CumInCAD is a Cumulative Index about publications in Computer Aided Architectural Design
supported by the sibling associations ACADIA, CAADRIA, eCAADe, SIGraDi, ASCAAD and CAAD futures

PDF papers
References

Hits 1 to 20 of 666

_id ecaade2014_162
id ecaade2014_162
authors Andrzej Zarzycki
year 2014
title Teaching and Designing for Augmented Reality
doi https://doi.org/10.52842/conf.ecaade.2014.1.357
source Thompson, Emine Mine (ed.), Fusion - Proceedings of the 32nd eCAADe Conference - Volume 1, Department of Architecture and Built Environment, Faculty of Engineering and Environment, Newcastle upon Tyne, England, UK, 10-12 September 2014, pp. 357-364
summary This paper discusses ways emerging interactive technologies are adopted by designers and extended into areas of design, education, entertainment, and commerce. It looks, in detail, at various project development stages and methodologies used to engage design focused students into, often complex, technological issues. The discussion is contextualized through a number of case studies of mobile and marker-based augmented reality (AR) applications developed by students. These applications include an app for a fashion based social event that allows participants to preview recent collection additions, an info-navigational app for the High Line elevated urban park in New York City, a marker-based maze game, and an interior decorating interface to visualize various furnishing scenarios. While a number of case studies will be discussed from a developer perspective, the primary focus is on the concept and content development, interface design, and user participation.
wos WOS:000361384700035
keywords Augmented reality; ar; gamification; mobile culture
series eCAADe
email
last changed 2022/06/07 07:54

_id ascaad2014_026
id ascaad2014_026
authors Al-Barqawi, Wadia
year 2014
title Virtual Reality: an approach for building Makkah’s architectural identity
source Digital Crafting [7th International Conference Proceedings of the Arab Society for Computer Aided Architectural Design (ASCAAD 2014 / ISBN 978-603-90142-5-6], Jeddah (Kingdom of Saudi Arabia), 31 March - 3 April 2014, pp. 331-342
summary This paper explores a new approach in the architectural design process aiming to construct Makkah's architectural identity. Makkah, which is a city of unique sacred values, has been losing its battle to preserve it heritage buildings. Traditional districts with their heritage buildings have been cleared in order to construct skyscrapers to accommodate the increasing number of pilgrims. While some argue for preserving heritage buildings others insist in building more skyscrapers. Within these conflicting views, architects and urban designers use CAD software to document heritage buildings without informing the future architectural design process. This paper argues for adopting digital architecture as an approach for preserving the architectural heritage of Makkah by studying heritage buildings as systems that can be digitally represented in virtual world. This goes beyond the physical representation of heritage artefacts to investigate in depth the logic that guide the design process. The roushan, which is one of the unique heritage artefacts in Makkan's architecture can be an interface between reality and the virtual environment in the design process. This goes behind modeling the roushan, to employ the principle of virtual representation in the design process. The digital representation of heritage becomes the realm for research transforming the virtual into reality. The hope is to produce an architecture that is related to its local heritage, contemporary in design and responsive to its environment, as well as to advocate principles, references and techniques at the core of the design process, in an educational and professional context. In broader picture the goal is to achieve a city that is responsive to human activities adapted to changes, sustainable in physical forms and social relations and above all unique in design and identity.
series ASCAAD
email
last changed 2016/02/15 13:09

_id sigradi2014_192
id sigradi2014_192
authors Angulo, Antonieta H.; Guillermo P. Vasquez de Velasco
year 2014
title Immersive Simulation in Instructional Design Studios
source SIGraDi 2014 [Proceedings of the 18th Conference of the Iberoamerican Society of Digital Graphics - ISBN: 978-9974-99-655-7] Uruguay- Montevideo 12,13,14 November 2014, pp. 236-240
summary The paper describes the implementation of “immersive simulation studios” at Ball State University and their impact on architectural design education. This implementation is part of our on-going research efforts aimed to expand conventionally available digital design tools by including state-of-the-art virtual reality (VR) technology in design studios. Two consecutive immersive simulation studios were held during the academic year 2013-2014; we tested teaching/learning methodologies for effectively using the VR simulation to support the students in the design of architectural spaces. The results make reference to the learning outcomes from these implementations and the level of satisfaction of students using the tool.
keywords Architectural Education; Design Studios; Virtual Reality; Immersive Simulation; Head-Mounted Display
series SIGRADI
email
last changed 2016/03/10 09:47

_id ecaadesigradi2019_334
id ecaadesigradi2019_334
authors Dembski, Fabian, Wössner, Uwe and Letzgus, Mike
year 2019
title The Digital Twin - Tackling Urban Challenges with Models, Spatial Analysis and Numerical Simulations in Immersive Virtual Environments.
doi https://doi.org/10.52842/conf.ecaade.2019.1.795
source Sousa, JP, Xavier, JP and Castro Henriques, G (eds.), Architecture in the Age of the 4th Industrial Revolution - Proceedings of the 37th eCAADe and 23rd SIGraDi Conference - Volume 1, University of Porto, Porto, Portugal, 11-13 September 2019, pp. 795-804
summary For the built environment's transformation we are confronted with complex dynamics connected to economic, ecologic and demographic change (Czerkauer-Yamu et al., 2013; Yamu, 2014). In general, cities are complex systems being a "heterogeneous mosaic" of a variety of cultures and functions, characterised by diverging perceptions and interests (ibid). The juxtaposed perceptions and interests in relation to ongoing spatial processes of change create a particularly complex situation. Thus, for planning processes we are in need of approaches that are able to cope not only with the urban complexity but also allow for participatory processes to empower citizens. This paper presents the approach of using Digital Twins in virtual reality (VR) for civic engagement in urban planning, enriched with quantitative and qualitative empirical data as one promising approach to tackle not only the complexity of cities but also involve citizens in the planning process.
keywords Digital Twin; Collaborative Planning; Planning and Decision Support; Participation; Virtual Reality; Global System Science
series eCAADeSIGraDi
email
last changed 2022/06/07 07:55

_id ecaade2023_000
id ecaade2023_000
authors Dokonal, Wolfgang, Hirschberg, Urs and Wurzer, Gabriel
year 2023
title eCAADe 2023 Digital Design Reconsidered - Volume 1
doi https://doi.org/10.52842/conf.ecaade.2023.1.001
source Dokonal, W, Hirschberg, U and Wurzer, G (eds.), Digital Design Reconsidered - Proceedings of the 41st Conference on Education and Research in Computer Aided Architectural Design in Europe (eCAADe 2023) - Volume 1, Graz, 20-22 September 2023, 905 p.
summary The conference logo is a bird’s eye view of spiral stairs that join and separate – an homage to the famous double spiral staircase in Graz, a tourist attraction of this city and a must-see for any architecturally minded visitor. Carved out of limestone, the medieval construction of the original is a daring feat of masonry as well as a symbolic gesture. The design speaks of separation and reconciliation: The paths of two people that climb the double spiral stairs separate and then meet again at each platform. The relationship between architectural design and the growing digital repertoire of tools and possibilities seems to undergo similar cycles of attraction and rejection: enthusiasm about digital innovations – whether in Virtual Reality, Augmented Reality, Energy Design, Robotic Fabrication, the many Dimensions of BIM or, as right now, in AI and Machine Learning – is typically followed by a certain disillusionment and a realization that the promises were somewhat overblown. But a turn away from these digital innovations can only be temporary. In our call for papers we refer to the first and second ‘digital turns’, a term Mario Carpo coined. Yes, it’s a bit of a pun, but you could indeed see these digital turns in our logo as well. Carpo would probably agree that design and the digital have become inseparably intertwined. While they may be circling in different directions, an innovative rejoinder is always just around the corner. The theme of the conference asked participants to re-consider the relationship between Design and the Digital. The notion of a cycle is already present in the syllable “re”. Indeed, 20 years earlier, in 2003, we held an ECAADE conference in Graz simply under the title “Digital Design” and our re-using – or is it re-cycling? – the theme can be seen as the completion of one of those cycles described above: One level up, we meet again, we’ve come full circle. The question of the relationship between Design and the Digital is still in flux, still worthy of renewed consideration. There is a historical notion implicit in the theme. To reconsider something, one needs to take a step back, to look into the past as well as into the future. Indeed, at this conference we wanted to take a longer view, something not done often enough in the fast-paced world of digital technology. Carefully considering one’s past can be a source of inspiration. In fact, the double spiral stair that inspired our conference logo also inspired many architects through the ages. Konrad Wachsmann, for example, is said to have come up with his famous Grapevine assembly system based on this double spiral stair and its intricate joinery. More recently, Rem Koolhaas deemed the double spiral staircase in Graz important enough to include a detailed model of it in his “elements of architecture” exhibition at the Venice Biennale in 2014. Our interpretation of the stair is a typically digital one, you might say. First of all: it’s a rendering of a virtual model; it only exists inside a computer. Secondly, this virtual model isn’t true to the original. Instead, it does what the digital has made so easy to do: it exaggerates. Where the original has just two spiral stairs that separate and join, our model consists of countless stairs that are joined in this way. We see only a part of the model, but the stairs appear to continue in all directions. The implication is of an endless field of spiral stairs. As the 3D model was generated with a parametric script, it would be very easy to change all parameters of it – including the number of stairs that make it up. Everyone at this conference is familiar with the concept of parametric design: it makes generating models of seemingly endless amounts of connected spiral stairs really easy. Although, of course, if we’re too literal about the term ‘endless’, generating our stair model will eventually crash even the most advanced computers. We know that, too. – That's another truth about the Digital: it makes a promise of infinity, which, in the end, it can’t keep. And even if it could: what’s the point of just adding more of the same: more variations, more options, more possible ways to get lost? Doesn’t the original double spiral staircase contain all those derivatives already? Don’t we know that ‘more’ isn’t necessarily better? In the original double spiral stair the happy end is guaranteed: the lovers’ paths meet at the top as well as when they exit the building. Therefore, the stair is also colloquially known as the Busserlstiege (the kissing stair) or the Versöhnungsstiege (reconciliation stair). In our digitally enhanced version, this outcome is no longer clear: we can choose between multiple directions at each level and we risk losing sight of the one we were with. This is also emblematic of our field of research. eCAADe was founded to promote “good practice and sharing information in relation to the use of computers in research and education in architecture and related professions” (see ecaade.org). That may have seemed a straightforward proposition forty years ago, when the association was founded. A look at the breadth and depth of research topics presented and discussed at this conference (and as a consequence in this book, for which you’re reading the editorial) shows how the field has developed over these forty years. There are sessions on Digital Design Education, on Digital Fabrication, on Virtual Reality, on Virtual Heritage, on Generative Design and Machine Learning, on Digital Cities, on Simulation and Digital Twins, on BIM, on Sustainability, on Circular Design, on Design Theory and on Digital Design Experimentations. We hope you will find what you’re looking for in this book and at the conference – and maybe even more than that: surprising turns and happy encounters between Design and the Digital.
series eCAADe
email
last changed 2023/12/10 10:49

_id ecaade2023_001
id ecaade2023_001
authors Dokonal, Wolfgang, Hirschberg, Urs and Wurzer, Gabriel
year 2023
title eCAADe 2023 Digital Design Reconsidered - Volume 2
doi https://doi.org/10.52842/conf.ecaade.2023.2.001
source Dokonal, W, Hirschberg, U and Wurzer, G (eds.), Digital Design Reconsidered - Proceedings of the 41st Conference on Education and Research in Computer Aided Architectural Design in Europe (eCAADe 2023) - Volume 2, Graz, 20-22 September 2023, 899 p.
summary The conference logo is a bird’s eye view of spiral stairs that join and separate – an homage to the famous double spiral staircase in Graz, a tourist attraction of this city and a must-see for any architecturally minded visitor. Carved out of limestone, the medieval construction of the original is a daring feat of masonry as well as a symbolic gesture. The design speaks of separation and reconciliation: The paths of two people that climb the double spiral stairs separate and then meet again at each platform. The relationship between architectural design and the growing digital repertoire of tools and possibilities seems to undergo similar cycles of attraction and rejection: enthusiasm about digital innovations – whether in Virtual Reality, Augmented Reality, Energy Design, Robotic Fabrication, the many Dimensions of BIM or, as right now, in AI and Machine Learning – is typically followed by a certain disillusionment and a realization that the promises were somewhat overblown. But a turn away from these digital innovations can only be temporary. In our call for papers we refer to the first and second ‘digital turns’, a term Mario Carpo coined. Yes, it’s a bit of a pun, but you could indeed see these digital turns in our logo as well. Carpo would probably agree that design and the digital have become inseparably intertwined. While they may be circling in different directions, an innovative rejoinder is always just around the corner. The theme of the conference asked participants to re-consider the relationship between Design and the Digital. The notion of a cycle is already present in the syllable “re”. Indeed, 20 years earlier, in 2003, we held an ECAADE conference in Graz simply under the title “Digital Design” and our re-using – or is it re-cycling? – the theme can be seen as the completion of one of those cycles described above: One level up, we meet again, we’ve come full circle. The question of the relationship between Design and the Digital is still in flux, still worthy of renewed consideration. There is a historical notion implicit in the theme. To reconsider something, one needs to take a step back, to look into the past as well as into the future. Indeed, at this conference we wanted to take a longer view, something not done often enough in the fast-paced world of digital technology. Carefully considering one’s past can be a source of inspiration. In fact, the double spiral stair that inspired our conference logo also inspired many architects through the ages. Konrad Wachsmann, for example, is said to have come up with his famous Grapevine assembly system based on this double spiral stair and its intricate joinery. More recently, Rem Koolhaas deemed the double spiral staircase in Graz important enough to include a detailed model of it in his “elements of architecture” exhibition at the Venice Biennale in 2014. Our interpretation of the stair is a typically digital one, you might say. First of all: it’s a rendering of a virtual model; it only exists inside a computer. Secondly, this virtual model isn’t true to the original. Instead, it does what the digital has made so easy to do: it exaggerates. Where the original has just two spiral stairs that separate and join, our model consists of countless stairs that are joined in this way. We see only a part of the model, but the stairs appear to continue in all directions. The implication is of an endless field of spiral stairs. As the 3D model was generated with a parametric script, it would be very easy to change all parameters of it – including the number of stairs that make it up. Everyone at this conference is familiar with the concept of parametric design: it makes generating models of seemingly endless amounts of connected spiral stairs really easy. Although, of course, if we’re too literal about the term ‘endless’, generating our stair model will eventually crash even the most advanced computers. We know that, too. – That's another truth about the Digital: it makes a promise of infinity, which, in the end, it can’t keep. And even if it could: what’s the point of just adding more of the same: more variations, more options, more possible ways to get lost? Doesn’t the original double spiral staircase contain all those derivatives already? Don’t we know that ‘more’ isn’t necessarily better? In the original double spiral stair the happy end is guaranteed: the lovers’ paths meet at the top as well as when they exit the building. Therefore, the stair is also colloquially known as the Busserlstiege (the kissing stair) or the Versöhnungsstiege (reconciliation stair). In our digitally enhanced version, this outcome is no longer clear: we can choose between multiple directions at each level and we risk losing sight of the one we were with. This is also emblematic of our field of research. eCAADe was founded to promote “good practice and sharing information in relation to the use of computers in research and education in architecture and related professions” (see ecaade.org). That may have seemed a straightforward proposition forty years ago, when the association was founded. A look at the breadth and depth of research topics presented and discussed at this conference (and as a consequence in this book, for which you’re reading the editorial) shows how the field has developed over these forty years. There are sessions on Digital Design Education, on Digital Fabrication, on Virtual Reality, on Virtual Heritage, on Generative Design and Machine Learning, on Digital Cities, on Simulation and Digital Twins, on BIM, on Sustainability, on Circular Design, on Design Theory and on Digital Design Experimentations. We hope you will find what you’re looking for in this book and at the conference – and maybe even more than that: surprising turns and happy encounters between Design and the Digital.
series eCAADe
type normal paper
email
last changed 2024/08/29 08:36

_id ecaade2014_111
id ecaade2014_111
authors Fabian Danker and Oliver Jones
year 2014
title Combining Augmented Reality and Building Information Modelling - An industry perspective on applications and future directions.
doi https://doi.org/10.52842/conf.ecaade.2014.2.525
source Thompson, Emine Mine (ed.), Fusion - Proceedings of the 32nd eCAADe Conference - Volume 2, Department of Architecture and Built Environment, Faculty of Engineering and Environment, Newcastle upon Tyne, England, UK, 10-12 September 2014, pp. 525-536
summary The aim of this paper is to investigate the applications both current and potential, of combining Augmented Reality (AR) and Building Information Modelling (BIM), providing an insight into attitudes towards utilising these technologies within the construction industry. This paper presents a study which has evaluated current research on the topic of AR and BIM, conducted semi structured interviews with a panel of industry experts and surveyed a sample group of 43 within the wider UK construction industry . Industry experts were interviewed using semi-structured interviews and results were thematically analysed with the data gathered from the literature review. 5 core themes used to structure a nine item industry and practitioner questionnaire. Results suggest that use of AR and BIM within the construction industry will continue to grow with the advent of emerging technologies. Use of AR and BIM combined with 3D Scanning, Wireless Sensory Network will also increase and the synergies between BIM and these emerging technologies will improve overall efficiencies in design, delivery, maintenance and demolition of projects. The findings of this study contribute further knowledge to understanding the implications and possibilities that utilising AR and BIM will have in the construction industry.
wos WOS:000361385100055
keywords Augmented reality; emerging technologies; building information modelling; aec industry
series eCAADe
email
last changed 2022/06/07 07:55

_id sigradi2014_266
id sigradi2014_266
authors Lonsing, Werner; Peter Anders Ph.D.
year 2014
title Portable Architectural Design - Developing a Immersive Augmented Reality System for Architects
source SIGraDi 2014 [Proceedings of the 18th Conference of the Iberoamerican Society of Digital Graphics - ISBN: 978-9974-99-655-7] Uruguay- Montevideo 12,13,14 November 2014, pp. 166-169
summary The architectural design process is, besides sketching, bound to the office. The introduction of computational design did not really change it. This paper will introduce and discuss the development of an affordable solution for a wearable and immersive augmented-reality-system (AR) for architects based on simple hardware components with some essential options to create and edit three-dimensional virtual shapes while being on-site.
series SIGRADI
email
last changed 2016/03/10 09:55

_id caadria2023_187
id caadria2023_187
authors Lopez Rodriguez, Alvaro and Pantic, Igor
year 2023
title Augmented Environments: The Architecture for the Augmented Era
doi https://doi.org/10.52842/conf.caadria.2023.1.403
source Immanuel Koh, Dagmar Reinhardt, Mohammed Makki, Mona Khakhar, Nic Bao (eds.), HUMAN-CENTRIC - Proceedings of the 28th CAADRIA Conference, Ahmedabad, 18-24 March 2023, pp. 403–412
summary Human imagination has played with the idea of an alternative technological world for years. From dystopian proposals like Neuromancer or The Matrix to more positive views like the recent Upload series, the exploration of the friction between the digital world and the physical world has entertained the imagination of our society for decades. Outside the fictional environments, the omnipresence of the internet and the development of “the cloud” are showing that the virtual world is possible and that the idea of a Metaverse is no longer part of science fiction but a very real future for human relations (Winters 2021). In line with the idea of the Metaverse, the intersection of the virtual and the physical world is being explored through the idea of Extended Realities. Technology is allowing humans to enhance their capabilities more than ever, and in fact, it has been proposed that we are entering the Augmented era (King 2014). This paper explores the opportunities and possible challenges that “Extended Architecture” has by analyzing a research project based on augmented reality as the media to explore these ideas. This project will propose a speculative approach to how the fact that in the recent future, everyone will have access to an AR device will change the way we perceive and understand our architectural environment.
keywords Work in progress, Virtual and Augmented Environments, Disruptive Modes of Practice and Pedagogy, Extended Realities, Machine Learning
series CAADRIA
email
last changed 2023/06/15 23:14

_id acadia14projects_143
id acadia14projects_143
authors Robinson, Alexander
year 2014
title Calibrating Agencies in a Territoy of Instrumentality
doi https://doi.org/10.52842/conf.acadia.2014.143
source ACADIA 14: Design Agency [Projects of the 34th Annual Conference of the Association for Computer Aided Design in Architecture (ACADIA) ISBN 9789126724478]Los Angeles 23-25 October, 2014), pp. 143-146
summary Exhibited is an interactive landscape player and public outreach tool for robotically sand modeled and vacuum formed designs for dust control mitigation landscapes for the Owens Lake in Lone Pine, California. This system engages users and stakeholders with the tools and products of a digitally augmented rapid landscape prototyping machine built to create agency for multiple values in the design of dust control infrastructure for the dry lake.
keywords Robotics and Autonomous Design Systems, Simulation + Intuition, Material Logics and Tectonics, Multidisciplinary Design Optimization, User participation in design, Virtual/augmented reality and interactive environments
series ACADIA
type Research Projects
email
last changed 2022/06/07 07:56

_id ecaade2016_048
id ecaade2016_048
authors Abramovic, Vasilija and Achten, Henri
year 2016
title From Moving Cube to Urban Interactive Structures - A case study
doi https://doi.org/10.52842/conf.ecaade.2016.1.661
source Herneoja, Aulikki; Toni Österlund and Piia Markkanen (eds.), Complexity & Simplicity - Proceedings of the 34th eCAADe Conference - Volume 1, University of Oulu, Oulu, Finland, 22-26 August 2016, pp. 661-668
summary When thinking about the future vision of a city, having in mind recent development in digital technologies and digital design tools we are inclined to expect new building structures which incorporate this technology to better help us manage the complexity of life, and to simplify our daily lives and tasks. The idea behind this research paper lies in design of such structures, which could be put inside an urban context and engage in creating a built environment that can add more to the quality of life. For us Interactive architecture is architecture that is responsive, flexible, changing, always moving and adapting to the needs of today. The world is becoming more dynamic, society is constantly changing and the new needs it develops need to be accommodated. As a result architecture has to follow. Spaces have to become more adaptive, responsive and nature concerned, while having the ability for metamorphosis, flexibility and interactivity. Taken as a starting point of this idea is a specific module from graduation project in 2014 "The Unexpected city", where it was possible to test out first ideas about interactive and flexible objects in an urban environment.
wos WOS:000402063700071
keywords Flexible architecture; Interactive architecture; Responsive systems
series eCAADe
email
last changed 2022/06/07 07:54

_id ascaad2014_023
id ascaad2014_023
authors Al-Maiyah, Sura and Hisham Elkadi
year 2014
title Assessing the Use of Advanced Daylight Simulation Modelling Tools in Enhancing the Student Learning Experience
source Digital Crafting [7th International Conference Proceedings of the Arab Society for Computer Aided Architectural Design (ASCAAD 2014 / ISBN 978-603-90142-5-6], Jeddah (Kingdom of Saudi Arabia), 31 March - 3 April 2014, pp. 303-313
summary In architecture schools, where the ‘studio culture’ lies at the heart of students’ learning, taught courses, particularly technology ones, are often seen as secondary or supplementary units. Successful delivery of such courses, where students can act effectively, be motivated and engaged, is a rather demanding task requiring careful planning and the use of various teaching styles. A recent challenge that faces architecture education today, and subsequently influences the way technology courses are being designed, is the growing trend in practice towards environmentally responsive design and the need for graduates with new skills in sustainable construction and urban ecology (HEFCE’s consultation document, 2005). This article presents the role of innovative simulation modelling tools in the enhancement of the student learning experience and professional development. Reference is made to a teaching practice that has recently been applied at Portsmouth School of Architecture in the United Kingdom and piloted at Deakin University in Australia. The work focuses on the structure and delivery of one of the two main technology units in the second year architecture programme that underwent two main phases of revision during the academic years 2009/10 and 2010/11. The article examines the inclusion of advanced daylight simulation modelling tools in the unit programme, and measures the effectiveness of enhancing its delivery as a key component of the curriculum on the student learning experience. A main objective of the work was to explain whether or not the introduction of a simulation modelling component, and the later improvement of its integration with the course programme and assessment, has contributed to a better learning experience and level of engagement. Student feedback and the grade distribution pattern over the last three academic years were collected and analyzed. The analysis of student feedback on the revised modelling component showed a positive influence on the learning experience and level of satisfaction and engagement. An improvement in student performance was also recorded over the last two academic years and following the implementation of new assessment design.
series ASCAAD
email
last changed 2016/02/15 13:09

_id caadria2014_279
id caadria2014_279
authors Austern, Guy; Soungmin Yu, Mara Moral and Theerapat Jirathiyut
year 2014
title The Urban Genome
doi https://doi.org/10.52842/conf.caadria.2014.263
source Rethinking Comprehensive Design: Speculative Counterculture, Proceedings of the 19th International Conference on Computer-Aided Architectural Design Research in Asia (CAADRIA 2014) / Kyoto 14-16 May 2014, pp. 263–272
summary The influence of urban morphology on the energy consumption of a fabric has been recently established by research into the energy use of existing cities. This paper suggests a framework for generating environmentally adapted urban tissue by using genetic algorithms as form-finding processes. A series of multi-objective optimization algorithms are described. The geometric abstractions used as a basis for these algorithms are illustrated in detail, and the results and implications of these types of simulations are discussed. The methodology developed within this paper was tested on one km2 site in three cities of varying climates, and further expanded into a detailed case study within one city.
keywords Urban simulation; Environmental design; Optimization; Genetic Algorithms; Urban Morphology
series CAADRIA
email
last changed 2022/06/07 07:54

_id sigradi2014_273
id sigradi2014_273
authors Chiarella, Mauro; Analía Raffin, Silvina Lopaczek, Sebastian Martini, Nicolas Góngora, Francisco Bressan
year 2014
title Pieles Arquitectónicas Dinámicas. Prototipos a escala mediante prototipado rápido, microcontroladores y patrones plegados [Dynamic architectural skins. Scale prototypes using rapid prototyping, microcontrollers and folding patterns]
source SIGraDi 2014 [Proceedings of the 18th Conference of the Iberoamerican Society of Digital Graphics - ISBN: 978-9974-99-655-7] Uruguay - Montevideo 12 - 14 November 2014, pp. 96-100
summary Contemporary architecture replaces the concept facade by skin: outer layer mediating between the building and its surroundings; active, informed, connected and communicative membrane. Our training and practice in architecture, still working for the rigor and stability of modular geomerías on determinants of a unique spatial and morphological situation passive. In the teaching of architecture in Latin America there are no exercises that incorporate a learning design to create flexible dynamic geometries as possible structures for sensitive skin. The research aims to explore the possibilities and systematize the dynamic folding of planar surfaces using geometric simulation programs (freeform origami, Grasshopper); building scale prototypes (rapid prototyping and arduino microcontroller) and subsequent verification of energy analysis program.
keywords Architectural skin; folded patterns; arduino; rapid prototyping
series SIGRADI
email
last changed 2016/03/10 09:48

_id ecaade2014_078
id ecaade2014_078
authors Elif Erdine and Evan Greenberg
year 2014
title Computing the Urban Block - Local Climate Analysis and Design Strategies
doi https://doi.org/10.52842/conf.ecaade.2014.1.145
source Thompson, Emine Mine (ed.), Fusion - Proceedings of the 32nd eCAADe Conference - Volume 1, Department of Architecture and Built Environment, Faculty of Engineering and Environment, Newcastle upon Tyne, England, UK, 10-12 September 2014, pp. 145-152
summary This research develops a method for the analysis, integration and visualisation of climatic parameters in a dense urban block. In order to test this method, a typical urban block in Manila, Philippines, is investigated and results are represented through computational simulation. The translation of latent spatial qualities into visual data with common tools and techniques allows designers to gain an understanding of how to design local microclimates, and inhabitants to gain greater knowledge of the environment. In this regard, this research proposes, contrary to conventional methodologies, the use of analytical tools as the impetus to, rather than the outcome of, architectural design.
wos WOS:000361384700014
keywords Computation; urban design; environmental analysis; computational fluid dynamics; simulation
series eCAADe
email
last changed 2022/06/07 07:55

_id ecaade2014_104
id ecaade2014_104
authors Estefania Tapias and Shubham Soni
year 2014
title Building-up urban open spaces from shadow range analyses
doi https://doi.org/10.52842/conf.ecaade.2014.1.129
source Thompson, Emine Mine (ed.), Fusion - Proceedings of the 32nd eCAADe Conference - Volume 1, Department of Architecture and Built Environment, Faculty of Engineering and Environment, Newcastle upon Tyne, England, UK, 10-12 September 2014, pp. 129-135
summary This paper explores an alternative approach for the creation of new built forms based on solar access analysis. Consolidated on urban areas under development, the denominated 'inverted' approach is focused on the generation of recreational open spaces based on shadow conditions caused by existing built forms, and as a starting point for the construction of new urban envelopes as possible development areas. Unlike the existing method of the 'solar envelope', the 'inverted' approach shows an alternative procedure for the construction of built forms, based on pedestrian comfort caused by solar access in urban spaces rather than on indoor performance affected by the penetration of sunlight into buildings. As a method for the creation of urban envelopes, this approach attempts to enhance pedestrian comfort according to the study of solar access in urban areas. The 'inverted' approach is based on sun path data and is developed as a generative procedure, where the results of shadow range analyses and the different urban objectives work as input parameters for the generation of urban envelopes. Based on this methodology, two Grasshopper® custom components are developed.
wos WOS:000361384700012
keywords Urban open spaces; solar access; shadow range simulation; generative modelling
series eCAADe
email
last changed 2022/06/07 07:52

_id ascaad2014_030
id ascaad2014_030
authors Langenhan, Christoph; Sahm Alexander; Petzold Frank; Seifert Arne and Teichert Astrid
year 2014
title Mobile Application to Collect Information About Architecture to Obtain a Collective Knowledge Base: 'ar:searchbox.app'
source Digital Crafting [7th International Conference Proceedings of the Arab Society for Computer Aided Architectural Design (ASCAAD 2014 / ISBN 978-603-90142-5-6], Jeddah (Kingdom of Saudi Arabia), 31 March - 3 April 2014, pp. 375-382
summary During the early stages of the architectural design process, students and architects seek information for inspiration, and to evaluate design ideas or similar solutions. An essential part of design education therefore involves building up a knowledge base of already built or designed buildings. Most students gather such information by visiting or researching building designs, for example through photos taken on design studio field trips. These photos are used for studio work or archived for later use. The “ar:searchbox.app” aims to support this in two ways. Firstly, by supporting easy mobile information acquisition and sharing, as well as the semi-automatic derivation of high quality metadata; and secondly, by employing urban environment sensitive search and similarity-based browsing strategies to support mobile education as well as a web-based access to the information. To provide long-term access and to establish an information base that is not restricted to a single design studio, the “ar:searchbox.app” builds on our previous “ar:searchbox” project which uses a central media server called “mediaTUM” that provides a handling concept for flexible metadata schemas and scalable infrastructures.
series ASCAAD
email
last changed 2016/02/15 13:09

_id caadria2014_013
id caadria2014_013
authors Moya, Rafael; Flora Salim and Mani Williams
year 2014
title Pneumosense Project
doi https://doi.org/10.52842/conf.caadria.2014.369
source Rethinking Comprehensive Design: Speculative Counterculture, Proceedings of the 19th International Conference on Computer-Aided Architectural Design Research in Asia (CAADRIA 2014) / Kyoto 14-16 May 2014, pp. 369–378
summary The study of wind conditions in the urban context has multiple application areas such as for cleaning pollution through ventilation, analysing wind pressures on building façades, and improving pedestrian comfort. In this context, the Pneumosense project is a student’s project focused in the design of a kinetic system to ameliorate negative impact of wind conditions in pedestrian areas in the city of Melbourne. Its development considers several stages including site analysis, analogue wind tunnel testing, digital simulations with Computational Fluid Dynamic software, material explorations, kinetic component design with Arduino, and rapid prototyping.
keywords Urban aerodynamics; windbreak; wind tunnel simulation; computational fluid dynamics; architectural prototype
series CAADRIA
email
last changed 2022/06/07 07:58

_id caadria2014_046
id caadria2014_046
authors Moya, Rafael; Simon Watkins, Yan Ding, Jane Burry and Mark Burry
year 2014
title Aerodynamic Features as Auxiliary Architecture
doi https://doi.org/10.52842/conf.caadria.2014.295
source Rethinking Comprehensive Design: Speculative Counterculture, Proceedings of the 19th International Conference on Computer-Aided Architectural Design Research in Asia (CAADRIA 2014) / Kyoto 14-16 May 2014, pp. 295–304
summary This paper presents the experimental study of aerodynamics phenomena in built environments, focused on explorations of environmental wind flow near buildings, pedestrian wind comfort issues and methods of mitigation of wind speed. In addition, it is an overview of an aerodynamic analysis with CFD software for a hypothetical urban shelter design, based on aerodynamic features. The aim is to evaluate the feature’s performance to control wind flow in protection regions for pedestrians.
keywords Urban aerodynamics; CFD simulation; wind discomfort
series CAADRIA
email
last changed 2022/06/07 07:58

_id ecaade2014_168
id ecaade2014_168
authors Patrick Janssen and Rudi Stouffs
year 2014
title Multi-Perspective Urban Optioneering
doi https://doi.org/10.52842/conf.ecaade.2014.1.079
source Thompson, Emine Mine (ed.), Fusion - Proceedings of the 32nd eCAADe Conference - Volume 1, Department of Architecture and Built Environment, Faculty of Engineering and Environment, Newcastle upon Tyne, England, UK, 10-12 September 2014, pp. 79-88
summary This paper investigates the state-of-the-art with respect to simulation-based planning support systems in order to draw a set of requirements and best practices for an urban planning and design framework that enables multiple stakeholders with differing perspectives to systematically explore design options, leveraging the latest analysis and simulation techniques. From these requirements and best practices, the foundations and structure of such an urban planning and design framework are developed. A number of technological and methodological challenges are identified for future investigation.
wos WOS:000361384700007
keywords Urban planning and design; optioneering; simulation-based planning support systems
series eCAADe
email
last changed 2022/06/07 07:59

For more results click below:

this is page 0show page 1show page 2show page 3show page 4show page 5... show page 33HOMELOGIN (you are user _anon_216601 from group guest) CUMINCAD Papers Powered by SciX Open Publishing Services 1.002