CumInCAD is a Cumulative Index about publications in Computer Aided Architectural Design
supported by the sibling associations ACADIA, CAADRIA, eCAADe, SIGraDi, ASCAAD and CAAD futures

PDF papers
References

Hits 1 to 20 of 641

_id caadria2020_249
id caadria2020_249
authors Poustinchi, Ebrahim, Fehrenbach, Joshua and Holmes, Tyler
year 2020
title Ro-Puzzle - A robotic proposal for moving architecture
source D. Holzer, W. Nakapan, A. Globa, I. Koh (eds.), RE: Anthropocene, Design in the Age of Humans - Proceedings of the 25th CAADRIA Conference - Volume 2, Chulalongkorn University, Bangkok, Thailand, 5-6 August 2020, pp. 433-442
doi https://doi.org/10.52842/conf.caadria.2020.2.433
summary This paper presents a project-based research study called Ro-puzzle-a robotic architectural "puzzle," using robotic solutions to illustrate the possibility of an animated/dynamic architectural composition and configurations in the physical world. Through studying super-comportment (Wiscombe, 2014) in both dynamic and static scenarios, this research proposes a new reading to the traditional robotic task of "pick-and-place", through an intuitive motion design process using a custom-made bridge software, Oriole. By revisiting the notion of robotics in the field of design/architecture, Ro-Puzzle investigates the design possibilities of robotics, not merely as fabrication tools, but possibly as physical extensions of the design software into the physical world of architecture, and as a way to expand the digital design imaginations/possibilities beyond the digital screens. In this manuscript and initially tested at the desktop scale, Ro-Puzzle research investigation demonstrated the possibilities of robots as architectural "components" within the architecture/building. This research shows that through the development of custom software/hardware platforms, it is possible to domesticize robotic technology as an active agent in the design process through physical simulation.
keywords Robotics; Design; Animation; Robotic Architecture; Dynamic Architecture
series CAADRIA
email
last changed 2022/06/07 08:00

_id caadria2014_099
id caadria2014_099
authors Koh, Immanuel
year 2014
title Generative-Glass: Prototyping Generative Architectural Systems with Artisan’s Glass-Blowing and Automated Digital Fabrication Techniques
source Rethinking Comprehensive Design: Speculative Counterculture, Proceedings of the 19th International Conference on Computer-Aided Architectural Design Research in Asia (CAADRIA 2014) / Kyoto 14-16 May 2014, pp. 389–398
doi https://doi.org/10.52842/conf.caadria.2014.389
summary This paper aims to investigate the ways in which the traditional processes of glassblowing techniques could be incorporated with contemporary generative design processes in the realization of new novel architectural systems. Pedagogical issues on how such prototyping processes could be better integrated within architectural education are also discussed. With the use of algorithmic design methodology to generate/visualize the components assembled in multitudes and digital fabrication machineries to produce the necessary moulds/jigs/tools/connection joints, a series of 5 different glass prototypes have been actualized at the scale of 1:1 or otherwise. The work is the direct outcome of a new programme founded and directed by the author as part of the Architectural Association (AA) School of Architecture‘s Visiting School in 2013. Part 1 briefly introduces the specific agenda and how the corresponding structure of the programme is designed to facilitate the glass research work done concurrently at the digital fabrication laboratory and glassblowing studio. Part 2 would systematically discuss in detail the design of each of the 5 main glass prototypes made, presented alongside photographs and diagrams to illustrate the prototypes’ respective assembly and fabrication logics. Part 3 would evaluate the work done and project plans for the next iteration of the research in 2014.
keywords Glass; Digital Fabrication; Generative Design; Traditional Crafts
series CAADRIA
email
last changed 2022/06/07 07:51

_id acadia21_444
id acadia21_444
authors Crawford, Assia
year 2021
title Mitochondrial Matrix
source ACADIA 2021: Realignments: Toward Critical Computation [Proceedings of the 41st Annual Conference of the Association of Computer Aided Design in Architecture (ACADIA) ISBN 979-8-986-08056-7]. Online and Global. 3-6 November 2021. edited by B. Bogosian, K. Dörfler, B. Farahi, J. Garcia del Castillo y López, J. Grant, V. Noel, S. Parascho, and J. Scott. 444-453.
doi https://doi.org/10.52842/conf.acadia.2021.444
summary The following project was created as part of an art residency with the Wellcome Centre for Mitochondrial Research (WCMR) at Newcastle University. The WCMR specializes in leading-edge research into mitochondrial disease, investigating causes, treatments, and ways of avoiding hereditary transmission. Mitochondria is believed to have started off as a separate species that through symbiosis came to be the powerhouse of each cell in our bodies (Hird 2009). Mitochondrial disease is a genetic disorder that is caused by genetic mutations of the DNA of the mitochondria or the cell that in turn affects the mitochondria (Bolano 2018). Mitochondria is a hereditary condition and can affect people at different stages in their lives. It can affect various organs and has a link to various types of conditions. Therefore, the patient experience is unique to each individual and the elusive nature of the condition can make it particularly challenging due to the complexity of the disorder as well as the inaccessible scale on which these variations occur (Chinnery 2014)
series ACADIA
type project
email
last changed 2023/10/22 12:06

_id ecaaderis2023_45
id ecaaderis2023_45
authors Morton, David, Ahmed, Tarek MF and Humphery, Richard
year 2023
title BIM and Teaching in Architecture: Current thinking and approaches
source De Luca, F, Lykouras, I and Wurzer, G (eds.), Proceedings of the 9th eCAADe Regional International Symposium, TalTech, 15 - 16 June 2023, pp. 105–115
summary Increasing use of BIM has represented a continuing shift in traditional assumptions on how we navigate the design process. BIM is affording the student the ability to gain a greater understanding of their design ideas via the exploration of scale, spatial organisation and structure, amongst many other design layers, in increasing levels of detail, at the same point in the design process. Architectural education is at a delayed tipping point where architectural students are increasingly looking towards BIM to streamline their design process drawn by the production of realistic visualisation, but with a lack of knowledge and skill in its application. With a lack of guidance and understanding around the application of BIM, the use of BIM in this manner overlooks the potential of BIM to construct and test virtual simulations of proposed schemes, to support design enquiry. A historical concern for the pedagogy constructed around the students’ design process is the application of methods and techniques that support the progression through the design process, (Ambrose, 2014; dash mei & Safari, 2018). This study examines the design process of architectural students and the interaction between analogue and digital methods used in design. These primary modes of communication, offer the opportunity to query the roles and rules of traditional architectural conventions around ‘problem finding’ and ‘problem solving’, challenging the ‘traditional’ design process examined by pioneers like Bruner (1966) and Schon (1987). These approaches are distilled from the findings of the study and presented as guidance to those teaching in architectural aBIMemia to align pedagogic goals to methods of abstraction in this new era of design education reconsidering digital methods in design.
keywords BIM, BIM, Design Process, Architecture, Learning
series eCAADe
email
last changed 2024/02/05 14:28

_id ascaad2014_003
id ascaad2014_003
authors Parlac, Vera
year 2014
title Surface Dynamics: From dynamic surface to agile spaces
source Digital Crafting [7th International Conference Proceedings of the Arab Society for Computer Aided Architectural Design (ASCAAD 2014 / ISBN 978-603-90142-5-6], Jeddah (Kingdom of Saudi Arabia), 31 March - 3 April 2014, pp. 39-48
summary Behavior, adaptation and responsiveness are characteristics of live organisms; architecture on the other hand is structurally, materially and functionally constructed. With the shift from ‘mechanical’ towards ‘organic’ paradigm (Mae-Wan Ho, 1997) attitude towards architectural adaptation, behavior and performance is shifting as well. This change is altering a system of reference and conceptual basis for architecture by suggesting the integration of dynamics – dynamics that don’t address kinetic movement only but include flows of energies, material and information. This paper presents an ongoing research into kinetic material system with the focus on non-mechanical actuation (shape memory alloy) and the structural and material behavior. It proposes an adaptive surface capable of altering its shape and forming small occupiable spaces that respond to external and internal influences and flows of information. The adaptive structure is developed as a physical and digital prototype. Its behavior is examined at a physical level and the findings are used to digitally simulate the behavior of the larger system. The design approach is driven by an interest in adaptive systems in nature and material variability (structural and functional) of naturally constructed materials. The broader goal of the research is to test the scale at which shape memory alloy can be employed as an actuator of dynamic architectural surfaces and to speculate on and explore the capacity of active and responsive systems to produce adaptable surfaces that can form occupiable spaces and with that, added functionalities in architectural and urban environments.
series ASCAAD
email
last changed 2016/02/15 13:09

_id ecaade2023_000
id ecaade2023_000
authors Dokonal, Wolfgang, Hirschberg, Urs and Wurzer, Gabriel
year 2023
title eCAADe 2023 Digital Design Reconsidered - Volume 1
source Dokonal, W, Hirschberg, U and Wurzer, G (eds.), Digital Design Reconsidered - Proceedings of the 41st Conference on Education and Research in Computer Aided Architectural Design in Europe (eCAADe 2023) - Volume 1, Graz, 20-22 September 2023, 905 p.
doi https://doi.org/10.52842/conf.ecaade.2023.1.001
summary The conference logo is a bird’s eye view of spiral stairs that join and separate – an homage to the famous double spiral staircase in Graz, a tourist attraction of this city and a must-see for any architecturally minded visitor. Carved out of limestone, the medieval construction of the original is a daring feat of masonry as well as a symbolic gesture. The design speaks of separation and reconciliation: The paths of two people that climb the double spiral stairs separate and then meet again at each platform. The relationship between architectural design and the growing digital repertoire of tools and possibilities seems to undergo similar cycles of attraction and rejection: enthusiasm about digital innovations – whether in Virtual Reality, Augmented Reality, Energy Design, Robotic Fabrication, the many Dimensions of BIM or, as right now, in AI and Machine Learning – is typically followed by a certain disillusionment and a realization that the promises were somewhat overblown. But a turn away from these digital innovations can only be temporary. In our call for papers we refer to the first and second ‘digital turns’, a term Mario Carpo coined. Yes, it’s a bit of a pun, but you could indeed see these digital turns in our logo as well. Carpo would probably agree that design and the digital have become inseparably intertwined. While they may be circling in different directions, an innovative rejoinder is always just around the corner. The theme of the conference asked participants to re-consider the relationship between Design and the Digital. The notion of a cycle is already present in the syllable “re”. Indeed, 20 years earlier, in 2003, we held an ECAADE conference in Graz simply under the title “Digital Design” and our re-using – or is it re-cycling? – the theme can be seen as the completion of one of those cycles described above: One level up, we meet again, we’ve come full circle. The question of the relationship between Design and the Digital is still in flux, still worthy of renewed consideration. There is a historical notion implicit in the theme. To reconsider something, one needs to take a step back, to look into the past as well as into the future. Indeed, at this conference we wanted to take a longer view, something not done often enough in the fast-paced world of digital technology. Carefully considering one’s past can be a source of inspiration. In fact, the double spiral stair that inspired our conference logo also inspired many architects through the ages. Konrad Wachsmann, for example, is said to have come up with his famous Grapevine assembly system based on this double spiral stair and its intricate joinery. More recently, Rem Koolhaas deemed the double spiral staircase in Graz important enough to include a detailed model of it in his “elements of architecture” exhibition at the Venice Biennale in 2014. Our interpretation of the stair is a typically digital one, you might say. First of all: it’s a rendering of a virtual model; it only exists inside a computer. Secondly, this virtual model isn’t true to the original. Instead, it does what the digital has made so easy to do: it exaggerates. Where the original has just two spiral stairs that separate and join, our model consists of countless stairs that are joined in this way. We see only a part of the model, but the stairs appear to continue in all directions. The implication is of an endless field of spiral stairs. As the 3D model was generated with a parametric script, it would be very easy to change all parameters of it – including the number of stairs that make it up. Everyone at this conference is familiar with the concept of parametric design: it makes generating models of seemingly endless amounts of connected spiral stairs really easy. Although, of course, if we’re too literal about the term ‘endless’, generating our stair model will eventually crash even the most advanced computers. We know that, too. – That's another truth about the Digital: it makes a promise of infinity, which, in the end, it can’t keep. And even if it could: what’s the point of just adding more of the same: more variations, more options, more possible ways to get lost? Doesn’t the original double spiral staircase contain all those derivatives already? Don’t we know that ‘more’ isn’t necessarily better? In the original double spiral stair the happy end is guaranteed: the lovers’ paths meet at the top as well as when they exit the building. Therefore, the stair is also colloquially known as the Busserlstiege (the kissing stair) or the Versöhnungsstiege (reconciliation stair). In our digitally enhanced version, this outcome is no longer clear: we can choose between multiple directions at each level and we risk losing sight of the one we were with. This is also emblematic of our field of research. eCAADe was founded to promote “good practice and sharing information in relation to the use of computers in research and education in architecture and related professions” (see ecaade.org). That may have seemed a straightforward proposition forty years ago, when the association was founded. A look at the breadth and depth of research topics presented and discussed at this conference (and as a consequence in this book, for which you’re reading the editorial) shows how the field has developed over these forty years. There are sessions on Digital Design Education, on Digital Fabrication, on Virtual Reality, on Virtual Heritage, on Generative Design and Machine Learning, on Digital Cities, on Simulation and Digital Twins, on BIM, on Sustainability, on Circular Design, on Design Theory and on Digital Design Experimentations. We hope you will find what you’re looking for in this book and at the conference – and maybe even more than that: surprising turns and happy encounters between Design and the Digital.
series eCAADe
email
last changed 2023/12/10 10:49

_id ecaade2023_001
id ecaade2023_001
authors Dokonal, Wolfgang, Hirschberg, Urs and Wurzer, Gabriel
year 2023
title eCAADe 2023 Digital Design Reconsidered - Volume 2
source Dokonal, W, Hirschberg, U and Wurzer, G (eds.), Digital Design Reconsidered - Proceedings of the 41st Conference on Education and Research in Computer Aided Architectural Design in Europe (eCAADe 2023) - Volume 2, Graz, 20-22 September 2023, 899 p.
doi https://doi.org/10.52842/conf.ecaade.2023.2.001
summary The conference logo is a bird’s eye view of spiral stairs that join and separate – an homage to the famous double spiral staircase in Graz, a tourist attraction of this city and a must-see for any architecturally minded visitor. Carved out of limestone, the medieval construction of the original is a daring feat of masonry as well as a symbolic gesture. The design speaks of separation and reconciliation: The paths of two people that climb the double spiral stairs separate and then meet again at each platform. The relationship between architectural design and the growing digital repertoire of tools and possibilities seems to undergo similar cycles of attraction and rejection: enthusiasm about digital innovations – whether in Virtual Reality, Augmented Reality, Energy Design, Robotic Fabrication, the many Dimensions of BIM or, as right now, in AI and Machine Learning – is typically followed by a certain disillusionment and a realization that the promises were somewhat overblown. But a turn away from these digital innovations can only be temporary. In our call for papers we refer to the first and second ‘digital turns’, a term Mario Carpo coined. Yes, it’s a bit of a pun, but you could indeed see these digital turns in our logo as well. Carpo would probably agree that design and the digital have become inseparably intertwined. While they may be circling in different directions, an innovative rejoinder is always just around the corner. The theme of the conference asked participants to re-consider the relationship between Design and the Digital. The notion of a cycle is already present in the syllable “re”. Indeed, 20 years earlier, in 2003, we held an ECAADE conference in Graz simply under the title “Digital Design” and our re-using – or is it re-cycling? – the theme can be seen as the completion of one of those cycles described above: One level up, we meet again, we’ve come full circle. The question of the relationship between Design and the Digital is still in flux, still worthy of renewed consideration. There is a historical notion implicit in the theme. To reconsider something, one needs to take a step back, to look into the past as well as into the future. Indeed, at this conference we wanted to take a longer view, something not done often enough in the fast-paced world of digital technology. Carefully considering one’s past can be a source of inspiration. In fact, the double spiral stair that inspired our conference logo also inspired many architects through the ages. Konrad Wachsmann, for example, is said to have come up with his famous Grapevine assembly system based on this double spiral stair and its intricate joinery. More recently, Rem Koolhaas deemed the double spiral staircase in Graz important enough to include a detailed model of it in his “elements of architecture” exhibition at the Venice Biennale in 2014. Our interpretation of the stair is a typically digital one, you might say. First of all: it’s a rendering of a virtual model; it only exists inside a computer. Secondly, this virtual model isn’t true to the original. Instead, it does what the digital has made so easy to do: it exaggerates. Where the original has just two spiral stairs that separate and join, our model consists of countless stairs that are joined in this way. We see only a part of the model, but the stairs appear to continue in all directions. The implication is of an endless field of spiral stairs. As the 3D model was generated with a parametric script, it would be very easy to change all parameters of it – including the number of stairs that make it up. Everyone at this conference is familiar with the concept of parametric design: it makes generating models of seemingly endless amounts of connected spiral stairs really easy. Although, of course, if we’re too literal about the term ‘endless’, generating our stair model will eventually crash even the most advanced computers. We know that, too. – That's another truth about the Digital: it makes a promise of infinity, which, in the end, it can’t keep. And even if it could: what’s the point of just adding more of the same: more variations, more options, more possible ways to get lost? Doesn’t the original double spiral staircase contain all those derivatives already? Don’t we know that ‘more’ isn’t necessarily better? In the original double spiral stair the happy end is guaranteed: the lovers’ paths meet at the top as well as when they exit the building. Therefore, the stair is also colloquially known as the Busserlstiege (the kissing stair) or the Versöhnungsstiege (reconciliation stair). In our digitally enhanced version, this outcome is no longer clear: we can choose between multiple directions at each level and we risk losing sight of the one we were with. This is also emblematic of our field of research. eCAADe was founded to promote “good practice and sharing information in relation to the use of computers in research and education in architecture and related professions” (see ecaade.org). That may have seemed a straightforward proposition forty years ago, when the association was founded. A look at the breadth and depth of research topics presented and discussed at this conference (and as a consequence in this book, for which you’re reading the editorial) shows how the field has developed over these forty years. There are sessions on Digital Design Education, on Digital Fabrication, on Virtual Reality, on Virtual Heritage, on Generative Design and Machine Learning, on Digital Cities, on Simulation and Digital Twins, on BIM, on Sustainability, on Circular Design, on Design Theory and on Digital Design Experimentations. We hope you will find what you’re looking for in this book and at the conference – and maybe even more than that: surprising turns and happy encounters between Design and the Digital.
series eCAADe
type normal paper
email
last changed 2024/08/29 08:36

_id ecaade2014_201
id ecaade2014_201
authors Anetta Kepczynska-Walczak
year 2014
title Data Integration In A Visual Mode
source Thompson, Emine Mine (ed.), Fusion - Proceedings of the 32nd eCAADe Conference - Volume 1, Department of Architecture and Built Environment, Faculty of Engineering and Environment, Newcastle upon Tyne, England, UK, 10-12 September 2014, pp. 565-572
doi https://doi.org/10.52842/conf.ecaade.2014.1.565
wos WOS:000361384700056
summary The principal aim of the paper is to discuss data integration issues in the context of urban scale studies. A special attention is dedicated to built environment, visual thinking and synthesis of knowledge. The paper is based on literature studies, professional experience and the outcomes of an experimental students' project conducted by the author last year. First, the theoretical background and the current state of research in the area is revealed. Then, the project theme, goals and organisation are described. So, the main idea of the experiment was to explore data collection methods at the urban scale without a design goal since the prime approach was to take into consideration students' perceptions of space and its multifaceted aspects. Thus, to maintain an open mind about gathering such information and not to bias participants towards one approach or another were crucial. Finally, the outcomes of the project are discussed. Students' presentations showed that they used different approaches not only in terms of digital tools but also in terms of their understanding of data integration. The author believes a discussion of the experiment outcomes will contribute to the main theme of the eCAADe 2014 Conference entirely.
keywords Built environment; visual thinking; data integration
series eCAADe
email
last changed 2022/06/07 07:54

_id ecaade2014_133
id ecaade2014_133
authors Armando Trento, Antonio Fioravanti and Francesco Rossini
year 2014
title Health and Safety Design by means of a Systemic Approach - Linking Construction Entities and Activities for Hazard Prevention
source Thompson, Emine Mine (ed.), Fusion - Proceedings of the 32nd eCAADe Conference - Volume 1, Department of Architecture and Built Environment, Faculty of Engineering and Environment, Newcastle upon Tyne, England, UK, 10-12 September 2014, pp. 633-642
doi https://doi.org/10.52842/conf.ecaade.2014.1.633
wos WOS:000361384700063
summary Education and Research in Computer Aided Architectural Design in Europe faces many urgent tasks. Among the Architecture, Engineering and Construction (AEC)international scientific societies, only few researches systematically investigate on how to integrate the design solutions with Health and Safety (HS) planning measures, enhancing a collaborative “fusion” of all involved actors in Design and Construction decision making. Process automation cannot be enhanced until design/management tools, such as Building Information Models, can rely only on entities formalised "per se" geometrical items fulfilled by isolated-object specific information. To face complex problems, BIM models should be able to implement and manipulate multiple sets of entities, qualified by clearly established relationships, belonging to organically structured and oriented (sub-) systems. This paper reports on an early stage research project, focused on the identification of operative rules for Health and Safety design. Implementation on the unique case study of Palazzo della Civiltà Italiana functional refurbishment faces two main objectives: one, more pragmatic, is concerned with boostingworkers education about non-standard operative tasks, by means of accurate ad-hoc construction narrative visualisation; another one, more challenging and theoretically complex, consists in modelling "judgment-based" rules, aimed at supporting automated reasoning in Safety Design.
keywords Construction hazards prevention through design; project construction management and visualization; health and safety management; risk modelling; knowledge representation
series eCAADe
email
last changed 2022/06/07 07:54

_id ecaade2014_221
id ecaade2014_221
authors Charles Avis
year 2014
title Shared Space Navigation
source Thompson, Emine Mine (ed.), Fusion - Proceedings of the 32nd eCAADe Conference - Volume 1, Department of Architecture and Built Environment, Faculty of Engineering and Environment, Newcastle upon Tyne, England, UK, 10-12 September 2014, pp. 173-179
doi https://doi.org/10.52842/conf.ecaade.2014.1.173
wos WOS:000361384700017
summary Shared space is a concept of urban planning in which all barriers between cars and pedestrians, such as curbs and crosswalks, is removed to encourage heightened awareness of drivers and pedestrians, thus making city streets safer. The system has been highly successful, but can be highly stressful due to the lack of rules and signage. Thus, an adaptive feedback system that guides one safely through shared space could be essential for a shared space on the city scale. This paper imagines shared space at the city scale, and uses computational strategies to develop a system of adaptive collision-avoidance. By abstracting the movement of cars and pedestrians to properties of moving 'agents', collision detection and adaptive path finding models are developed, and then prototyped in an immersive environment that experiments with variable visual feedback based on user interactions.
keywords Shared space; movement; visual feedback; traffic; urban
series eCAADe
email
last changed 2022/06/07 07:55

_id cdrf2023_526
id cdrf2023_526
authors Eric Peterson, Bhavleen Kaur
year 2023
title Printing Compound-Curved Sandwich Structures with Robotic Multi-Bias Additive Manufacturing
source Proceedings of the 2023 DigitalFUTURES The 5st International Conference on Computational Design and Robotic Fabrication (CDRF 2023)
doi https://doi.org/https://doi.org/10.1007/978-981-99-8405-3_44
summary A research team at Florida International University Robotics and Digital Fabrication Lab has developed a novel method for 3d-printing curved open grid core sandwich structures using a thermoplastic extruder mounted on a robotic arm. This print-on-print additive manufacturing (AM) method relies on the 3d modeling software Rhinoceros and its parametric software plugin Grasshopper with Kuka-Parametric Robotic Control (Kuka-PRC) to convert NURBS surfaces into multi-bias additive manufacturing (MBAM) toolpaths. While several high-profile projects including the University of Stuttgart ICD/ITKE Research Pavilions 2014–15 and 2016–17, ETH-Digital Building Technologies project Levis Ergon Chair 2018, and 3D printed chair using Robotic Hybrid Manufacturing at Institute of Advanced Architecture of Catalonia (IAAC) 2019, have previously demonstrated the feasibility of 3d printing with either MBAM or sandwich structures, this method for printing Compound-Curved Sandwich Structures with Robotic MBAM combines these methods offering the possibility to significantly reduce the weight of spanning or cantilevered surfaces by incorporating the structural logic of open grid-core sandwiches with MBAM toolpath printing. Often built with fiber reinforced plastics (FRP), sandwich structures are a common solution for thin wall construction of compound curved surfaces that require a high strength-to-weight ratio with applications including aerospace, wind energy, marine, automotive, transportation infrastructure, architecture, furniture, and sports equipment manufacturing. Typical practices for producing sandwich structures are labor intensive, involving a multi-stage process including (1) the design and fabrication of a mould, (2) the application of a surface substrate such as FRP, (3) the manual application of a light-weight grid-core material, and (4) application of a second surface substrate to complete the sandwich. There are several shortcomings to this moulded manufacturing method that affect both the formal outcome and the manufacturing process: moulds are often costly and labor intensive to build, formal geometric freedom is limited by the minimum draft angles required for successful removal from the mould, and customization and refinement of product lines can be limited by the need for moulds. While the most common material for this construction method is FRP, our proof-of-concept experiments relied on low-cost thermoplastic using a specially configured pellet extruder. While the method proved feasible for small representative examples there remain significant challenges to the successful deployment of this manufacturing method at larger scales that can only be addressed with additional research. The digital workflow includes the following steps: (1) Create a 3D digital model of the base surface in Rhino, (2) Generate toolpaths for laminar printing in Grasshopper by converting surfaces into lists of oriented points, (3) Generate the structural grid-core using the same process, (4) Orient the robot to align in the direction of the substructure geometric planes, (5) Print the grid core using MBAM toolpaths, (6) Repeat step 1 and 2 for printing the outer surface with appropriate adjustments to the extruder orientation. During the design and printing process, we encountered several challenges including selecting geometry suitable for testing, extruder orientation, calibration of the hot end and extrusion/movement speeds, and deviation between the computer model and the physical object on the build platen. Physical models varied from their digital counterparts by several millimeters due to material deformation in the extrusion and cooling process. Real-time deviation verification studies will likely improve the workflow in future studies.
series cdrf
email
last changed 2024/05/29 14:04

_id ecaade2014_029
id ecaade2014_029
authors Filipa Osório, Alexandra Paio and Sancho Oliveira
year 2014
title Interaction with a Kinetic Folded Surface
source Thompson, Emine Mine (ed.), Fusion - Proceedings of the 32nd eCAADe Conference - Volume 2, Department of Architecture and Built Environment, Faculty of Engineering and Environment, Newcastle upon Tyne, England, UK, 10-12 September 2014, pp. 605-612
doi https://doi.org/10.52842/conf.ecaade.2014.2.605
wos WOS:000361385100063
summary Kinetic systems offers new perspectives and design innovation in research and practice. These systems have been used by architects as an approach that embeds computation intelligence to create flexible and adaptable architectural spaces according to users changing needs and desires as a way to respond to an increasingly technological society. The presented research attempts to answer to this question based on the results of a multidisciplinary on-going work developed at digital fabrication laboratory Vitruvius Fablab-IUL in Lisbon. The main goal is to explore the transformation of the shape of a construction by mechanisms which allow adaptation either to environmental conditions or to the needs of the user. This paper reports the initial development of a kinetic system based on an origami foldable surface actuated by a user. The user can manipulate a small scale model of the surface and evaluate at all times if it is achieving the desired geometry.
keywords Kinetic systems; interactive architecture; responsive surfaces; origami geometry; folded surfaces
series eCAADe
email
last changed 2022/06/07 07:50

_id caadria2014_150
id caadria2014_150
authors Knapp, Chris; Jonathan Neslon and Michael Parsons
year 2014
title Constructing Atmospheres
source Rethinking Comprehensive Design: Speculative Counterculture, Proceedings of the 19th International Conference on Computer-Aided Architectural Design Research in Asia (CAADRIA 2014) / Kyoto 14-16 May 2014, pp. 149–158
doi https://doi.org/10.52842/conf.caadria.2014.149
summary This paper documents and critically reflects upon the design, development, fabrication, and implementation of three pavilion projects developed during 2013-14. The core investigation of this work is the production of architectural spaces characterized by a quality of enveloping, diffuse, visual and spatial atmospheres. The principal activity of the research is aimed at refining methods for software-based exploration of formal complexities and the subsequent need to control variability and efficiency in fabrication output, using Grasshopper for Rhino to develop customized definitions particular to each specific project scenario. Linking the projects together are issues of scale, resolution of effect, and intent to move from disparate assemblies of structure and skin toward composite, manifold construction techniques that address multiple concerns (gravity, bracing, affect, etc) with a minimum of assembly. A material palette common to the current vernacular of CNC-based projects such as plywood, plastics, and other sheet materials is utilised. This work is invested in extending the possibilities of the architect and architecture as a discipline, extrapolating the workflow from these successive projects to the speculative impact of the work upon emerging possibilities of architectural construction and craft.
keywords 3d modelling; Digital fabrication; Rhinoceros; Grasshopper; Tessellation
series CAADRIA
email
last changed 2022/06/07 07:51

_id caadria2014_244
id caadria2014_244
authors Leblanc, François
year 2014
title Anything, Anyone, Anywhere
source Rethinking Comprehensive Design: Speculative Counterculture, Proceedings of the 19th International Conference on Computer-Aided Architectural Design Research in Asia (CAADRIA 2014) / Kyoto 14-16 May 2014, pp. 461–470
doi https://doi.org/10.52842/conf.caadria.2014.461
summary According to Hod Lipson at Cornell University’s Creative Machines Lab, cloud manufacturing ‘consists of a network of smallscale, decentralized nodes of production.’ It is a novel production approach relative to centralized mass production and standardisation methods common to today’s industrial processes. To date, cloud manufacturing techniques have focused largely on the production of smallscale consumer goods that integrate digital fabrication techniques, the most popular being 3D-printing technology. With advances in network-based design platforms for 3D-printing services in combination with the global installation of fabrication laboratories (fab lab), the production of architectural building components using cloud manufacturing techniques is now possible. This paper will define how cloud manufacturing techniques can be expanded into the realm of architectural practice and, in particular, how such techniques can be applied to larger-scale building and construction components. The paper will further discuss how such novel additive manufacturing (AM) processes applied to construction can potentially revolutionize architectural design by generating a new collaborative design model that facilitates local production of customized and readily assembled building components on demand.
keywords additive manufacturing; cloud manufacturing; peer-to-peer production; collaborative design; open-source design
series CAADRIA
email
last changed 2022/06/07 07:52

_id ascaad2022_099
id ascaad2022_099
authors Sencan, Inanc
year 2022
title Progeny: A Grasshopper Plug-in that Augments Cellular Automata Algorithms for 3D Form Explorations
source Hybrid Spaces of the Metaverse - Architecture in the Age of the Metaverse: Opportunities and Potentials [10th ASCAAD Conference Proceedings] Debbieh (Lebanon) [Virtual Conference] 12-13 October 2022, pp. 377-391
summary Cellular automata (CA) is a well-known computation method introduced by John von Neumann and Stanislaw Ulam in the 1940s. Since then, it has been studied in various fields such as computer science, biology, physics, chemistry, and art. The Classic CA algorithm is a calculation of a grid of cells' binary states based on neighboring cells and a set of rules. With the variation of these parameters, the CA algorithm has evolved into alternative versions such as 3D CA, Multiple neighborhood CA, Multiple rules CA, and Stochastic CA (Url-1). As a rule-based generative algorithm, CA has been used as a bottom-up design approach in the architectural design process in the search for form (Frazer,1995; Dinçer et al., 2014), in simulating the displacement of individuals in space, and in revealing complex relations at the urban scale (Güzelci, 2013). There are implementations of CA tools in 3D design software for designers as additional scripts or plug-ins. However, these often have limited ability to create customized CA algorithms by the designer. This study aims to create a customizable framework for 3D CA algorithms to be used in 3D form explorations by designers. Grasshopper3D, which is a visual scripting environment in Rhinoceros 3D, is used to implement the framework. The main difference between this work and the current Grasshopper3D plug-ins for CA simulation is the customizability and the real-time control of the framework. The parameters that allow the CA algorithm to be customized are; the initial state of the 3D grid, neighborhood conditions, cell states and rules. CA algorithms are created for each customizable parameter using the framework. Those algorithms are evaluated based on the ability to generate form. A voxel-based approach is used to generate geometry from the points created by the 3D cellular automata. In future, forms generated using this framework can be used as a form generating tool for digital environments.
series ASCAAD
email
last changed 2024/02/16 13:38

_id ecaade2014_176
id ecaade2014_176
authors Sina Mostafavi and Matthew Tanti
year 2014
title Design to fabrication integration and material craftsmanship - A performance driven stone architecture design system based on material, structural and fabrication constraints and criteria
source Thompson, Emine Mine (ed.), Fusion - Proceedings of the 32nd eCAADe Conference - Volume 1, Department of Architecture and Built Environment, Faculty of Engineering and Environment, Newcastle upon Tyne, England, UK, 10-12 September 2014, pp. 445-454
doi https://doi.org/10.52842/conf.ecaade.2014.1.445
wos WOS:000361384700044
summary This paper presents a computational design methodology through describing of a case study on stone building system. In addition to establishing a performance driven form-finding methodology, the objective is to redefine local craftsmanship methods as industrial fabrication techniques in order to introduce the constructability of the design solutions as one of the main performance criteria. Therefore, the focus of the methodology is to facilitate architectural design processes through developing of customized computational design tools and workflows for data integration and concurrent performance evaluation. The research starts with the hypothesis that the technological advancements in digital design and fabrication can lead to re-exploration and improvement of traditional building techniques with local materials. The paper explains different stages of the methodology and the way the chained design to fabrication processes would lead to constructible, structurally possible and optimal design solutions of small scale and simple symmetric design solutions to complex topologies at the scale of larger complex buildings.
keywords Digital materiality ; design information exchange; compression-only stone structure; computer aided craftsmanship ; robotic fabrication
series eCAADe
email
last changed 2022/06/07 07:56

_id acadia21_530
id acadia21_530
authors Adel, Arash; Augustynowicz, Edyta; Wehrle, Thomas
year 2021
title Robotic Timber Construction
source ACADIA 2021: Realignments: Toward Critical Computation [Proceedings of the 41st Annual Conference of the Association of Computer Aided Design in Architecture (ACADIA) ISBN 979-8-986-08056-7]. Online and Global. 3-6 November 2021. edited by S. Parascho, J. Scott, and K. Dörfler. 530-537.
doi https://doi.org/10.52842/conf.acadia.2021.530
summary Several research projects (Gramazio et al. 2014; Willmann et al. 2015; Helm et al. 2017; Adel et al. 2018; Adel Ahmadian 2020) have investigated the use of automated assembly technologies (e.g., industrial robotic arms) for the fabrication of nonstandard timber structures. Building on these projects, we present a novel and transferable process for the robotic fabrication of bespoke timber subassemblies made of off-the-shelf standard timber elements. A nonstandard timber structure (Figure 2), consisting of four bespoke subassemblies: three vertical supports and a Zollinger (Allen 1999) roof structure, acts as the case study for the research and validates the feasibility of the proposed process.
series ACADIA
type project
email
last changed 2023/10/22 12:06

_id acadia14projects_87
id acadia14projects_87
authors Ahrens, Chandler; Sprecher, Aaron; Neuman, Eran
year 2014
title WHITEOUT: Topological evolution of embedded geometries
source ACADIA 14: Design Agency [Projects of the 34th Annual Conference of the Association for Computer Aided Design in Architecture (ACADIA) ISBN 9789126724478]Los Angeles 23-25 October, 2014), pp. 87-90
doi https://doi.org/10.52842/conf.acadia.2014.087
summary Whiteout documents the design, fabrication and installation of a full scale prototype using a predictive mesh relaxation algorithm while the physical construct made from white spandex fabric, steel tube, wood members and aluminum connectors verifies the virtual assumptions.
keywords Material Logics and Tectonics
series ACADIA
type Research Projects
email
last changed 2022/06/07 07:54

_id ascaad2014_023
id ascaad2014_023
authors Al-Maiyah, Sura and Hisham Elkadi
year 2014
title Assessing the Use of Advanced Daylight Simulation Modelling Tools in Enhancing the Student Learning Experience
source Digital Crafting [7th International Conference Proceedings of the Arab Society for Computer Aided Architectural Design (ASCAAD 2014 / ISBN 978-603-90142-5-6], Jeddah (Kingdom of Saudi Arabia), 31 March - 3 April 2014, pp. 303-313
summary In architecture schools, where the ‘studio culture’ lies at the heart of students’ learning, taught courses, particularly technology ones, are often seen as secondary or supplementary units. Successful delivery of such courses, where students can act effectively, be motivated and engaged, is a rather demanding task requiring careful planning and the use of various teaching styles. A recent challenge that faces architecture education today, and subsequently influences the way technology courses are being designed, is the growing trend in practice towards environmentally responsive design and the need for graduates with new skills in sustainable construction and urban ecology (HEFCE’s consultation document, 2005). This article presents the role of innovative simulation modelling tools in the enhancement of the student learning experience and professional development. Reference is made to a teaching practice that has recently been applied at Portsmouth School of Architecture in the United Kingdom and piloted at Deakin University in Australia. The work focuses on the structure and delivery of one of the two main technology units in the second year architecture programme that underwent two main phases of revision during the academic years 2009/10 and 2010/11. The article examines the inclusion of advanced daylight simulation modelling tools in the unit programme, and measures the effectiveness of enhancing its delivery as a key component of the curriculum on the student learning experience. A main objective of the work was to explain whether or not the introduction of a simulation modelling component, and the later improvement of its integration with the course programme and assessment, has contributed to a better learning experience and level of engagement. Student feedback and the grade distribution pattern over the last three academic years were collected and analyzed. The analysis of student feedback on the revised modelling component showed a positive influence on the learning experience and level of satisfaction and engagement. An improvement in student performance was also recorded over the last two academic years and following the implementation of new assessment design.
series ASCAAD
email
last changed 2016/02/15 13:09

_id sigradi2014_271
id sigradi2014_271
authors Alvarez, Marcelo Paysse
year 2014
title Relevamiento con drones; el caso Real de San Carlos [Drone mapping; case study: Real de San Carlos]
source SiGraDi 2014 [Proceedings of the 18th Conference of the Iberoamerican Society of Digital Graphics - ISBN: 978-9974-99-655-7] Uruguay - Montevideo 12 - 14 November 2014, pp. 649-652
summary Cultural landscapes, although complex realities, give shape and meaning to the tangible and intangible components which form the foundations of human cultural background. The architecture of the city of Colonia del Sacramento fits within this context, and builds up a unique cultural landscape inserted in the logic of the historical heritage protection system. This concept, which implies wealth but also conflicts, demands a multidisciplinary approach grounded on a wide vision of this issue. Likewise, this comprehensive approach contributes to reverse and correct the lack of capacity and/or interest to save these examples of man-made landscape (prefabrication, mega-projects of the beginnings of the 20th Century, etc.), which are essential pieces of heritage conservation. Since 1943 the bullring is owned by the Municipality of Colonia. In the last decade the building was fenced to prevent breakdown risk. Still, illegal access occurs quite easily, increasing the risk and potential damage, in addition to the spoilage caused by more than one hundred years of inactivity and lack of maintenance. This paper proposes a method to survey and record the current status of the building, from photos taken by unmanned aerial vehicles (UAV, drones), allowing the registry without the need of direct access to the site. The survey will enable three types of results: series of mapped photographs, 3D models and an interactive platform for aerial view. The aim is to provide valuable and essential documentation for next stages of consolidation works, competitions and eventualy, new uses of the heritage building.
series SIGRADI
email
last changed 2016/03/10 09:47

For more results click below:

this is page 0show page 1show page 2show page 3show page 4show page 5... show page 32HOMELOGIN (you are user _anon_838535 from group guest) CUMINCAD Papers Powered by SciX Open Publishing Services 1.002