:52

_id caadria2016_787
id caadria2016_787
authors Knapp, Chris; Jonathan Nelson, Andrew Kudless and Sascha Bohnenberger
year 2016
title Lightweight material prototypes using dense bundled systems to emulate an ambient environment
doi https://doi.org/10.52842/conf.caadria.2016.787
source Living Systems and Micro-Utopias: Towards Continuous Designing, Proceedings of the 21st International Conference on Computer-Aided Architectural Design Research in Asia (CAADRIA 2016) / Melbourne 30 March–2 April 2016, pp. 787-796
summary This paper describes and reflects upon a computational de- sign and digital fabrication research project that was developed and implemented over 2014-2015, with subsequent development continu- ing for applications at present. The aim of the research was to develop methods of modelling, analysis, and fabrication that facilitate integra- tive approaches to architectural design and construction. In this con- text, the development of material prototypes, digital simulations, and parametric frameworks were pursued in parallel in order to inform and reform successive iterations throughout the process, leading to a re- fined workflow for engineering, production, and speculation upon fu- ture directions of the work.
keywords Digital fabrication; biomimicry; ambient environments; grasshopper; computational design
series CAADRIA
email
last changed 2022/06/07 07:51

_id caadria2014_249
id caadria2014_249
authors Krietemeyer, Bess
year 2014
title An Adaptive Decision-Making Framework for Designing Material Behaviours
doi https://doi.org/10.52842/conf.caadria.2014.055
source Rethinking Comprehensive Design: Speculative Counterculture, Proceedings of the 19th International Conference on Computer-Aided Architectural Design Research in Asia (CAADRIA 2014) / Kyoto 14-16 May 2014, pp. 55–64
summary This paper describes an adaptive decision-making design framework for investigating the synergies between aesthetically-driven and performance-driven criteria, specifically in designing the material behaviour of an electroresponsive building envelope system. An immersive and interactive simulation environment developed in the C++ programming language provides a computational tool for testing the visual and energetic performance of a dynamic building envelope as it negotiates bioclimatic energy flows with participants’ aesthetic preferences and interactions. Experiments in bioresponsive feedback loops examine the impacts that user engagement and real-time energy performance feedback have on participants’ design choices. Preliminary results demonstrate that exposure to energy performance feedback and to the collective design choices of multiple users leads to adaptive decision-making that favours synergistic system performance with the potential for increased socio-ecological connections. Critically, this research provides new methods for supporting the design of emerging material behaviours for dynamic building envelopes that can negotiate multiple performance criteria.
keywords Participatory design; decision-making tool; interactive environment; dynamic building envelopes; immersive simulation
series CAADRIA
email
last changed 2022/06/07 07:51

_id ecaade2014_186
id ecaade2014_186
authors Maria Kerkidou, Anastasia Pechlivanidou-Liakata, Adam Doulgerakis and Alexandros Sagias
year 2014
title Agents' movement_towards the reformation of public space - Step 1: select | implement | observe crowd rules
doi https://doi.org/10.52842/conf.ecaade.2014.1.053
source Thompson, Emine Mine (ed.), Fusion - Proceedings of the 32nd eCAADe Conference - Volume 1, Department of Architecture and Built Environment, Faculty of Engineering and Environment, Newcastle upon Tyne, England, UK, 10-12 September 2014, pp. 53-62
summary In order to enable designers to envision the behaviour of pedestrians with reference to specific environments, computational models of crowds and their movement become indispensable tools of evaluation as well as tools of creativity. In this paper, the model under development constitutes a generic model which incorporates ideas about agent-based systems. The simulation program comprises a support system for the designer to place virtual users in a context that bears analogous environmental traits of the area under study. The design problem which is addressed by the implementation deals with public squares for which the programmatic demands involve a broad spectrum of users of diverse idiosyncrasies. Our study attempts to elucidate how the variation in preferences of pedestrian movement which depend on various personal, situational and environmental factors, may influence the current use of a selected public space and underpin qualitative alterations compared to its initial design. The intent of the methodology is not to create a predictive tool of naturalistic human movement but to explore how spatial configuration can be assessed and developed through a simulation model of pedestrian behaviour.
wos WOS:000361384700004
keywords Crowd simulation; spatial behaviour; pedestrian movement; public space
series eCAADe
email
last changed 2022/06/07 07:59

_id caadria2014_256
id caadria2014_256
authors Senske, Nicholas
year 2014
title Digital Minds, Materials, and Ethics: Linking Computational Thinking and Digital Craft
doi https://doi.org/10.52842/conf.caadria.2014.831
source Rethinking Comprehensive Design: Speculative Counterculture, Proceedings of the 19th International Conference on Computer-Aided Architectural Design Research in Asia (CAADRIA 2014) / Kyoto 14-16 May 2014, pp. 831–840
summary This paper describes the connections between computational thinking and digital craft, and proposes several ways that architectural education can cultivate better digital craft, specifically: motivating the use of computational strategies, encouraging a conceptual understanding of computing as a medium, teaching computer programming, and discussing digital ethics. For the most part, these subjects are not widely taught in architecture schools. However, moving forward, if the profession values good design, it must also value good digital craft, and ought to instil a way of working in the next generation of architects that makes the most of both the computer and the designer. Computational thinking provides a common foundation for defining and instilling this critical mindset and, therefore, deserves greater consideration within architectural pedagogy.
keywords Digital craft; computational thinking; ethics
series CAADRIA
email
last changed 2022/06/07 07:56

_id ecaade2014_109
id ecaade2014_109
authors Kristoffer Negendahl, Thomas Perkov and Alfred Heller
year 2014
title Approaching Sentient Building Performance Simulation Systems
doi https://doi.org/10.52842/conf.ecaade.2014.2.049
source Thompson, Emine Mine (ed.), Fusion - Proceedings of the 32nd eCAADe Conference - Volume 2, Department of Architecture and Built Environment, Faculty of Engineering and Environment, Newcastle upon Tyne, England, UK, 10-12 September 2014, pp. 49-60
summary Building designers make decisions in early design stages that have large impact on building performance, including those of energy-, daylight- and indoor environment performance. Building performance simulation (BPS) tools can support the designer, in making better decisions, by providing the performance consequences of design choices. However BPS tools often require deep technical knowledge and is too time consuming to use to effectively support the design exploration in the early design stages. To solve this challenge, the current paper proposes: Sentient building performance simulation systems, which combine one or more high precision BPS tools to provide near instantaneous performance feedback directly in the design tool. Sentient BPS systems are essentially combining: 1) design tools, 2) parametric tools, 3) BPS tools, 4) dynamic databases 5) interpolation techniques and 6) prediction techniques as a fast and valid simulation system for the early design stage.
wos WOS:000361385100004
keywords Building performance simulation; parametric modelling; visual programming language; database; responsive system; integrated dynamic model
series eCAADe
email
last changed 2022/06/07 07:52

_id caadria2014_034
id caadria2014_034
authors Nguyen, Danny D. and M. Hank Haeusler
year 2014
title Exploring Immersive Digital Environments
doi https://doi.org/10.52842/conf.caadria.2014.087
source Rethinking Comprehensive Design: Speculative Counterculture, Proceedings of the 19th International Conference on Computer-Aided Architectural Design Research in Asia (CAADRIA 2014) / Kyoto 14-16 May 2014, pp. 87–96
summary In contemporary architecture firms, most design drawings are done via use of 3D modelling software. This method requires advanced knowledge of the software in order to produce an accurate representation of space into the digital environment. The paper argues that conventional 3D visualization methods to design and analyse are restrictive to how well the user understands the space on a computer, as drawings are done ex-situ and without testing the design concept in-situ, hence there might be a level of disparity between the design and final fabrication. This is particularly a challenge when designing Urban Interaction Design concepts, as combinations of variables play a role in how the design will be received by the audience. Observing the design challenges for Urban Interaction Design and applying knowledge to architectural representation, potentially an alternative sketching process can be developed to alleviate the disparity between the conceptual design and post fabrication. This paper discusses an experimental process of using wireless spatial sensing devices to digitize physical spaces in real-time and to use on-the-spot analysis. In its conclusion the paper argues that this method enables the designer to gain advanced conceptual understandings of the intended space and thus make more informed decisions.
keywords Spatial Design; Human-Computing Interfacing; Urban Interaction Design; Spatial 3D Visualization; Wireless Sensor Technology
series CAADRIA
email
last changed 2022/06/07 07:58

_id caadria2014_090
id caadria2014_090
authors Schubert, Gerhard; Marcus Tönnis, Violin Yanev, Gudrun Klinker and Frank Petzold
year 2014
title Dynamic 3D-Sketching
doi https://doi.org/10.52842/conf.caadria.2014.107
source Rethinking Comprehensive Design: Speculative Counterculture, Proceedings of the 19th International Conference on Computer-Aided Architectural Design Research in Asia (CAADRIA 2014) / Kyoto 14-16 May 2014, pp. 107–116
summary Sketching by hand is without doubt – alongside building models – the most common tool that architects employ when designing. A disadvantage of the sketch is, even if it is a perspective drawing, that it is a purely two-dimensional planar representation of a three-dimensional product: the three-dimensional impression that the sketch communicates is a product of the viewer’s imagination. Digital modelling tools on the other hand support the creation of three-dimensional content but fall short in their ease of handling: their complexity and potentially unintuitive operation hinder rather than support the design process. Taking this discrepancy as a starting point, the presented system details the development and prototypical implementation of a dynamic 3D-sketching tool. The underlying core idea is to create a seamless connection between a perspective hand-sketch and the corresponding digital 3D-model in order to benefit from the advantages of hand sketching as a design tool and computer maintained 3D models. The system allows the designer to work as usual, visualizing his or her thoughts using perspective sketches. The user sketches on a touchscreen surface. The 2D drawing is automatically interpreted and converted into a system of 3D lines, surfaces and volumes in real-time.
keywords Design Tool; Early Design Stages; 3D Sketching; Urban Design; HCI
series CAADRIA
email
last changed 2022/06/07 07:57

_id ecaade2014_122
id ecaade2014_122
authors Sophia Vyzoviti and Nicolas Remy
year 2014
title Acoustically Efficient Origami Based Partitions for Open Plan Spaces - Developing a Design Tool
doi https://doi.org/10.52842/conf.ecaade.2014.1.487
source Thompson, Emine Mine (ed.), Fusion - Proceedings of the 32nd eCAADe Conference - Volume 1, Department of Architecture and Built Environment, Faculty of Engineering and Environment, Newcastle upon Tyne, England, UK, 10-12 September 2014, pp. 487-494
summary The paper investigates the management of acoustic and privacy problems in open-plan spaces through the implementation of lightweight architectural partitions developed by origami tessellations. Integrating knowledge from parametric modelling, acoustics and design for user needs, a design tool for acoustically efficient, flexible, interior partition systems is developed. The paper elaborates on three components of the design tool: form generation, acoustic performance and spatial performance. The form generation component employs parametric models of origami tessellations to generate the partition system. The acoustic performance component employs acoustic simulation and prediction to regulate the containing volume as well as the system's surface materials. The spatial performance component evaluates form and material through qualitative criteria for privacy and flexibility according to user needs.
wos WOS:000361384700048
keywords Parametric origami; acoustic design; interior partition systems, design tool development
series eCAADe
email
last changed 2022/06/07 07:56

_id acadia14_719
id acadia14_719
authors Welch, Christopher; Moleta, Tane; Moloney, Jules
year 2014
title Selective Interference: Emergent complexity informed by programmatic, social and performative criteria
doi https://doi.org/10.52842/conf.acadia.2014.719
source ACADIA 14: Design Agency [Proceedings of the 34th Annual Conference of the Association for Computer Aided Design in Architecture (ACADIA) ISBN 9781926724478]Los Angeles 23-25 October, 2014), pp. 719-726
summary This research aims to demonstrate if a holistic approach to generative architectural design is feasible using algorithms and techniques now common in architecture studios. By formalising and simplifying the intersections between discrete processes a complex “open box” design structure is developed that produces responsive, novel conceptual designs in a marriage of designer input and computer processing.
keywords Interactive Systems, Generative Design, Space Planning, New digital design concepts and strategies, Grasshopper, User participation in design.
series ACADIA
type Normal Paper
email
last changed 2022/06/07 07:58

_id ascaad2014_004
id ascaad2014_004
authors Afsari, Kereshmeh; Matthew E. Swarts and T. Russell Gentry
year 2014
title Integrated Generative Technique for Interactive Design of Brickworks
source Digital Crafting [7th International Conference Proceedings of the Arab Society for Computer Aided Architectural Design (ASCAAD 2014 / ISBN 978-603-90142-5-6], Jeddah (Kingdom of Saudi Arabia), 31 March - 3 April 2014, pp. 49-64
summary Bricks have been used in the construction industry as a building medium for millennia. Distinct patterns of bricks depict the unique aesthetic intentions found in Roman, Gothic and Islamic architecture. In contemporary practice, the use of digital tools in design has enabled methodologies for creating new forms in architecture. CAD and BIM systems provide new opportunities for designers to create parametric objects for building form generation. In masonry design, there exists an inherent contradiction between traditional patterns in brick design, which are formal and prescribed, and the potential for new patterns generated using design scripting. In addition, current tools do not provide interactive techniques for the design of brickwork patterns that can manage constant changes parametrically, to inform and influence design process, by providing design feedback on the constructive and structural aspects of the proposed brick pattern and geometry. This research looks into the parametric techniques that can be applied to create different kinds of patterns on brick walls. It discusses a methodology for an interactive brickwork design within generative techniques. By integrating data between two computational platforms – the first based on image analysis and the second on parametric modeling, we demonstrate a methodology and application that can generate interactive arbitrary patterns and map it to the brick wall in real-time.
series ASCAAD
email
last changed 2016/02/15 13:09

_id acadia14_317
id acadia14_317
authors Andrew, Mullenix, Ryan
year 2014
title Digitally Designing Collaboration: Computational Approaches to Process, Practice, and Product
doi https://doi.org/10.52842/conf.acadia.2014.317
source ACADIA 14: Design Agency [Proceedings of the 34th Annual Conference of the Association for Computer Aided Design in Architecture (ACADIA) ISBN 9781926724478]Los Angeles 23-25 October, 2014), pp. 317-326
summary In this paper we present recent experiences, research and thinking at NBBJ on the topic of collaboration, and how parametric models and algorithmic tools can facilitate and shape the collaboration between designers, between designers and clients, and between the end users of architecture.
keywords Design Computation Best Practices, Collaborative Design Agency, Parametric Modeling, Architect-Client Relationships, Multi-User Parametric Modeling, Practice-based computational design research, Design Decision Making
series ACADIA
type Normal Paper
email
last changed 2022/06/07 07:54

For more results click below:

this is page 0show page 1show page 2show page 3show page 4show page 5... show page 33HOMELOGIN (you are user _anon_322517 from group guest) CUMINCAD Papers Powered by SciX Open Publishing Services 1.002