CumInCAD is a Cumulative Index about publications in Computer Aided Architectural Design
supported by the sibling associations ACADIA, CAADRIA, eCAADe, SIGraDi, ASCAAD and CAAD futures

PDF papers
References

Hits 1 to 20 of 664

_id cdrf2023_526
id cdrf2023_526
authors Eric Peterson, Bhavleen Kaur
year 2023
title Printing Compound-Curved Sandwich Structures with Robotic Multi-Bias Additive Manufacturing
doi https://doi.org/https://doi.org/10.1007/978-981-99-8405-3_44
source Proceedings of the 2023 DigitalFUTURES The 5st International Conference on Computational Design and Robotic Fabrication (CDRF 2023)
summary A research team at Florida International University Robotics and Digital Fabrication Lab has developed a novel method for 3d-printing curved open grid core sandwich structures using a thermoplastic extruder mounted on a robotic arm. This print-on-print additive manufacturing (AM) method relies on the 3d modeling software Rhinoceros and its parametric software plugin Grasshopper with Kuka-Parametric Robotic Control (Kuka-PRC) to convert NURBS surfaces into multi-bias additive manufacturing (MBAM) toolpaths. While several high-profile projects including the University of Stuttgart ICD/ITKE Research Pavilions 2014–15 and 2016–17, ETH-Digital Building Technologies project Levis Ergon Chair 2018, and 3D printed chair using Robotic Hybrid Manufacturing at Institute of Advanced Architecture of Catalonia (IAAC) 2019, have previously demonstrated the feasibility of 3d printing with either MBAM or sandwich structures, this method for printing Compound-Curved Sandwich Structures with Robotic MBAM combines these methods offering the possibility to significantly reduce the weight of spanning or cantilevered surfaces by incorporating the structural logic of open grid-core sandwiches with MBAM toolpath printing. Often built with fiber reinforced plastics (FRP), sandwich structures are a common solution for thin wall construction of compound curved surfaces that require a high strength-to-weight ratio with applications including aerospace, wind energy, marine, automotive, transportation infrastructure, architecture, furniture, and sports equipment manufacturing. Typical practices for producing sandwich structures are labor intensive, involving a multi-stage process including (1) the design and fabrication of a mould, (2) the application of a surface substrate such as FRP, (3) the manual application of a light-weight grid-core material, and (4) application of a second surface substrate to complete the sandwich. There are several shortcomings to this moulded manufacturing method that affect both the formal outcome and the manufacturing process: moulds are often costly and labor intensive to build, formal geometric freedom is limited by the minimum draft angles required for successful removal from the mould, and customization and refinement of product lines can be limited by the need for moulds. While the most common material for this construction method is FRP, our proof-of-concept experiments relied on low-cost thermoplastic using a specially configured pellet extruder. While the method proved feasible for small representative examples there remain significant challenges to the successful deployment of this manufacturing method at larger scales that can only be addressed with additional research. The digital workflow includes the following steps: (1) Create a 3D digital model of the base surface in Rhino, (2) Generate toolpaths for laminar printing in Grasshopper by converting surfaces into lists of oriented points, (3) Generate the structural grid-core using the same process, (4) Orient the robot to align in the direction of the substructure geometric planes, (5) Print the grid core using MBAM toolpaths, (6) Repeat step 1 and 2 for printing the outer surface with appropriate adjustments to the extruder orientation. During the design and printing process, we encountered several challenges including selecting geometry suitable for testing, extruder orientation, calibration of the hot end and extrusion/movement speeds, and deviation between the computer model and the physical object on the build platen. Physical models varied from their digital counterparts by several millimeters due to material deformation in the extrusion and cooling process. Real-time deviation verification studies will likely improve the workflow in future studies.
series cdrf
email
last changed 2024/05/29 14:04

_id acadia14_357
id acadia14_357
authors Gannon, Madeline
year 2014
title Reverberating Across the Divide: Bridging virtual and physical contexts in digital design and fabrication
doi https://doi.org/10.52842/conf.acadia.2014.357
source ACADIA 14: Design Agency [Proceedings of the 34th Annual Conference of the Association for Computer Aided Design in Architecture (ACADIA) ISBN 9781926724478]Los Angeles 23-25 October, 2014), pp. 357-364
summary This paper presents Reverb, a prototypical CAD/CAM interface for oscillating between digital bytes and physical atoms. The interface uses an integrated workflow (3D scanning, 3D modeling, and 3D printing) to enable a designer to craft intricate digital geometries around pre-existing physical contexts.
keywords Human-Computer Interaction; agent-based modeling; CAD/CAM; generative design; gestural user interface; digital fabrication; 3D printing
series ACADIA
type Normal Paper
email
last changed 2022/06/07 07:50

_id ascaad2014_018
id ascaad2014_018
authors Ibrahim, Passaint Mohamed Massoud
year 2014
title Achieving Computer Aided Design 3D Models from Virtual to Real in Architecture Learning
source Digital Crafting [7th International Conference Proceedings of the Arab Society for Computer Aided Architectural Design (ASCAAD 2014 / ISBN 978-603-90142-5-6], Jeddah (Kingdom of Saudi Arabia), 31 March - 3 April 2014, pp. 241-251
summary The existing gap between the 3D physical models done by architecture students and their digitized 3D virtual models in architecture design is truly spectacular. The increasingly efficient and more specialized digital applications allow the designers a whole range of facilities providing drawing commands and changes very easy to use, which puts 3D physical model in a less priority or being useless. This paper studies how to minimize This gap by teaching students that 3D physical models are not only the outer physical result of the design but it could be also the way to learn the architectural relationships and values in architectural design, where 3D physical models techniques now had been updated and related in a way to the digital 3D models and CAD applications.
series ASCAAD
email
last changed 2016/02/15 13:09

_id caadria2014_114
id caadria2014_114
authors Nakano, Akito and Akira Wakita
year 2014
title ASOM
doi https://doi.org/10.52842/conf.caadria.2014.117
source Rethinking Comprehensive Design: Speculative Counterculture, Proceedings of the 19th International Conference on Computer-Aided Architectural Design Research in Asia (CAADRIA 2014) / Kyoto 14-16 May 2014, pp. 117–126
summary Recently more researches on tangible objects have been conducted that enhance the intuitive polygonal or surface modelling of designers in digital and physical worlds. However, a few researches have been done that augment the digital solid modelling with tangible objects. In this paper, we present the Augmented Solid Modeller (ASoM) which helps designers create more complex shapes by a combination of Boolean operations between a different type of 3D-printed tangible objects, which is different from the conventional single shape type bottom-up modelling approaches. When multiple objects intersect each other at a given position and angle, the interference or removed shape is often unexpected for designers. Also, as 3D-printed objects are used for designers only to configure and discuss the shape of final digital 3D model in existing CAAD, ASoM changes the role of 3D-printed objects from the replicas to reusable tools for other modelling opportunities. We offered ASoM to students majoring or interested in CAAD and interviewed them to get comments. Since the speed and precision of 3D-printing will achieve immediate improvement, ASoM is a pioneer in developing cutting-edge approach for designers to model both in digital and physical worlds.
keywords Solid Modeller; Boolean operations; 3D-printing; CAD
series CAADRIA
email
last changed 2022/06/07 07:59

_id sigradi2014_314
id sigradi2014_314
authors Schmitt, Isabela Guesser; Luiz Gonzaga Philippi Filho, Regiane Trevisan Pupo
year 2014
title Origamic Architecture: um método de execução [Origamic Architure: a method of execution]
source SiGraDi 2014 [Proceedings of the 18th Conference of the Iberoamerican Society of Digital Graphics - ISBN: 978-9974-99-655-7] Uruguay - Montevideo 12 - 14 November 2014, pp. 280-284
summary The origamic architecture consists of a paper architecture technique developed by Masahiro Chatani, which suggests the compilation of three other techniques: origami (fold), Kirigami (cut) and pop-up (mounting). The application of these techniques altogether results in a self-mounted volumetric model made of one sheet of paper. The aim of this paper is to show and explore a method to create 3D representations of architecture buildings as well as sketches through these techniques. The use of CAD systems and laser cut to materialize the models is also discussed.
keywords Origamic; Architecture; laser cut; Materialization; Representation
series SIGRADI
email
last changed 2016/03/10 09:59

_id ijac201412104
id ijac201412104
authors Stavric, Milena; Albert Wiltsche
year 2014
title Quadrilateral Patterns for Rigid Folding Structures
source International Journal of Architectural Computing vol. 12 - no. 1, 61-80
summary In this paper we will do investigations on spatial quadrilateral meshes developed from folding patterns. The simplicity of manual production in combination with the geometrical complexity of paper folding shall lead to an inspiration for designing architectural structures. We propose geometrical methods for designing these quadrilateral structures which follow in their shape geometrical surfaces. Our methods use folding patterns where only four folding lines meet in one node and every quadrangular part stays flat. This enables simpler solutions for architectural realization in a big scale especially for join connections and assembling of the whole spatial and structural system. In order to understand and handle the complexity of paper folding we use CAD tools to model the structures where the entire folding element is reconstructed and its geometric characteristics are controlled. This kind of control reflects on scale models. Models are then adjusted, examined and built to reach certain further geometric conclusions that are once more tested in CAD software.
series journal
last changed 2019/05/24 09:55

_id ascaad2014_004
id ascaad2014_004
authors Afsari, Kereshmeh; Matthew E. Swarts and T. Russell Gentry
year 2014
title Integrated Generative Technique for Interactive Design of Brickworks
source Digital Crafting [7th International Conference Proceedings of the Arab Society for Computer Aided Architectural Design (ASCAAD 2014 / ISBN 978-603-90142-5-6], Jeddah (Kingdom of Saudi Arabia), 31 March - 3 April 2014, pp. 49-64
summary Bricks have been used in the construction industry as a building medium for millennia. Distinct patterns of bricks depict the unique aesthetic intentions found in Roman, Gothic and Islamic architecture. In contemporary practice, the use of digital tools in design has enabled methodologies for creating new forms in architecture. CAD and BIM systems provide new opportunities for designers to create parametric objects for building form generation. In masonry design, there exists an inherent contradiction between traditional patterns in brick design, which are formal and prescribed, and the potential for new patterns generated using design scripting. In addition, current tools do not provide interactive techniques for the design of brickwork patterns that can manage constant changes parametrically, to inform and influence design process, by providing design feedback on the constructive and structural aspects of the proposed brick pattern and geometry. This research looks into the parametric techniques that can be applied to create different kinds of patterns on brick walls. It discusses a methodology for an interactive brickwork design within generative techniques. By integrating data between two computational platforms – the first based on image analysis and the second on parametric modeling, we demonstrate a methodology and application that can generate interactive arbitrary patterns and map it to the brick wall in real-time.
series ASCAAD
email
last changed 2016/02/15 13:09

_id ecaade2014_055
id ecaade2014_055
authors Ahmet Emre Dincer, Gülen Cagdas and Hakan Tong
year 2014
title A Digital Tool for Customized Mass Housing Design
doi https://doi.org/10.52842/conf.ecaade.2014.1.201
source Thompson, Emine Mine (ed.), Fusion - Proceedings of the 32nd eCAADe Conference - Volume 1, Department of Architecture and Built Environment, Faculty of Engineering and Environment, Newcastle upon Tyne, England, UK, 10-12 September 2014, pp. 201-211
summary Innovative design approaches are needed for mass housing implementations. Especially increasing interaction between user and designer is major important in the design decisions of these buildings. For this, it is seriously necessary to benefit from technological advances in computational designs, because digital tools like shape grammar, cellular automata, genetic algorithm, l-systems and agent-based models in this field provide not only to save time and to manage the relationships but also to generate many different alternatives. Accordingly, a digital support tool for designers has been developed by using cellular automata approach and scripts of 3Ds Max software. It produces samples of housing design plans which is generated by cellular automata approach according to the data of users' preferences. In this paper the interface and contributions of the developed model are introduced and discussed.
wos WOS:000361384700020
keywords Computational design; mass customization; innovative housing design; plugin
series eCAADe
email
last changed 2022/06/07 07:54

_id ascaad2014_026
id ascaad2014_026
authors Al-Barqawi, Wadia
year 2014
title Virtual Reality: an approach for building Makkah’s architectural identity
source Digital Crafting [7th International Conference Proceedings of the Arab Society for Computer Aided Architectural Design (ASCAAD 2014 / ISBN 978-603-90142-5-6], Jeddah (Kingdom of Saudi Arabia), 31 March - 3 April 2014, pp. 331-342
summary This paper explores a new approach in the architectural design process aiming to construct Makkah's architectural identity. Makkah, which is a city of unique sacred values, has been losing its battle to preserve it heritage buildings. Traditional districts with their heritage buildings have been cleared in order to construct skyscrapers to accommodate the increasing number of pilgrims. While some argue for preserving heritage buildings others insist in building more skyscrapers. Within these conflicting views, architects and urban designers use CAD software to document heritage buildings without informing the future architectural design process. This paper argues for adopting digital architecture as an approach for preserving the architectural heritage of Makkah by studying heritage buildings as systems that can be digitally represented in virtual world. This goes beyond the physical representation of heritage artefacts to investigate in depth the logic that guide the design process. The roushan, which is one of the unique heritage artefacts in Makkan's architecture can be an interface between reality and the virtual environment in the design process. This goes behind modeling the roushan, to employ the principle of virtual representation in the design process. The digital representation of heritage becomes the realm for research transforming the virtual into reality. The hope is to produce an architecture that is related to its local heritage, contemporary in design and responsive to its environment, as well as to advocate principles, references and techniques at the core of the design process, in an educational and professional context. In broader picture the goal is to achieve a city that is responsive to human activities adapted to changes, sustainable in physical forms and social relations and above all unique in design and identity.
series ASCAAD
email
last changed 2016/02/15 13:09

_id ecaade2014_187
id ecaade2014_187
authors Asli Cekmis
year 2014
title Fuzzy computing for layout design in ill-defined, uncertain spaces
doi https://doi.org/10.52842/conf.ecaade.2014.1.277
source Thompson, Emine Mine (ed.), Fusion - Proceedings of the 32nd eCAADe Conference - Volume 1, Department of Architecture and Built Environment, Faculty of Engineering and Environment, Newcastle upon Tyne, England, UK, 10-12 September 2014, pp. 277-286
summary Layout design has been supported by some computational tools, where fuzzy systems have been approved as an appropriate method to handle uncertainty in the early design stage. In this paper, a new mathematical model depending on the fuzzy logic and sets theory is proposed to assist in layout design. The model distinctly deals with spatial uncertainty in open planned designs, where there is no clear layout configuration or definite patterns of usage. The model calculates the possibility of occupancy according to space, function and user related parameters and logical rules. It also visualises the architectural plan as being comprised of sub-spaces formed by the distribution of those possibilities. Sub-spaces are characterised as “Fuzzy Architectural Spatial Objects” (FASOs). As a result, layouts are represented as an accumulation of FASOs showing a certain inhabitation pattern. Various layouts can be generated within the identity of FASOs. Architects can evaluate the layouts and propose new ones by organising the FASOs on the plan and considering their relations. After describing the model the paper demonstrates an application which aims to design a proper layout for a major exhibition hall in Istanbul.
wos WOS:000361384700027
keywords Spatial uncertainty; open-plans; inhabitation patterns; layout design; fuzzy architectural spatial objects (fasos)
series eCAADe
email
last changed 2022/06/07 07:54

_id ascaad2014_036
id ascaad2014_036
authors Assassi, Abdelhalim; Belal Taher and Samai Rachida
year 2014
title Intelligent Digital Craft to Recognize Spatial Installations for Residential Designs: Approach to Understand the Design of Housing Barbaric in Algeria using the Majali Composition Software
source Digital Crafting [7th International Conference Proceedings of the Arab Society for Computer Aided Architectural Design (ASCAAD 2014 / ISBN 978-603-90142-5-6], Jeddah (Kingdom of Saudi Arabia), 31 March - 3 April 2014, pp. 195-196; 443-456
summary Architecture took an evolutionary context over time, where designers were interested in finding pragmatic spontaneous appropriate solutions and met the needs of people in urban and architectural spaces. Whereas, in modern architecture an intense and varied competition happens between architects through various currents of thoughts , schools and movements, however, that creativity was the ultimate goal , and a the same time we find that every architect distinguishes himself individually or collectively through tools of architectural expression and design representation adopting a school of thought, using , for example, the leaves of various sizes and diverse technical drawing tools to accurately show that he can be read by professionals or craftsmen outside the geographical scope to which it belongs .With the rapid technological development which accompanied the digital craft in the contemporary world , The digital craft summed up time, distance and tools , so they gave the concept more appropriate accuracy , as virtualization has become the most effective tool for Architecture To reach the ideal and typical results at the practical level, or pure research. At the level of residential design and on the grounds that housing plays an important role in the government policies and given that housing is a basic unit common to all urban communities on earth , the use of different programs to show its typicality in two dimensions or in the third dimension - for example, using software "AutoCAD " " 3D Max " , " ArchiCAD " ... etc. - gave virtualisation smart, creative and beautiful forms which lead to better understand the used /or to be used residential spaces, and thus the conclusion that the life system of dwelling under design or under study , as can specifically recognize spatial structure in housing design - using digital software applying "Space Syntax" for example - in the shadow of slowly growing digital and creative development with the help of high-speed computers . the morphological structure of the dwelling is considered to be the most important contemporary residential designs Investigation through which the researcher in this area aims to understand the various behavioral relations and social structures within the projected residential area, using Space Syntax techniques. Through the structural morphology of dwellings can be inferred quality networks, levels of connectivity and depth and places of openness or closure within the dwelling under study, or under design. How, then, have intelligently contributed this digital craft to the perception of those spatial fixtures ? The aim of this research is to apply an appropriate program in the field of vernacular residential design and notably Space syntax which relate to the understanding and analysis of spatial structures, and also demonstrate its role at the morphological and spatial structure aspects, and prove how effective it helps to understand the social logic of domestic space through social individual/collective relationships and behaviors projected on the spatial configurations of dwellings. The answer to the issue raised above and at the methodological aspect, the study discussed the application of space syntax techniques on the subject. The findings tend to prove the efficiency by comparing samples of Berber vernacular domestic spaces from the Mzab, the Aures and Kabilya in Algeria, and has also led to ascertain the intelligibility of space syntax techniques in reading the differences between the behaviors in domestic spaces in different areas of the sample through long periods of time .
series ASCAAD
type normal paper
email
last changed 2021/07/16 10:39

_id caadria2014_226
id caadria2014_226
authors Barrios, Carlos R.
year 2014
title Parametric Visualization and Navigation in Multidimensional Spaces
doi https://doi.org/10.52842/conf.caadria.2014.543
source Rethinking Comprehensive Design: Speculative Counterculture, Proceedings of the 19th International Conference on Computer-Aided Architectural Design Research in Asia (CAADRIA 2014) / Kyoto 14-16 May 2014, pp. 543–552
summary This paper presents a visual model to increase visualization and efficiency when working with parametric models. The formalistic model allows to visually track all possible variations of parameters in a logical structure showing all design variations at once. The paper introduces background information on typical arrangements of parametric modeling instances showing their limitations; presents the formalistic model for logical arrangement in multidimensional structures showing its advantages; and discusses an example of the application of the formalistic model showing a logical arrangements of designs in a hypercube matrix.
keywords Parametric Modeling; Parametric Design; Parametric Variations, Parametric Visualization
series CAADRIA
email
last changed 2022/06/07 07:54

_id acadia14_709
id acadia14_709
authors Cantrell, Bradley; Holzman, Justine
year 2014
title Synthetic Ecologies: protocols, simulation, and manipulation for indeterminate landscapes
doi https://doi.org/10.52842/conf.acadia.2014.709
source ACADIA 14: Design Agency [Proceedings of the 34th Annual Conference of the Association for Computer Aided Design in Architecture (ACADIA) ISBN 9781926724478]Los Angeles 23-25 October, 2014), pp. 709-718
summary This paper positions the design and curation of synthetic ecologies through the lens of simulation and monitoring as a way to develop logics of interaction and proposes autonomous decision-making, manipulations, and management of the landscape to establish adaptive and indeterminate landscapes.
keywords Synthetic Ecologies, Responsive System, Monitoring, Simulation, Feedback Loop, Protocological Control, Intelligent Environments
series ACADIA
type Normal Paper
email
last changed 2022/06/07 07:54

_id caadria2021_089
id caadria2021_089
authors Cristie, Verina, Ibrahim, Nazim and Joyce, Sam Conrad
year 2021
title Capturing and Evaluating Parametric Design Exploration in a Collaborative Environment - A study case of versioning for parametric design
doi https://doi.org/10.52842/conf.caadria.2021.2.131
source A. Globa, J. van Ameijde, A. Fingrut, N. Kim, T.T.S. Lo (eds.), PROJECTIONS - Proceedings of the 26th CAADRIA Conference - Volume 2, The Chinese University of Hong Kong and Online, Hong Kong, 29 March - 1 April 2021, pp. 131-140
summary Although parametric modelling and digital design tools have become ubiquitous in digital design, there is a limited understanding of how designers apply them in their design processes (Yu et al., 2014). This paper looks at the use of GHShot versioning tool developed by the authors (Cristie & Joyce, 2018; 2019) used to capture and track changes and progression of parametric models to understand early-stage design exploration and collaboration empirically. We introduce both development history graph-based metrics (macro-process) and parametric model and geometry change metric (micro-process) as frameworks to explore and understand the captured progression data. These metrics, applied to data collected from three cohorts of classroom collaborative design exercises, exhibited students' distinct modification patterns such as major and complex creation processes or minor parameter explorations. Finally, with the metrics' applicability as an objective language to describe the (collaborative) design process, we recommend using versioning for more data-driven insight into parametric design exploration processes.
keywords Design exploration; parametric design; history recording; version control; collaborative design
series CAADRIA
email
last changed 2022/06/07 07:56

_id ecaade2014_192
id ecaade2014_192
authors David Stasiuk and Mette Ramsgaard Thomsen
year 2014
title Learning to be a Vault - Implementing learning strategies for design exploration in inter-scalar systems
doi https://doi.org/10.52842/conf.ecaade.2014.1.381
source Thompson, Emine Mine (ed.), Fusion - Proceedings of the 32nd eCAADe Conference - Volume 1, Department of Architecture and Built Environment, Faculty of Engineering and Environment, Newcastle upon Tyne, England, UK, 10-12 September 2014, pp. 381-390
summary Parametric design models enable the production of dynamic form, responsive material assemblies, and numerically and geometrically analytical feedback. The value potential for design produced through the procedural transformation of input parameters (or features) through algorithmic models has been repeatedly demonstrated and epistemically refined. However, despite their capacity to improve productivity and iteration, parametric models are nonetheless prone to inflexibility and reduction, both of which obscure processes of invention and discovery that are central to an effective design practice. This paper presents an experimental approach for the application of multiple, parallel computational design modelling strategies which are tested in the production of an inter-scalar model array that synthesises design intent, the simulation of material behaviours, performance-driven adaptation, and open-ended processes of discovery and categorical description. It is particularly focused on the computational potentials embedded in interdependent applications of simulation and machine learning algorithms as generative and descriptive drivers of form, performance, and architectural quality. It ultimately speculates towards an architectural design modelling method that privileges open model topologies and emergent feature production as critical operators in the generation of flexible and adaptive design solutions.
wos WOS:000361384700038
keywords Parametric design; computational modelling; machine learning; multi-objective optimisation; k-means clustering
series eCAADe
email
last changed 2022/06/07 07:55

_id caadria2014_047
id caadria2014_047
authors Dickinson, Susannah and Sheehan Wachter
year 2014
title Nature as a Comprehensive Model: A Biomimetic Installation
doi https://doi.org/10.52842/conf.caadria.2014.627
source Rethinking Comprehensive Design: Speculative Counterculture, Proceedings of the 19th International Conference on Computer-Aided Architectural Design Research in Asia (CAADRIA 2014) / Kyoto 14-16 May 2014, pp. 627–636
summary The following group installation was part of a seminar on biomimetics at the University of Arizona, USA. The design began with research into various natural systems, namely cell growth and morphogenesis and digital tools. In nature cells contain preprogrammed responses based on intrinsic properties which allow for differentiation and adaptation to external forces. This logic of cell morphology was developed into the installation design. Form specificity and topological variation was developed through the manipulation of a material system, bending and loading identical components to adapt to external forces, such as the sun, while simultaneously navigating the site, providing structure and ultimately architectural space.
keywords Biomimetics; pedagogy; simulation; design/build
series CAADRIA
email
last changed 2022/06/07 07:55

_id ecaade2023_000
id ecaade2023_000
authors Dokonal, Wolfgang, Hirschberg, Urs and Wurzer, Gabriel
year 2023
title eCAADe 2023 Digital Design Reconsidered - Volume 1
doi https://doi.org/10.52842/conf.ecaade.2023.1.001
source Dokonal, W, Hirschberg, U and Wurzer, G (eds.), Digital Design Reconsidered - Proceedings of the 41st Conference on Education and Research in Computer Aided Architectural Design in Europe (eCAADe 2023) - Volume 1, Graz, 20-22 September 2023, 905 p.
summary The conference logo is a bird’s eye view of spiral stairs that join and separate – an homage to the famous double spiral staircase in Graz, a tourist attraction of this city and a must-see for any architecturally minded visitor. Carved out of limestone, the medieval construction of the original is a daring feat of masonry as well as a symbolic gesture. The design speaks of separation and reconciliation: The paths of two people that climb the double spiral stairs separate and then meet again at each platform. The relationship between architectural design and the growing digital repertoire of tools and possibilities seems to undergo similar cycles of attraction and rejection: enthusiasm about digital innovations – whether in Virtual Reality, Augmented Reality, Energy Design, Robotic Fabrication, the many Dimensions of BIM or, as right now, in AI and Machine Learning – is typically followed by a certain disillusionment and a realization that the promises were somewhat overblown. But a turn away from these digital innovations can only be temporary. In our call for papers we refer to the first and second ‘digital turns’, a term Mario Carpo coined. Yes, it’s a bit of a pun, but you could indeed see these digital turns in our logo as well. Carpo would probably agree that design and the digital have become inseparably intertwined. While they may be circling in different directions, an innovative rejoinder is always just around the corner. The theme of the conference asked participants to re-consider the relationship between Design and the Digital. The notion of a cycle is already present in the syllable “re”. Indeed, 20 years earlier, in 2003, we held an ECAADE conference in Graz simply under the title “Digital Design” and our re-using – or is it re-cycling? – the theme can be seen as the completion of one of those cycles described above: One level up, we meet again, we’ve come full circle. The question of the relationship between Design and the Digital is still in flux, still worthy of renewed consideration. There is a historical notion implicit in the theme. To reconsider something, one needs to take a step back, to look into the past as well as into the future. Indeed, at this conference we wanted to take a longer view, something not done often enough in the fast-paced world of digital technology. Carefully considering one’s past can be a source of inspiration. In fact, the double spiral stair that inspired our conference logo also inspired many architects through the ages. Konrad Wachsmann, for example, is said to have come up with his famous Grapevine assembly system based on this double spiral stair and its intricate joinery. More recently, Rem Koolhaas deemed the double spiral staircase in Graz important enough to include a detailed model of it in his “elements of architecture” exhibition at the Venice Biennale in 2014. Our interpretation of the stair is a typically digital one, you might say. First of all: it’s a rendering of a virtual model; it only exists inside a computer. Secondly, this virtual model isn’t true to the original. Instead, it does what the digital has made so easy to do: it exaggerates. Where the original has just two spiral stairs that separate and join, our model consists of countless stairs that are joined in this way. We see only a part of the model, but the stairs appear to continue in all directions. The implication is of an endless field of spiral stairs. As the 3D model was generated with a parametric script, it would be very easy to change all parameters of it – including the number of stairs that make it up. Everyone at this conference is familiar with the concept of parametric design: it makes generating models of seemingly endless amounts of connected spiral stairs really easy. Although, of course, if we’re too literal about the term ‘endless’, generating our stair model will eventually crash even the most advanced computers. We know that, too. – That's another truth about the Digital: it makes a promise of infinity, which, in the end, it can’t keep. And even if it could: what’s the point of just adding more of the same: more variations, more options, more possible ways to get lost? Doesn’t the original double spiral staircase contain all those derivatives already? Don’t we know that ‘more’ isn’t necessarily better? In the original double spiral stair the happy end is guaranteed: the lovers’ paths meet at the top as well as when they exit the building. Therefore, the stair is also colloquially known as the Busserlstiege (the kissing stair) or the Versöhnungsstiege (reconciliation stair). In our digitally enhanced version, this outcome is no longer clear: we can choose between multiple directions at each level and we risk losing sight of the one we were with. This is also emblematic of our field of research. eCAADe was founded to promote “good practice and sharing information in relation to the use of computers in research and education in architecture and related professions” (see ecaade.org). That may have seemed a straightforward proposition forty years ago, when the association was founded. A look at the breadth and depth of research topics presented and discussed at this conference (and as a consequence in this book, for which you’re reading the editorial) shows how the field has developed over these forty years. There are sessions on Digital Design Education, on Digital Fabrication, on Virtual Reality, on Virtual Heritage, on Generative Design and Machine Learning, on Digital Cities, on Simulation and Digital Twins, on BIM, on Sustainability, on Circular Design, on Design Theory and on Digital Design Experimentations. We hope you will find what you’re looking for in this book and at the conference – and maybe even more than that: surprising turns and happy encounters between Design and the Digital.
series eCAADe
email
last changed 2023/12/10 10:49

_id ecaade2023_001
id ecaade2023_001
authors Dokonal, Wolfgang, Hirschberg, Urs and Wurzer, Gabriel
year 2023
title eCAADe 2023 Digital Design Reconsidered - Volume 2
doi https://doi.org/10.52842/conf.ecaade.2023.2.001
source Dokonal, W, Hirschberg, U and Wurzer, G (eds.), Digital Design Reconsidered - Proceedings of the 41st Conference on Education and Research in Computer Aided Architectural Design in Europe (eCAADe 2023) - Volume 2, Graz, 20-22 September 2023, 899 p.
summary The conference logo is a bird’s eye view of spiral stairs that join and separate – an homage to the famous double spiral staircase in Graz, a tourist attraction of this city and a must-see for any architecturally minded visitor. Carved out of limestone, the medieval construction of the original is a daring feat of masonry as well as a symbolic gesture. The design speaks of separation and reconciliation: The paths of two people that climb the double spiral stairs separate and then meet again at each platform. The relationship between architectural design and the growing digital repertoire of tools and possibilities seems to undergo similar cycles of attraction and rejection: enthusiasm about digital innovations – whether in Virtual Reality, Augmented Reality, Energy Design, Robotic Fabrication, the many Dimensions of BIM or, as right now, in AI and Machine Learning – is typically followed by a certain disillusionment and a realization that the promises were somewhat overblown. But a turn away from these digital innovations can only be temporary. In our call for papers we refer to the first and second ‘digital turns’, a term Mario Carpo coined. Yes, it’s a bit of a pun, but you could indeed see these digital turns in our logo as well. Carpo would probably agree that design and the digital have become inseparably intertwined. While they may be circling in different directions, an innovative rejoinder is always just around the corner. The theme of the conference asked participants to re-consider the relationship between Design and the Digital. The notion of a cycle is already present in the syllable “re”. Indeed, 20 years earlier, in 2003, we held an ECAADE conference in Graz simply under the title “Digital Design” and our re-using – or is it re-cycling? – the theme can be seen as the completion of one of those cycles described above: One level up, we meet again, we’ve come full circle. The question of the relationship between Design and the Digital is still in flux, still worthy of renewed consideration. There is a historical notion implicit in the theme. To reconsider something, one needs to take a step back, to look into the past as well as into the future. Indeed, at this conference we wanted to take a longer view, something not done often enough in the fast-paced world of digital technology. Carefully considering one’s past can be a source of inspiration. In fact, the double spiral stair that inspired our conference logo also inspired many architects through the ages. Konrad Wachsmann, for example, is said to have come up with his famous Grapevine assembly system based on this double spiral stair and its intricate joinery. More recently, Rem Koolhaas deemed the double spiral staircase in Graz important enough to include a detailed model of it in his “elements of architecture” exhibition at the Venice Biennale in 2014. Our interpretation of the stair is a typically digital one, you might say. First of all: it’s a rendering of a virtual model; it only exists inside a computer. Secondly, this virtual model isn’t true to the original. Instead, it does what the digital has made so easy to do: it exaggerates. Where the original has just two spiral stairs that separate and join, our model consists of countless stairs that are joined in this way. We see only a part of the model, but the stairs appear to continue in all directions. The implication is of an endless field of spiral stairs. As the 3D model was generated with a parametric script, it would be very easy to change all parameters of it – including the number of stairs that make it up. Everyone at this conference is familiar with the concept of parametric design: it makes generating models of seemingly endless amounts of connected spiral stairs really easy. Although, of course, if we’re too literal about the term ‘endless’, generating our stair model will eventually crash even the most advanced computers. We know that, too. – That's another truth about the Digital: it makes a promise of infinity, which, in the end, it can’t keep. And even if it could: what’s the point of just adding more of the same: more variations, more options, more possible ways to get lost? Doesn’t the original double spiral staircase contain all those derivatives already? Don’t we know that ‘more’ isn’t necessarily better? In the original double spiral stair the happy end is guaranteed: the lovers’ paths meet at the top as well as when they exit the building. Therefore, the stair is also colloquially known as the Busserlstiege (the kissing stair) or the Versöhnungsstiege (reconciliation stair). In our digitally enhanced version, this outcome is no longer clear: we can choose between multiple directions at each level and we risk losing sight of the one we were with. This is also emblematic of our field of research. eCAADe was founded to promote “good practice and sharing information in relation to the use of computers in research and education in architecture and related professions” (see ecaade.org). That may have seemed a straightforward proposition forty years ago, when the association was founded. A look at the breadth and depth of research topics presented and discussed at this conference (and as a consequence in this book, for which you’re reading the editorial) shows how the field has developed over these forty years. There are sessions on Digital Design Education, on Digital Fabrication, on Virtual Reality, on Virtual Heritage, on Generative Design and Machine Learning, on Digital Cities, on Simulation and Digital Twins, on BIM, on Sustainability, on Circular Design, on Design Theory and on Digital Design Experimentations. We hope you will find what you’re looking for in this book and at the conference – and maybe even more than that: surprising turns and happy encounters between Design and the Digital.
series eCAADe
type normal paper
email
last changed 2024/08/29 08:36

_id caadria2014_075
id caadria2014_075
authors Fernando, Ruwan A.
year 2014
title Space Planning and Preliminary Design Using Artificial Life
doi https://doi.org/10.52842/conf.caadria.2014.657
source Rethinking Comprehensive Design: Speculative Counterculture, Proceedings of the 19th International Conference on Computer-Aided Architectural Design Research in Asia (CAADRIA 2014) / Kyoto 14-16 May 2014, pp. 657–666
summary The majority of CAD tools are designed for precision modelling of forms. The very earliest stages of design tend to be worked through with traditional media such as sketching with pen or pencil. A reason why this is, stems from the difficulty of drawing or diagramming uncertainty or vague ideas in a traditional CAD application. When a designer is still working through the design, pen and pencil are a means of exploring. While any simple pencil sketch can be imitated using CAD, this is too time consuming and limiting when compared with traditional media. This paper presents research in a prototype for a early stage planning software application using blobs (closed recursively subdivided curves) and ideas from artificial life. While not a replacement for sketching, the aim of this research is to provide a means of diagramming preliminary ideas as exploring the idea of a dialogue between humans and computers. The shapes represented in the software use physics simulations and act as 'soft-bodies' allowing users to manipulate them in various ways. Ideas from artificial life simulations are used to have the shapes interact with each other and produce unexpected configurations. The aim of these interactions is to trigger a response from the user and to allow them to explore configurations that they did not anticipate.
keywords Artificial Life; Space Planning; Generative Design
series CAADRIA
email
last changed 2022/06/07 07:50

_id sigradi2014_018
id sigradi2014_018
authors Florio, Wilson
year 2014
title Reflexão sobre seis residências emblemáticas a partir da tecnologia BIM e da fabricação digital [Reflection on emblematic residences from static / dynamic simulations and digital fabrication]
source SiGraDi 2014 [Proceedings of the 18th Conference of the Iberoamerican Society of Digital Graphics - ISBN: 978-9974-99-655-7] Uruguay - Montevideo 12 - 14 November 2014, pp. 311-315
summary The aim of this paper is to report the teaching experience held in 2012 at Unicamp between three disciplines of representation. Students analyzed emblematic residences from digital and physical models. Digital models were produced in Revit and its building components were diagrammed in AutoCad. After that, these elements were sent to laser cutter, and hand assembled. In 3DS Max, 3D model allowed simulations such as rendered images and animations. We report the contributions of these analog and digital artifacts in the design process. This article contributes to reflection and debate on the application of digital technologies in the analysis of iconic buildings of architecture.
keywords Geometric Modeling; Digital Fabrication; Model; Revit; Teaching-learning
series SIGRADI
email
last changed 2016/03/10 09:52

For more results click below:

this is page 0show page 1show page 2show page 3show page 4show page 5... show page 33HOMELOGIN (you are user _anon_602321 from group guest) CUMINCAD Papers Powered by SciX Open Publishing Services 1.002