CumInCAD is a Cumulative Index about publications in Computer Aided Architectural Design
supported by the sibling associations ACADIA, CAADRIA, eCAADe, SIGraDi, ASCAAD and CAAD futures

PDF papers
References

Hits 1 to 20 of 663

_id sigradi2013_274
id sigradi2013_274
authors Velasco, Rodrigo; Julián Viasus; Fabián Tocancipá
year 2013
title Customizable Volumetric High Performance Brise-Soleil System Based on the Use of Planar Faces
source SIGraDi 2013 [Proceedings of the 17th Conference of the Iberoamerican Society of Digital Graphics - ISBN: 978-956-7051-86-1] Chile - Valparaíso 20 - 22 November 2013, pp. 328 - 332
summary This paper presents a proposal for a cellular brise-soleil system appropriate for tropical humid climates. The system controls thermal gains whilst allowing for specific lighting requirements, permitting, in many cases, interior thermal and light comfort conditions without the use of thermal machines or artificial lighting. The development of the system involved a definition of variable design parameters and areas of performance evaluation and optimization, plus construction detailing development represented by a first project to be completed in 2014. Even if the geometrical definitions, optimization processes and production machinery are relatively simple and not particularly new to anyone in the field, it is claimed that the use of such already widely available technologies at this basic level, when solving relevant problems, has still to be used in generalised ways by common designers, and with the example shown, this paper wishes to promote such prospect.
keywords Solar shadings; Environmental simulations; Parametric models; Performance in architecture
series SIGRADI
email
last changed 2016/03/10 10:02

_id ecaade2014_011
id ecaade2014_011
authors Marie Davidova
year 2014
title Ray 2:The Material Performance of Solid Wood Based Screen
doi https://doi.org/10.52842/conf.ecaade.2014.2.153
source Thompson, Emine Mine (ed.), Fusion - Proceedings of the 32nd eCAADe Conference - Volume 2, Department of Architecture and Built Environment, Faculty of Engineering and Environment, Newcastle upon Tyne, England, UK, 10-12 September 2014, pp. 153-158
summary The wood - humidity interaction of solid wood has been tested through generations on Norwegian traditional panelling. This concept has been further explored by Michael Hensel and Steffen Reichert with Achim Menges on plywood and laminates in basic research. Plywood or laminates are better programmable but they are less sustainable due to the use of glue. This research focused on predicting the performance of solid wood in tangential section which is applied to humidity-temperature responsive screen for industrial production. With the method Systems Oriented Design, the research evaluated data from material science, forestry, meteorology, biology, chemistry and the production market. Themethod was introduced by Birger Sevaldson in 2007 with the argument that the changes in our globalized world and the need for sustainability demands an increase of the complexity of the design process. (Sevaldson 2013)Several samples has been tested for its environmental interaction. The data has been integrated in parametric models that tested the overall systems. Based on the simulations, the most suitable concept has been prototyped and measured for its performance. This lead to another sampling of the material whose data are the basis for another prototype. Ray 2 is an environmental responsive screen that is airing the structure in dry weather, while closing up when the humidity level is high, not allowing the moisture inside.
wos WOS:000361385100016
keywords Material performance; solid wood; wood - humidity interaction
series eCAADe
email
last changed 2022/06/07 07:59

_id caadria2014_028
id caadria2014_028
authors Chaszar, André and Bige Tunçer
year 2014
title Integrating User and Usage Information in a Design Environment
doi https://doi.org/10.52842/conf.caadria.2014.045
source Rethinking Comprehensive Design: Speculative Counterculture, Proceedings of the 19th International Conference on Computer-Aided Architectural Design Research in Asia (CAADRIA 2014) / Kyoto 14-16 May 2014, pp. 45–54
summary We describe research exploring and demonstrating the use of large-scale data gathering and processing to inform the activities of architectural and urban designers. We apply this research to public spaces in urban housing estates. The aim is to understand the current use patterns and usability of these spaces, and to adaptively redesign them according to the insights gained from these findings. Another aim of the research is to obtain scientific knowledge regarding the production and use of user-data-based design support systems which promote and enhance the capability of (digital) design aids, such as building- and urban-scale models, to act as ‘learning devices’ giving designers better insights to the nature of the design situations they are asked to address, as well as insights on design space definition and exploration. We adopt a multimodal data collection strategy, consisting of participatory workshops for residents and users, person-based crowdsourcing, location-based crowd sensing, and statistical demographics data.
keywords integrated design environment; multi-modal data collection; data visualization; data analysis; public space design.
series CAADRIA
email
last changed 2022/06/07 07:55

_id acadia14projects_153
id acadia14projects_153
authors Fornes, Marc; Kusama, Yayoi
year 2014
title Selfridges
doi https://doi.org/10.52842/conf.acadia.2014.153.2
source ACADIA 14: Design Agency [Projects of the 34th Annual Conference of the Association for Computer Aided Design in Architecture (ACADIA) ISBN 9789126724478]Los Angeles 23-25 October, 2014), pp. 153-156
summary The project follows an ongoing research method investigating the control and definition of compound curvature to generate structural forms. Furthermore, the forms are generated through conventional manufacturing processes, and thus, must be defined in the logic of industrial production. The form strives to simultaneously resolve issues of rigidity and performance within the limitations of industry.
keywords Generative Design, Digital fabrication and construction, Practice-based and interdisciplinary computational Design research, Material Logics and Tectonics, Material Agency, parametric and evolutionary Design
series ACADIA
type Practice Projects
email
last changed 2022/06/07 07:51

_id ascaad2014_035
id ascaad2014_035
authors Al-Kazzaz, Dhuha A. and Assda A. Al-Tuhafi
year 2014
title Using Genetic Algorithms for the Generation of New Designs Derived from Islamic Schools Plans
source Digital Crafting [7th International Conference Proceedings of the Arab Society for Computer Aided Architectural Design (ASCAAD 2014 / ISBN 978-603-90142-5-6], Jeddah (Kingdom of Saudi Arabia), 31 March - 3 April 2014, pp. 119; 431-442
summary Historic buildings are fruitful sources of architectural concepts which can be used to generate new designs characterized by authenticity and originality. Design computing methods have used varied techniques of knowledge representation in deriving new designs from architectural precedents such as: case-based design and genetic algorithms. This research has adopted genetic algorithms, a simulation of biological evolution to generate new plans from old ones belonging to the Islamic historical schools. The implemented method represents architectural knowledge in a simple schema (chromosome) and allows it to be modified easily using crossover operation to generate new plans with high fitness value. The research considered the fitness function as a measure of differences among the design characteristics of the sample of the Islamic schools. The results show the effectiveness of genetic algorithms in both analyzing past precedents and synthesizing their characteristics to produce new designs.
series ASCAAD
last changed 2016/02/15 13:09

_id ecaade2024_167
id ecaade2024_167
authors Alammar, Ammar; Alymani, Abdulrahman; Jabi, Wassim
year 2024
title Building Energy Efficiency Estimations with Random Forest for Single and Multi-Zones
doi https://doi.org/10.52842/conf.ecaade.2024.2.365
source Kontovourkis, O, Phocas, MC and Wurzer, G (eds.), Data-Driven Intelligence - Proceedings of the 42nd Conference on Education and Research in Computer Aided Architectural Design in Europe (eCAADe 2024), Nicosia, 11-13 September 2024, Volume 2, pp. 365–374
summary Surrogate models (SM) present an opportunity for rapid assessment of a building's performance, surpassing the pace of simulation-based methods. Setting up a simulation for a single concept involves defining numerous parameters, disrupting the architect's creative flow due to extended simulation run times. Therefore, this research explores integrating building energy analysis with advanced machine learning techniques to predict heating and cooling loads (KWh/m2) for single and multi-zones in buildings. To generate the dataset, the study adopts a parametric generative workflow, building upon Chou and Bui's (2014) methodology. This dataset encompasses multiple building forms, each with unique topological connections and attributes, ensuring a thorough analysis across varied building scenarios. These scenarios undergo thermal simulation to generate data for machine learning analysis. The study primarily utilizes Random Forest (RF) as a new technique to estimate the heating and cooling loads in buildings, a critical factor in building energy efficiency. Following that, A random search approach is utilized to optimize the hyperparameters, enhancing the robustness and accuracy of the machine learning models employed later in the research. The RF algorithms demonstrate high performance in predicting heating and cooling loads (KWh/m2), contributing to enhanced building energy efficiency. The study underscores the potential of machine learning in optimizing building designs for energy efficiency.
keywords Heating and Cooling loads, Topology, Machine learning, Random Forest
series eCAADe
email
last changed 2024/11/17 22:05

_id ecaade2014_162
id ecaade2014_162
authors Andrzej Zarzycki
year 2014
title Teaching and Designing for Augmented Reality
doi https://doi.org/10.52842/conf.ecaade.2014.1.357
source Thompson, Emine Mine (ed.), Fusion - Proceedings of the 32nd eCAADe Conference - Volume 1, Department of Architecture and Built Environment, Faculty of Engineering and Environment, Newcastle upon Tyne, England, UK, 10-12 September 2014, pp. 357-364
summary This paper discusses ways emerging interactive technologies are adopted by designers and extended into areas of design, education, entertainment, and commerce. It looks, in detail, at various project development stages and methodologies used to engage design focused students into, often complex, technological issues. The discussion is contextualized through a number of case studies of mobile and marker-based augmented reality (AR) applications developed by students. These applications include an app for a fashion based social event that allows participants to preview recent collection additions, an info-navigational app for the High Line elevated urban park in New York City, a marker-based maze game, and an interior decorating interface to visualize various furnishing scenarios. While a number of case studies will be discussed from a developer perspective, the primary focus is on the concept and content development, interface design, and user participation.
wos WOS:000361384700035
keywords Augmented reality; ar; gamification; mobile culture
series eCAADe
email
last changed 2022/06/07 07:54

_id ecaade2014_010
id ecaade2014_010
authors Anna Laskari
year 2014
title Multidimensional Comparative Analysis for the Classification of Residual Urban Voids
doi https://doi.org/10.52842/conf.ecaade.2014.2.283
source Thompson, Emine Mine (ed.), Fusion - Proceedings of the 32nd eCAADe Conference - Volume 2, Department of Architecture and Built Environment, Faculty of Engineering and Environment, Newcastle upon Tyne, England, UK, 10-12 September 2014, pp. 283-292
summary Spatial configurations can be perceived through a variety of descriptions of their physical form and structure. Each description can offer an autonomous interpretation or be combined with others parathetically, in a logic of multiple distinct layers. However it is asserted that meaningful information can be extracted from a simultaneous view of sets of descriptions within a high-dimensional structure. This paper investigates the possibility of conducting a comparative analysis and classification of non-typical spatial formations based on the synchronous view of multiple quantifiable spatial attributes. Under the hypothesis of a reciprocal definition of spatial structure and occupation practices, it is intended to identify distinct generic spatial types in order to subsequently determine a range of suitable respective generic use types. This investigation supports the formulation of strategies for the reactivation of unused, residual urban voids, currently being addressed by the research programme titled "Strategies to network urban interventions in the Metropolitan Centre of Athens". The programme is carried out by the School of Architecture of the National Technical University of Athens in collaboration with the Region of Attica, under the scientific coordination of Professor Dr. Parmenidis (2013).
wos WOS:000361385100030
keywords Multidimensional descriptions; generic spatial types; quantifiable attributes; dimensionality reduction; classification
series eCAADe
email
last changed 2022/06/07 07:54

_id ascaad2014_036
id ascaad2014_036
authors Assassi, Abdelhalim; Belal Taher and Samai Rachida
year 2014
title Intelligent Digital Craft to Recognize Spatial Installations for Residential Designs: Approach to Understand the Design of Housing Barbaric in Algeria using the Majali Composition Software
source Digital Crafting [7th International Conference Proceedings of the Arab Society for Computer Aided Architectural Design (ASCAAD 2014 / ISBN 978-603-90142-5-6], Jeddah (Kingdom of Saudi Arabia), 31 March - 3 April 2014, pp. 195-196; 443-456
summary Architecture took an evolutionary context over time, where designers were interested in finding pragmatic spontaneous appropriate solutions and met the needs of people in urban and architectural spaces. Whereas, in modern architecture an intense and varied competition happens between architects through various currents of thoughts , schools and movements, however, that creativity was the ultimate goal , and a the same time we find that every architect distinguishes himself individually or collectively through tools of architectural expression and design representation adopting a school of thought, using , for example, the leaves of various sizes and diverse technical drawing tools to accurately show that he can be read by professionals or craftsmen outside the geographical scope to which it belongs .With the rapid technological development which accompanied the digital craft in the contemporary world , The digital craft summed up time, distance and tools , so they gave the concept more appropriate accuracy , as virtualization has become the most effective tool for Architecture To reach the ideal and typical results at the practical level, or pure research. At the level of residential design and on the grounds that housing plays an important role in the government policies and given that housing is a basic unit common to all urban communities on earth , the use of different programs to show its typicality in two dimensions or in the third dimension - for example, using software "AutoCAD " " 3D Max " , " ArchiCAD " ... etc. - gave virtualisation smart, creative and beautiful forms which lead to better understand the used /or to be used residential spaces, and thus the conclusion that the life system of dwelling under design or under study , as can specifically recognize spatial structure in housing design - using digital software applying "Space Syntax" for example - in the shadow of slowly growing digital and creative development with the help of high-speed computers . the morphological structure of the dwelling is considered to be the most important contemporary residential designs Investigation through which the researcher in this area aims to understand the various behavioral relations and social structures within the projected residential area, using Space Syntax techniques. Through the structural morphology of dwellings can be inferred quality networks, levels of connectivity and depth and places of openness or closure within the dwelling under study, or under design. How, then, have intelligently contributed this digital craft to the perception of those spatial fixtures ? The aim of this research is to apply an appropriate program in the field of vernacular residential design and notably Space syntax which relate to the understanding and analysis of spatial structures, and also demonstrate its role at the morphological and spatial structure aspects, and prove how effective it helps to understand the social logic of domestic space through social individual/collective relationships and behaviors projected on the spatial configurations of dwellings. The answer to the issue raised above and at the methodological aspect, the study discussed the application of space syntax techniques on the subject. The findings tend to prove the efficiency by comparing samples of Berber vernacular domestic spaces from the Mzab, the Aures and Kabilya in Algeria, and has also led to ascertain the intelligibility of space syntax techniques in reading the differences between the behaviors in domestic spaces in different areas of the sample through long periods of time .
series ASCAAD
type normal paper
email
last changed 2021/07/16 10:39

_id caadria2014_145
id caadria2014_145
authors Aydin, Serdar and Marc Aurel Schnabel
year 2014
title A Survey on the Visual Communication Skills of BIM Tools
doi https://doi.org/10.52842/conf.caadria.2014.337
source Rethinking Comprehensive Design: Speculative Counterculture, Proceedings of the 19th International Conference on Computer-Aided Architectural Design Research in Asia (CAADRIA 2014) / Kyoto 14-16 May 2014, pp. 337–346
summary Building Information Modelling (BIM) applications are supported by various modelling tools, being expansive to deliver visualised geometry and databases simultaneously. But there is still a gap in visual communication amongst its professionals. Articulating the advantages of fully Web-based collaboration, this paper looks into how BIM tools make contribution to visual communication between different parties working collaboratively. A hybrid model of low-level and high-level interactions is tentatively conceptualised. Based on the hybridised model, a survey is conducted to elucidate a few experiential matters such as visual aesthetics, cognition and motivational impacts of visualisation in BIM tools. Following the survey, a discussion is oriented towards a new storytelling methodology with a novel term, namely gamification. Seeking motivating and efficient means of visual communication between human-human, human-tool and human-model interactions, the present study focuses on an enhanced legibility and appreciation of tools by those who are involved in BIM projects.
keywords Narrative visualisation; infinite computing; information aesthetics; gamification; hybrid model of interaction
series CAADRIA
email
last changed 2022/06/07 07:54

_id acadia14_409
id acadia14_409
authors Bard, Joshua; Gannon, Madeline; Jacobson-Weaver, Zachary; Jeffers, Michael; Smith, Brian; Contreras, Mauricio
year 2014
title Seeing is Doing: Synthetic Tools for Robotically Augmented Fabrication in High-Skill Domains
doi https://doi.org/10.52842/conf.acadia.2014.409
source ACADIA 14: Design Agency [Proceedings of the 34th Annual Conference of the Association for Computer Aided Design in Architecture (ACADIA) ISBN 9781926724478]Los Angeles 23-25 October, 2014), pp. 409-416
summary The historical split between visualization and actualization in architectural design has encouraged a disciplinary split between representation (the domain of the designer) and construction (a domain entirely removed from the Architect’s purview). This split between seeing and doing in architectural design can be questioned in the context of contemporary robotic technologies where physical and digital workflows comingle in high-skill, collaborative domains.
keywords Architectural Robotics, Human-Robot Collaboration, MOCAP, Adaptive Fabrication, High-Skill Domain, Robotics and Autonomous Design Systems
series ACADIA
type Normal Paper
email
last changed 2022/06/07 07:54

_id ecaade2014_053
id ecaade2014_053
authors Baris Cokcan, Johannes Braumann and Sigrid Brell-Cokcan
year 2014
title Performative Wood
doi https://doi.org/10.52842/conf.ecaade.2014.2.131
source Thompson, Emine Mine (ed.), Fusion - Proceedings of the 32nd eCAADe Conference - Volume 2, Department of Architecture and Built Environment, Faculty of Engineering and Environment, Newcastle upon Tyne, England, UK, 10-12 September 2014, pp. 131-138
summary This research builds upon projects from both university and practice to explore new approaches on how the multifunctionality, flexibility, and performance of wood can be utilized to inform new approaches towards both design and fabrication. The following projects use physical prototypes to bend wood just within its tolerances, design with the high precision of multi-axis robotic fabrication in mind, and finally inform the shape of a large free-form structure through material properties.
wos WOS:000361385100013
keywords Wood; high-performance material; cnc; robotic fabrication; geometric design
series eCAADe
email
last changed 2022/06/07 07:54

_id acadia14_637
id acadia14_637
authors Boone, Elizabeth
year 2014
title Vacuum Insulated Tubes
doi https://doi.org/10.52842/conf.acadia.2014.637
source ACADIA 14: Design Agency [Proceedings of the 34th Annual Conference of the Association for Computer Aided Design in Architecture (ACADIA) ISBN 9781926724478]Los Angeles 23-25 October, 2014), pp. 637-646
summary Multi disciplinary research on thermally broken vacuum insulated tubes as a high performance building enclosure.
keywords Material Logics and Tectonics, Multidisciplinary Design Optimization, Computational design analysis, Practice-based and interdisciplinary computational design research, Works in Progress, Computational design research and education
series ACADIA
type Normal Paper
email
last changed 2022/06/07 07:54

_id acadia14projects_63
id acadia14projects_63
authors Bruscia, Nicholas; Romano, Christopher
year 2014
title project 3XLP - Porous Skin Prototype
doi https://doi.org/10.52842/conf.acadia.2014.063.2
source ACADIA 14: Design Agency [Projects of the 34th Annual Conference of the Association for Computer Aided Design in Architecture (ACADIA) ISBN 9789126724478]Los Angeles 23-25 October, 2014), pp. 63-66
summary project 3xLP, the winning submission to the TEX-FAB SKIN competition, is a continuation of design research on the structural properties of textured stainless steel sheeting, which typically is used for skinning and other non-structural purposes. The team conducted performative analyses of the material, and verified the results through full-scale prototyping. Structural studies relied on scale shifts that began with molecular composition and culminated with large-sale geometric systems. The work provides evidence of the adaptability, rigidity, and high performance of thin-gauge, textured metals; it establishes the groundwork for new structurally-based design possibilities using sheet steel.
keywords Material Logics and Tectonics, industry collaboration, digital fabrication, large scale prototyping
series ACADIA
type Research Projects
email
last changed 2022/06/07 07:54

_id acadia14_327
id acadia14_327
authors Cabrinha, Mark; Ponitz, Jeff
year 2014
title Simplexity: Unitized FRP Façade Systems
doi https://doi.org/10.52842/conf.acadia.2014.327
source ACADIA 14: Design Agency [Proceedings of the 34th Annual Conference of the Association for Computer Aided Design in Architecture (ACADIA) ISBN 9781926724478]Los Angeles 23-25 October, 2014), pp. 327-332
summary Working with industry partners from architecture, engineering, and fabrication, the Material Innovation Lab at Cal Poly Architecture envisions lightweight high-performance fiber-reinforced polymer (FRP) unitized façade systems.
keywords Composite Materials, FRP, Formwork, Unitized, Facades, Parts Consolidation
series ACADIA
type Normal Paper
email
last changed 2022/06/07 07:54

_id cdrf2023_526
id cdrf2023_526
authors Eric Peterson, Bhavleen Kaur
year 2023
title Printing Compound-Curved Sandwich Structures with Robotic Multi-Bias Additive Manufacturing
doi https://doi.org/https://doi.org/10.1007/978-981-99-8405-3_44
source Proceedings of the 2023 DigitalFUTURES The 5st International Conference on Computational Design and Robotic Fabrication (CDRF 2023)
summary A research team at Florida International University Robotics and Digital Fabrication Lab has developed a novel method for 3d-printing curved open grid core sandwich structures using a thermoplastic extruder mounted on a robotic arm. This print-on-print additive manufacturing (AM) method relies on the 3d modeling software Rhinoceros and its parametric software plugin Grasshopper with Kuka-Parametric Robotic Control (Kuka-PRC) to convert NURBS surfaces into multi-bias additive manufacturing (MBAM) toolpaths. While several high-profile projects including the University of Stuttgart ICD/ITKE Research Pavilions 2014–15 and 2016–17, ETH-Digital Building Technologies project Levis Ergon Chair 2018, and 3D printed chair using Robotic Hybrid Manufacturing at Institute of Advanced Architecture of Catalonia (IAAC) 2019, have previously demonstrated the feasibility of 3d printing with either MBAM or sandwich structures, this method for printing Compound-Curved Sandwich Structures with Robotic MBAM combines these methods offering the possibility to significantly reduce the weight of spanning or cantilevered surfaces by incorporating the structural logic of open grid-core sandwiches with MBAM toolpath printing. Often built with fiber reinforced plastics (FRP), sandwich structures are a common solution for thin wall construction of compound curved surfaces that require a high strength-to-weight ratio with applications including aerospace, wind energy, marine, automotive, transportation infrastructure, architecture, furniture, and sports equipment manufacturing. Typical practices for producing sandwich structures are labor intensive, involving a multi-stage process including (1) the design and fabrication of a mould, (2) the application of a surface substrate such as FRP, (3) the manual application of a light-weight grid-core material, and (4) application of a second surface substrate to complete the sandwich. There are several shortcomings to this moulded manufacturing method that affect both the formal outcome and the manufacturing process: moulds are often costly and labor intensive to build, formal geometric freedom is limited by the minimum draft angles required for successful removal from the mould, and customization and refinement of product lines can be limited by the need for moulds. While the most common material for this construction method is FRP, our proof-of-concept experiments relied on low-cost thermoplastic using a specially configured pellet extruder. While the method proved feasible for small representative examples there remain significant challenges to the successful deployment of this manufacturing method at larger scales that can only be addressed with additional research. The digital workflow includes the following steps: (1) Create a 3D digital model of the base surface in Rhino, (2) Generate toolpaths for laminar printing in Grasshopper by converting surfaces into lists of oriented points, (3) Generate the structural grid-core using the same process, (4) Orient the robot to align in the direction of the substructure geometric planes, (5) Print the grid core using MBAM toolpaths, (6) Repeat step 1 and 2 for printing the outer surface with appropriate adjustments to the extruder orientation. During the design and printing process, we encountered several challenges including selecting geometry suitable for testing, extruder orientation, calibration of the hot end and extrusion/movement speeds, and deviation between the computer model and the physical object on the build platen. Physical models varied from their digital counterparts by several millimeters due to material deformation in the extrusion and cooling process. Real-time deviation verification studies will likely improve the workflow in future studies.
series cdrf
email
last changed 2024/05/29 14:04

_id caadria2014_000
id caadria2014_000
authors Gu, Ning; Shun Watanabe, Halil Erhan, Matthias Hank Haeusler, Weixin Huang and Ricardo Sosa (eds.)
year 2014
title Rethinking Comprehensive Design: Speculative Counterculture
doi https://doi.org/10.52842/conf.caadria.2014
source Proceedings of the 19th International Conference on Computer-Aided Architectural Design Research in Asia (CAADRIA 2014) / Kyoto 14-16 May 2014, 994 p.
summary Rethinking Comprehensive Design—the 19th International Conference on Computer-Aided Architectural Design Research in Asia (CAADRIA 2014)—emphasises a cross-disciplinary context to challenge the mainstream culture of computational design in architecture. It aims to (re)explore the potential of computational design methods and technologies in architecture from a holistic perspective. The conference provides an international forum where academics and practitioners share their novel research development and reflection for defining the future of computation in architectural design. Hosted by the Department of Design, Engineering and Management at the Kyoto Institute of Technology, CAADRIA 2014 presents 88 peer-reviewed full papers from all over the world. These high-quality research papers are complimented by 34 short work-in-progress papers submitted for the poster session of the conference. The conference proceedings were produced by a motivated team of volunteers from the CAADRIA community through an extensive collaboration. The 88 full papers rigorously double-blind reviewed by the dedicated International Review Committee (consisting of 74 experts), testify to CAADRIA’s highly respectable international standing. Call for abstracts sent out in July 2013 attracted 298 submissions. They were initially reviewed by the Paper Selection Committee who accepted 198 abstracts for further development. Of these, 118 full papers were eventually submitted in the final stage. Each submitted paper was then assessed by at least two members of the International Review Committee. Following the reviewers’ recommendations, 91 papers were accepted by the conference, of which 88 are included in this volume and for presentation in CAADRIA 2014. Collectively, these 88 papers define Rethinking Comprehensive Design in terms of the following research streams: Shape Studies; User Participation in Design; Human-Computer Interaction; Digital Fabrication and Construction; Computational Design Analysis; New Digital Design Concepts and Strategies; Practice-Based and Interdisciplinary Computational Design Research; Collaborative and Collective Design; Generative, Parametric and Evolutionary Design; Design Cognition and Creativity; Virtual / Augmented Reality and Interactive Environments; Computational Design Research and Education; and Theory, Philosophy and Methodology of Computational Design Research. In the following pages, you will find a wide range of scholarly papers organised under these streams that truly capture the quintessence of the research concepts. This volume will certainly inspire you and facilitate your journey in Rethinking Comprehensive Design.
series CAADRIA
last changed 2022/06/07 07:49

_id caadria2014_274
id caadria2014_274
authors Kaftan, Martin; Markus Manahl, Jiri Pavlicek, Elmar Hess and Urs Hirschberg
year 2014
title Augmented Parametrics
doi https://doi.org/10.52842/conf.caadria.2014.615
source Rethinking Comprehensive Design: Speculative Counterculture, Proceedings of the 19th International Conference on Computer-Aided Architectural Design Research in Asia (CAADRIA 2014) / Kyoto 14-16 May 2014, pp. 615–624
summary Current parametric design software lacks the capacity to integrate simulation and optimisation when they would be most relevant: at the early stages of the design process. This paper presents a novel framework to address this issue: A parametric program that supports performance-based modelling by integrating detailed physical simulation modules that also take construction issues into account, while at the same time providing easy access to high-level optimisation approaches. Providing bidirectional parametric modelling capabilities, we refer to the system under development as augmented parametrics. It is being developed as part of a research project sponsored by the Austrian Science Foundation.
keywords Parametric design; generative design; optimization; building performance simulation
series CAADRIA
email
last changed 2022/06/07 07:52

_id sigradi2014_159
id sigradi2014_159
authors Kim, Sun-Joong; Ji-Hyun Lee
year 2014
title The Evolutionary Changes of the Streamlined High-speed Locomotives
source SIGraDi 2014 [Proceedings of the 18th Conference of the Iberoamerican Society of Digital Graphics - ISBN: 978-9974-99-655-7] Uruguay- Montevideo 12,13,14 November 2014, pp. 57-61
summary In this research, we develop the quantitative design analysis method for the atypical nose shape of bullet motif high-speed trains. And we trace the design changes and reveal the changes of design criteria that are shown in the evolutionary process of the Shinkansen high-speed trains by the quantitative method. To do this, first, we define the corpus of Shinkansen high-speed train designs. Second, the landmarks – sub-features – that comprise a nose shape of high-speed train are defined. Third, the locomotives of the corpus are quantitatively analysed by the morphometrics: a method of geometric shape analysis. Finally, the design changes are traced by the result of the analysis and the changes of design criteria will be revealed.
keywords Shape Study; Style Analysis; Geometric Shape Analysis; High-speed Train Design
series SIGRADI
email
last changed 2016/03/10 09:53

_id ecaade2014_225
id ecaade2014_225
authors Kostas Grigoriadis
year 2014
title Material Fusion - A research into the simulated blending of materials using particle systems
doi https://doi.org/10.52842/conf.ecaade.2014.2.123
source Thompson, Emine Mine (ed.), Fusion - Proceedings of the 32nd eCAADe Conference - Volume 2, Department of Architecture and Built Environment, Faculty of Engineering and Environment, Newcastle upon Tyne, England, UK, 10-12 September 2014, pp. 123-130
summary Parallel to the early development and recent widespread usage of composite materials in building and manufacturing, the concept of functionally graded materials (FGM) was initiated and developed as far back as the 1980s. In contrast to the composite paradigm, where layers of materials are glued and 'cooked' together under high pressure and temperature to form laminated parts, FGM are singular materials that vary their consistency gradually over their volume. In direct link to their increasing use in fields adjacent to architecture, the scope of the paper is to explore a possible design route for designing with FGM. Of a limited number of available CAD software where material properties can be graded, the intent of the design for a materially graded windbreak module is to utilize particle systems as a technique for simulating fields of interacting, information-loaded material point sets that can be fused together in a gradient manner.
wos WOS:000361385100012
keywords Functionally graded materials; particle system elements
series eCAADe
email
last changed 2022/06/07 07:51

For more results click below:

this is page 0show page 1show page 2show page 3show page 4show page 5... show page 33HOMELOGIN (you are user _anon_202796 from group guest) CUMINCAD Papers Powered by SciX Open Publishing Services 1.002