CumInCAD is a Cumulative Index about publications in Computer Aided Architectural Design
supported by the sibling associations ACADIA, CAADRIA, eCAADe, SIGraDi, ASCAAD and CAAD futures

PDF papers
References

Hits 1 to 20 of 668

_id caadria2014_037
id caadria2014_037
authors Khoo, Chin Koi
year 2014
title Designing a Responsive Material System with Physical Computing
source Rethinking Comprehensive Design: Speculative Counterculture, Proceedings of the 19th International Conference on Computer-Aided Architectural Design Research in Asia (CAADRIA 2014) / Kyoto 14-16 May 2014, pp. 97–106
doi https://doi.org/10.52842/conf.caadria.2014.097
summary This paper focuses on an investigation to explore architectural design potentials with a responsive material system and physical computing. Contemporary architects and designers are seeking to integrate physical computing in responsive architectural designs; however, they have largely borrowed from engineering technology’s mechanical devices and components. There is the opportunity to investigate an unexplored design approach to exploit the responsive capacity of material properties as alternatives to the current focus on mechanical components and discrete sensing devices. This opportunity creates a different design paradigm for responsive architecture that investigates the potential to integrate physical computing with responsive materials as one integrated material system. Instead of adopting highly intricate and expensive materials, this approach is explored through accessible and off-the-shelf materials to form a responsive material system, called Lumina. Lumina is implemented as an architectural installation called Cloud that serves as a morphing architectural skin. Cloud is a proof of concept to embody a responsive material system with physical computing to create a reciprocal and luminous architectural intervention for a selected dark corridor. It represents a different design paradigm for responsive architecture through alternative exploitation of contemporary materials and parametric design tools.
keywords Physical computing; responsive material systems; adaptive architecture
series CAADRIA
email
last changed 2022/06/07 07:52

_id ecaade2014_237
id ecaade2014_237
authors Dorothea Kalogianni and Richard Coyne
year 2014
title Thinking about sound and space - Recording people's emotional responses to spaces
source Thompson, Emine Mine (ed.), Fusion - Proceedings of the 32nd eCAADe Conference - Volume 2, Department of Architecture and Built Environment, Faculty of Engineering and Environment, Newcastle upon Tyne, England, UK, 10-12 September 2014, pp. 185-194
doi https://doi.org/10.52842/conf.ecaade.2014.2.185
wos WOS:000361385100020
summary In this paper we explore what EEG techniques teach us about people's responses to environments. We explain two complementary projects: a sound art installation in which a performer was rigged up with an EEG device and required to sit for 30 minutes in a chair. Around him were positioned custom-made instruments for generating electro-mechanical sounds. A screen behind the performer showed a dynamic geometrical image that altered according to his mood state and as picked up by EEG (engagement, meditation, frustration and excitement), while a sound technologist operated the instruments. We used the same sound sources for an experiment in which we tested people's responses to sounds. We discuss the spatial implications of this work.
keywords Eeg; brain; sound; space
series eCAADe
email
last changed 2022/06/07 07:55

_id ascaad2014_003
id ascaad2014_003
authors Parlac, Vera
year 2014
title Surface Dynamics: From dynamic surface to agile spaces
source Digital Crafting [7th International Conference Proceedings of the Arab Society for Computer Aided Architectural Design (ASCAAD 2014 / ISBN 978-603-90142-5-6], Jeddah (Kingdom of Saudi Arabia), 31 March - 3 April 2014, pp. 39-48
summary Behavior, adaptation and responsiveness are characteristics of live organisms; architecture on the other hand is structurally, materially and functionally constructed. With the shift from ‘mechanical’ towards ‘organic’ paradigm (Mae-Wan Ho, 1997) attitude towards architectural adaptation, behavior and performance is shifting as well. This change is altering a system of reference and conceptual basis for architecture by suggesting the integration of dynamics – dynamics that don’t address kinetic movement only but include flows of energies, material and information. This paper presents an ongoing research into kinetic material system with the focus on non-mechanical actuation (shape memory alloy) and the structural and material behavior. It proposes an adaptive surface capable of altering its shape and forming small occupiable spaces that respond to external and internal influences and flows of information. The adaptive structure is developed as a physical and digital prototype. Its behavior is examined at a physical level and the findings are used to digitally simulate the behavior of the larger system. The design approach is driven by an interest in adaptive systems in nature and material variability (structural and functional) of naturally constructed materials. The broader goal of the research is to test the scale at which shape memory alloy can be employed as an actuator of dynamic architectural surfaces and to speculate on and explore the capacity of active and responsive systems to produce adaptable surfaces that can form occupiable spaces and with that, added functionalities in architectural and urban environments.
series ASCAAD
email
last changed 2016/02/15 13:09

_id ecaade2014_080
id ecaade2014_080
authors Sevil Yazici
year 2014
title Efficiency in Architectural Geometry Informed by Materials
source Thompson, Emine Mine (ed.), Fusion - Proceedings of the 32nd eCAADe Conference - Volume 1, Department of Architecture and Built Environment, Faculty of Engineering and Environment, Newcastle upon Tyne, England, UK, 10-12 September 2014, pp. 547-554
doi https://doi.org/10.52842/conf.ecaade.2014.1.547
wos WOS:000361384700054
summary Although some studies investigate physics-based dynamic systems to generate structurally efficient forms by incorporating geometry with performance requirements, there is a gap in the field questioning on how to link structurally efficient architectural geometry with mechanical properties of materials. The aim of this paper is to question the possibility of generating an information loop in which Young's Modulus, stiffness of the material may both inform the form-finding process and the structural performance simulation. The proposed method offers steps including form-finding, series of analyses applied for architectural geometry and structural performance, as well as optimization. Based on the simulation results, efficiency values are calculated driven by the use of different materials. The significance of incorporating material properties in the early design stage is underlined, by comparing differences, whether the stiffness of material informs the form-finding process or not.
keywords Form-finding; material; architectural geometry; finite element method; optimization
series eCAADe
email
last changed 2022/06/07 07:57

_id acadia19_246
id acadia19_246
authors Zhang, Viola; Qian, William; Sabin, Jenny
year 2019
title PolyBrickH2.0
source ACADIA 19:UBIQUITY AND AUTONOMY [Proceedings of the 39th Annual Conference of the Association for Computer Aided Design in Architecture (ACADIA) ISBN 978-0-578-59179-7] (The University of Texas at Austin School of Architecture, Austin, Texas 21-26 October, 2019) pp. 246-257
doi https://doi.org/10.52842/conf.acadia.2019.246
summary This project emerged from collaborative trans-disciplinary research between architecture, engineering, biology, and materials science to generate novel applications in micro-scale 3D printed ceramics. Specifically, PolyBrick H2.0 adapts internal bone-based hydraulic networks through controlled water flow from 3D printed micro-textures and surface chemistry. Engagement across disciplines produced the PolyBrick series at the Sabin Lab (Sabin, Miller, and Cassab 2014) . The series is a manifestation of novel digital fabrication techniques, bioinspired design, materials inquiry, and contemporary evolutions of building materials. A new purpose for the brick is explored that is not solely focused on the mechanical constraints necessary for built masonry structures. PolyBrick H2.0 interweaves the intricacies of living systems (beings and environments combined) to create a more responsive and interactive material system. The PolyBrick 2.0 series looks at human bone as a design model for foundational research. PolyBrick H2.0 merges the cortical bone hydraulic network with new functionalities as a water filtration and collection system for self-preservation and conservation as well as passive cooling solutions. It also pushes the ability of 3D printing techniques to the microscale. These functionalities are investigated under context for a better construction material, but its use may extend further.
series ACADIA
type normal paper
email
last changed 2022/06/07 07:57

_id ecaade2014_021
id ecaade2014_021
authors Aant van der Zee, Bauke de Vries and Theo Salet
year 2014
title From rapid prototyping to automated manufacturing
source Thompson, Emine Mine (ed.), Fusion - Proceedings of the 32nd eCAADe Conference - Volume 1, Department of Architecture and Built Environment, Faculty of Engineering and Environment, Newcastle upon Tyne, England, UK, 10-12 September 2014, pp. 455-461
doi https://doi.org/10.52842/conf.ecaade.2014.1.455
wos WOS:000361384700045
summary In this paper we present an outline of a newly started project to develop a tool which connects BIM to a manufacturing technique like 3D printing. First we will look some promising manufacturing techniques. We will design a small dwelling and export it into a BIM, from which we will extract our data to generate the path the nozzle has to follow. The chosen path is constrained by the material properties, the design and speed of the nozzle. To validate the system we develop a small VR tool in which we mimic a manufacturing tool.
keywords Rapid prototyping; rapid manufacturing; robotics; automation; building information model (bim)
series eCAADe
email
last changed 2022/06/07 07:54

_id acadia14_267
id acadia14_267
authors Ahlquist, Sean
year 2014
title Post-forming Composite Morphologies: Materialization and design methods for inducing form through textile material behavior
source ACADIA 14: Design Agency [Proceedings of the 34th Annual Conference of the Association for Computer Aided Design in Architecture (ACADIA) ISBN 9781926724478]Los Angeles 23-25 October, 2014), pp. 267-276
doi https://doi.org/10.52842/conf.acadia.2014.267
summary This paper presents research in developing materials with integrated pre-stressed textile and rigid composite properties. Such a material system, termed Pre-stressed Textile-Reinforced Composites (pTRC), produces forms with great degrees of both 3-dimensional and structural differentiation, from flat form-work in combination with a curated composite forming process.
keywords Pre-stressed Textile-reinforced Composites, Textile Hybrid, Material Behavior, Form-finding, Spring-based Simulation.Category: Material Logics and Tectonics.
series ACADIA
type Normal Paper
email
last changed 2022/06/07 07:54

_id sigradi2014_021
id sigradi2014_021
authors Araujo, André L.; Wilson Barbosa Neto, Gabriela Celani
year 2014
title Treliças espaciais metálicas: combinação de parâmetros formais e materiais nos estágios iniciais do processo de projeto [Spatial steel trusses: Integrating structural pre-dimensioning requirements in the early stages of the parametric design]
source SiGraDi 2014 [Proceedings of the 18th Conference of the Iberoamerican Society of Digital Graphics - ISBN: 978-9974-99-655-7] Uruguay - Montevideo 12 - 14 November 2014, pp. 355-359
summary The integration of structural considerations in architectural geometry processing is among the topics most discussed in the complex shapes design. While some design tools allow the designer to begin with an inefficient form and then turn it into a more efficient one, other tools allow exploring and creating structural forms considering both formal and structural aspects from the beginning. This paper presents a parametric design approach to create spatial steel trusses with the combination of two strategies: (1) shell surface to set out structural elements; (2) cross section properties to ensure structural stability aspects. In this paper we discuss how the combination of these strategies can contribute to the use of parametric design techniques in the early stages of the design process, taking into account both structural optimization and production aspects.
keywords Structural design; Spatial Structures; Tubular trusses; Parametric Design; Dimensioning
series SIGRADI
email
last changed 2016/03/10 09:47

_id ecaade2014_053
id ecaade2014_053
authors Baris Cokcan, Johannes Braumann and Sigrid Brell-Cokcan
year 2014
title Performative Wood
source Thompson, Emine Mine (ed.), Fusion - Proceedings of the 32nd eCAADe Conference - Volume 2, Department of Architecture and Built Environment, Faculty of Engineering and Environment, Newcastle upon Tyne, England, UK, 10-12 September 2014, pp. 131-138
doi https://doi.org/10.52842/conf.ecaade.2014.2.131
wos WOS:000361385100013
summary This research builds upon projects from both university and practice to explore new approaches on how the multifunctionality, flexibility, and performance of wood can be utilized to inform new approaches towards both design and fabrication. The following projects use physical prototypes to bend wood just within its tolerances, design with the high precision of multi-axis robotic fabrication in mind, and finally inform the shape of a large free-form structure through material properties.
keywords Wood; high-performance material; cnc; robotic fabrication; geometric design
series eCAADe
email
last changed 2022/06/07 07:54

_id ascaad2014_025
id ascaad2014_025
authors Elias-Ozkan, Soofia T. and Hatem Hadia
year 2014
title Teaching and Learning Building Performance Virtualisation
source Digital Crafting [7th International Conference Proceedings of the Arab Society for Computer Aided Architectural Design (ASCAAD 2014 / ISBN 978-603-90142-5-6], Jeddah (Kingdom of Saudi Arabia), 31 March - 3 April 2014, pp. 323-330
summary Building performance simulation tools have indeed eased the task of evaluating a building’s performance from the point of view of lighting design, heating and cooling loads, total energy loads, acoustic properties, natural lighting, ventilation, smoke and fire containment etc. However, to use these tools correctly, not only is theoretical knowledge required but also insight that can only be attained after substantial experience. For example, in order to evaluate the thermal performance alone, one needs to understand climatology, material properties, building physics, HVAC systems, internal and external gain factors, solar impacts, etc. to name a few. Hence, teaching students of Architecture how to use these tools, and also to interpret the results properly, is a tall order. This paper reports on insights gained through teaching courses on building performance simulations to graduate students in the Department of Architecture. The course content was varied each term and a different simulation software was used; namely: ECOTECT, Energy Plus and Design Builder. Data presented here will also contain feedback from the course students regarding the modelling process of the buildings, inputting the data, simulating their performance, and evaluating the results. Also, the difficulties faced during the various steps as well as the drawbacks of the tools will be discussed in depth.
series ASCAAD
type normal paper
email
last changed 2021/07/16 10:36

_id sigradi2014_157
id sigradi2014_157
authors Hemmerling, Marco; Ulrich Nether
year 2014
title Generico - A case study on performance-based design
source SIGraDi 2014 [Proceedings of the 18th Conference of the Iberoamerican Society of Digital Graphics - ISBN: 978-9974-99-655-7] Uruguay- Montevideo 12,13,14 November 2014, pp. 126-129
summary The paper discusses a case study for a seating element that takes into account human factors as well as aspects of structural performance, material properties and production parameters within an integrative design approach. Generico is a prototype for a new way of design thinking, developed with a holistic approach. The design is based on the requirements of comfortable sitting and responds to load forces and ergonomic conditions. The Generico chair – resulting from an all-embracing line of thought, from design to production, is an ideal field of application for 3D-printing-technology as it allows for an optimal material distribution.
keywords Human-centered design; Performance-based design; Generative design; Structural analysis; Additive manufacturing
series SIGRADI
email
last changed 2016/03/10 09:53

_id ecaade2014_009
id ecaade2014_009
authors Marie Davidova, Martin Šichman and Martin Gsandtner
year 2014
title Material Performance of Solid Wood:Paresite, The Environmental Summer Pavilion
source Thompson, Emine Mine (ed.), Fusion - Proceedings of the 32nd eCAADe Conference - Volume 2, Department of Architecture and Built Environment, Faculty of Engineering and Environment, Newcastle upon Tyne, England, UK, 10-12 September 2014, pp. 139-144
doi https://doi.org/10.52842/conf.ecaade.2014.2.139
wos WOS:000361385100014
summary The Paresite - The Environmental Summer Pavilion designed for reSITE festival, is a möbius shaped structure, built from torsed pine wood planks in triangular grid with half cm thin pine wood triangular sheets that provide shadow and evaporate moisture in dry weather. The sheets, cut in a tangential section, interact with humidity by warping themselves, allowing air circulation for the evaporation in arid conditions. The design was accomplished in Grasshopper for Rhino in combination with Rhino and afterwards digitally fabricated. This interdisciplinary project involved students from the Architectural Institute in Prague (ARCHIP) and the students of the Faculty of Forestry and Wood Sciences at the Czech University of Life Sciences Prague (FLD CZU). The goal was to design and build a pavilion from a solid pine wood in order to analyse its material properties and reactions to the environment and to accommodate functions for reSITE festival. The design was prepared within half term studio course and completed in June 2013 on Karlovo Square in Prague where it hosted1600 visitors during festival weekend.
keywords Material performance; solid wood; wood - humidity interaction
series eCAADe
email
last changed 2022/06/07 07:59

_id ecaade2014_138
id ecaade2014_138
authors Martin Tamke, Ina Blümel, Sebastian Ochmann, Richard Vock and Raoul Wessel
year 2014
title From Point Clouds to Definitions of Architectural Space - Potentials of Automated Extraction of Semantic Information from Point Clouds for the Building Profession
source Thompson, Emine Mine (ed.), Fusion - Proceedings of the 32nd eCAADe Conference - Volume 2, Department of Architecture and Built Environment, Faculty of Engineering and Environment, Newcastle upon Tyne, England, UK, 10-12 September 2014, pp. 557-566
doi https://doi.org/10.52842/conf.ecaade.2014.2.557
wos WOS:000361385100058
summary Regarding interior building topology as an important aspect in building design and management, several approaches to indoor point cloud structuring have been introduced recently. Apart from a high-level semantic segmentation of the formerly unstructured point clouds into stories and rooms, these methods additionally allow the extraction of attributed graphs in which nodes represent rooms (including room properties like area or height), and edges represent connections between rooms (doors or staircases) or indicate neighborhood relationships (separation by walls). In this paper, we investigate possible applications of these approaches in architectural design and building management and comment on the possible benefits for the building profession. While contemporary practice of spatial arrangement is predominantly based on the manual iteration of spatial topologies, we show that the segmentation of buildings in spaces along with the untraditional more abstract graph-based representations can be used for design, management and navigation within building structures.
keywords 3d scanning; point cloud processing; bim; facility management; space syntax
series eCAADe
email
last changed 2022/06/07 07:59

_id acadia14projects_181
id acadia14projects_181
authors Wiscombe, Thomas
year 2014
title National Center for Contemporary Arts
source ACADIA 14: Design Agency [Projects of the 34th Annual Conference of the Association for Computer Aided Design in Architecture (ACADIA) ISBN 9789126724478]Los Angeles 23-25 October, 2014), pp. 181-184
doi https://doi.org/10.52842/conf.acadia.2014.181
summary This proposal is a continuation of a body of work we call ‘objects wrapped in objects’, which deals with discrete, chunky objects gathered and squished together in a sack. This strategy creates complex interstitial spaces and layered interiority, making the contemporary museum a space of surprises and discrete experiences rather than an endless continuum of paths. Tristan Garcia, the object-oriented philosopher, talks about the infinite regress of things inside of things inside of things, except the world, which everything is inside of and therefore cannot itself be inside of something else. For him, the concept of a ‘sack’, literally, is a diagram of the conundrum of how things can simultaneously be autonomous from one another but also contain other things. This conundrum is the core of our proposal, in that the building should appear simultaneously as multiple autonomous objects but also as a larger, emergent object with its own properties. The vibration between these two ways of existing creates a visual indeterminacy that is alluring and durable.On the south side facing the Park, the sack is sliced open to reveal an incongruent inner world of stepped and stacked public space. This space is formed by way of an inner liner, which delaminates from the sack surface. Permanent gallery spaces are housed in the space between liner and sack. The building is re-enclosed with a glass membrane which is not coincident with the sack silhouette, creating an open-endedness or deferral of interiority in the project. Black jack-like objects house various other functions such as the temporary galleries, theaters, research area, library, and offices. The interstitial spaces between objects and sack are technically exterior space, but they are enclosed with infill glazing deep inside reveals. These spaces are inhabitable and contain the primary circulation of the building.The sack is articulated with architectural tattoos that subvert subdivision logics in favor of the freeform figuration allowed by composite construction. Tattoos are executed in such a way as to blur the edge between discrete objects and visually re-establish the larger object, as if qualities from the black objects begin to loosen and drift onto the sack. Finally, the building is squished into a ‘ground object’ which is in turn squished into the land. The looseness between building and ground object allows for passage underneath the building. The looseness between ground object and land emphasizes the object-hood of the building complex. This move contrasts with exhausted ideas of buildings becoming landscape or otherwise disappearing into context
keywords Material Logics and Tectonics, Computational Design Research
series ACADIA
type Practice Projects
email
last changed 2022/06/07 07:57

_id acadia14projects_87
id acadia14projects_87
authors Ahrens, Chandler; Sprecher, Aaron; Neuman, Eran
year 2014
title WHITEOUT: Topological evolution of embedded geometries
source ACADIA 14: Design Agency [Projects of the 34th Annual Conference of the Association for Computer Aided Design in Architecture (ACADIA) ISBN 9789126724478]Los Angeles 23-25 October, 2014), pp. 87-90
doi https://doi.org/10.52842/conf.acadia.2014.087
summary Whiteout documents the design, fabrication and installation of a full scale prototype using a predictive mesh relaxation algorithm while the physical construct made from white spandex fabric, steel tube, wood members and aluminum connectors verifies the virtual assumptions.
keywords Material Logics and Tectonics
series ACADIA
type Research Projects
email
last changed 2022/06/07 07:54

_id sigradi2014_271
id sigradi2014_271
authors Alvarez, Marcelo Paysse
year 2014
title Relevamiento con drones; el caso Real de San Carlos [Drone mapping; case study: Real de San Carlos]
source SiGraDi 2014 [Proceedings of the 18th Conference of the Iberoamerican Society of Digital Graphics - ISBN: 978-9974-99-655-7] Uruguay - Montevideo 12 - 14 November 2014, pp. 649-652
summary Cultural landscapes, although complex realities, give shape and meaning to the tangible and intangible components which form the foundations of human cultural background. The architecture of the city of Colonia del Sacramento fits within this context, and builds up a unique cultural landscape inserted in the logic of the historical heritage protection system. This concept, which implies wealth but also conflicts, demands a multidisciplinary approach grounded on a wide vision of this issue. Likewise, this comprehensive approach contributes to reverse and correct the lack of capacity and/or interest to save these examples of man-made landscape (prefabrication, mega-projects of the beginnings of the 20th Century, etc.), which are essential pieces of heritage conservation. Since 1943 the bullring is owned by the Municipality of Colonia. In the last decade the building was fenced to prevent breakdown risk. Still, illegal access occurs quite easily, increasing the risk and potential damage, in addition to the spoilage caused by more than one hundred years of inactivity and lack of maintenance. This paper proposes a method to survey and record the current status of the building, from photos taken by unmanned aerial vehicles (UAV, drones), allowing the registry without the need of direct access to the site. The survey will enable three types of results: series of mapped photographs, 3D models and an interactive platform for aerial view. The aim is to provide valuable and essential documentation for next stages of consolidation works, competitions and eventualy, new uses of the heritage building.
series SIGRADI
email
last changed 2016/03/10 09:47

_id sigradi2014_301
id sigradi2014_301
authors Dametto, Ana Paula de Andrea; Janice de Freitas Pires, Monica Veiga, Adriane Borda Almeida da Silva
year 2014
title Representações de Patrimônio Arquitetônico: para documentar, difundir e tocar [Representations of Architectural Heritage: for documenting, disseminating and touching]
source SiGraDi 2014 [Proceedings of the 18th Conference of the Iberoamerican Society of Digital Graphics - ISBN: 978-9974-99-655-7] Uruguay - Montevideo 12 - 14 November 2014, pp. 487-490
summary In this paper experiences of documenting an artifact of cultural interest are reported, these experiences were made possible by the interaction between researchers of two areas of study: Memory and Heritage and Digital Graphic Representation. These experiences include building a registration form, obtaining models in virtual reality, augmented reality and 3D printing. The different perceptual dimensions that each type of description can add to an inventorial system were observed as well as which organizational and access to information implications each of these types requires from such a system.
keywords Architectural heritage; architectural documentation; advanced technologies of representation and visualization; metallic artifacts
series SIGRADI
email
last changed 2016/03/10 09:50

_id ecaade2014_123
id ecaade2014_123
authors Di Li, Michael Knight and Andre Brown
year 2014
title Digital fabrication as a tool for investigating traditional Chinese architecture - A case study of the dou gong
source Thompson, Emine Mine (ed.), Fusion - Proceedings of the 32nd eCAADe Conference - Volume 1, Department of Architecture and Built Environment, Faculty of Engineering and Environment, Newcastle upon Tyne, England, UK, 10-12 September 2014, pp. 623-632
doi https://doi.org/10.52842/conf.ecaade.2014.1.623
wos WOS:000361384700062
summary This paper presents part of a broader research project in which a set of complementary computational techniques have been applied to investigate and interpret traditional Chinese architecture. The techniques involve digital modelling, algorithmic representation and digital fabrication. The ancient rule books that describe the traditional Chinese design styles and construction technologies are the basis for the parametric rules and algorithms and the application to the modelling and fabrication process. The focus of this paper is the study of a typical Chinese joint structure, the dou gong. The precedent case study and the components of the dou gong are reviewed and analysed. Then the digital representation and fabrication processes that have been employed are demonstrated. Practical problems were found in this process and modifications were consequently made. At the end of the paper, we discuss the achievements and benefits that arise from this investigation, and potential applications in practice. Conclusions from work presented in this paper and for the broader research are drawn respectively. Significant prospective work is suggested.
keywords Dou gong; ying zao fa shi; digital fabrication; traditional chinese architecture
series eCAADe
email
last changed 2022/06/07 07:55

_id ecaade2023_000
id ecaade2023_000
authors Dokonal, Wolfgang, Hirschberg, Urs and Wurzer, Gabriel
year 2023
title eCAADe 2023 Digital Design Reconsidered - Volume 1
source Dokonal, W, Hirschberg, U and Wurzer, G (eds.), Digital Design Reconsidered - Proceedings of the 41st Conference on Education and Research in Computer Aided Architectural Design in Europe (eCAADe 2023) - Volume 1, Graz, 20-22 September 2023, 905 p.
doi https://doi.org/10.52842/conf.ecaade.2023.1.001
summary The conference logo is a bird’s eye view of spiral stairs that join and separate – an homage to the famous double spiral staircase in Graz, a tourist attraction of this city and a must-see for any architecturally minded visitor. Carved out of limestone, the medieval construction of the original is a daring feat of masonry as well as a symbolic gesture. The design speaks of separation and reconciliation: The paths of two people that climb the double spiral stairs separate and then meet again at each platform. The relationship between architectural design and the growing digital repertoire of tools and possibilities seems to undergo similar cycles of attraction and rejection: enthusiasm about digital innovations – whether in Virtual Reality, Augmented Reality, Energy Design, Robotic Fabrication, the many Dimensions of BIM or, as right now, in AI and Machine Learning – is typically followed by a certain disillusionment and a realization that the promises were somewhat overblown. But a turn away from these digital innovations can only be temporary. In our call for papers we refer to the first and second ‘digital turns’, a term Mario Carpo coined. Yes, it’s a bit of a pun, but you could indeed see these digital turns in our logo as well. Carpo would probably agree that design and the digital have become inseparably intertwined. While they may be circling in different directions, an innovative rejoinder is always just around the corner. The theme of the conference asked participants to re-consider the relationship between Design and the Digital. The notion of a cycle is already present in the syllable “re”. Indeed, 20 years earlier, in 2003, we held an ECAADE conference in Graz simply under the title “Digital Design” and our re-using – or is it re-cycling? – the theme can be seen as the completion of one of those cycles described above: One level up, we meet again, we’ve come full circle. The question of the relationship between Design and the Digital is still in flux, still worthy of renewed consideration. There is a historical notion implicit in the theme. To reconsider something, one needs to take a step back, to look into the past as well as into the future. Indeed, at this conference we wanted to take a longer view, something not done often enough in the fast-paced world of digital technology. Carefully considering one’s past can be a source of inspiration. In fact, the double spiral stair that inspired our conference logo also inspired many architects through the ages. Konrad Wachsmann, for example, is said to have come up with his famous Grapevine assembly system based on this double spiral stair and its intricate joinery. More recently, Rem Koolhaas deemed the double spiral staircase in Graz important enough to include a detailed model of it in his “elements of architecture” exhibition at the Venice Biennale in 2014. Our interpretation of the stair is a typically digital one, you might say. First of all: it’s a rendering of a virtual model; it only exists inside a computer. Secondly, this virtual model isn’t true to the original. Instead, it does what the digital has made so easy to do: it exaggerates. Where the original has just two spiral stairs that separate and join, our model consists of countless stairs that are joined in this way. We see only a part of the model, but the stairs appear to continue in all directions. The implication is of an endless field of spiral stairs. As the 3D model was generated with a parametric script, it would be very easy to change all parameters of it – including the number of stairs that make it up. Everyone at this conference is familiar with the concept of parametric design: it makes generating models of seemingly endless amounts of connected spiral stairs really easy. Although, of course, if we’re too literal about the term ‘endless’, generating our stair model will eventually crash even the most advanced computers. We know that, too. – That's another truth about the Digital: it makes a promise of infinity, which, in the end, it can’t keep. And even if it could: what’s the point of just adding more of the same: more variations, more options, more possible ways to get lost? Doesn’t the original double spiral staircase contain all those derivatives already? Don’t we know that ‘more’ isn’t necessarily better? In the original double spiral stair the happy end is guaranteed: the lovers’ paths meet at the top as well as when they exit the building. Therefore, the stair is also colloquially known as the Busserlstiege (the kissing stair) or the Versöhnungsstiege (reconciliation stair). In our digitally enhanced version, this outcome is no longer clear: we can choose between multiple directions at each level and we risk losing sight of the one we were with. This is also emblematic of our field of research. eCAADe was founded to promote “good practice and sharing information in relation to the use of computers in research and education in architecture and related professions” (see ecaade.org). That may have seemed a straightforward proposition forty years ago, when the association was founded. A look at the breadth and depth of research topics presented and discussed at this conference (and as a consequence in this book, for which you’re reading the editorial) shows how the field has developed over these forty years. There are sessions on Digital Design Education, on Digital Fabrication, on Virtual Reality, on Virtual Heritage, on Generative Design and Machine Learning, on Digital Cities, on Simulation and Digital Twins, on BIM, on Sustainability, on Circular Design, on Design Theory and on Digital Design Experimentations. We hope you will find what you’re looking for in this book and at the conference – and maybe even more than that: surprising turns and happy encounters between Design and the Digital.
series eCAADe
email
last changed 2023/12/10 10:49

_id ecaade2023_001
id ecaade2023_001
authors Dokonal, Wolfgang, Hirschberg, Urs and Wurzer, Gabriel
year 2023
title eCAADe 2023 Digital Design Reconsidered - Volume 2
source Dokonal, W, Hirschberg, U and Wurzer, G (eds.), Digital Design Reconsidered - Proceedings of the 41st Conference on Education and Research in Computer Aided Architectural Design in Europe (eCAADe 2023) - Volume 2, Graz, 20-22 September 2023, 899 p.
doi https://doi.org/10.52842/conf.ecaade.2023.2.001
summary The conference logo is a bird’s eye view of spiral stairs that join and separate – an homage to the famous double spiral staircase in Graz, a tourist attraction of this city and a must-see for any architecturally minded visitor. Carved out of limestone, the medieval construction of the original is a daring feat of masonry as well as a symbolic gesture. The design speaks of separation and reconciliation: The paths of two people that climb the double spiral stairs separate and then meet again at each platform. The relationship between architectural design and the growing digital repertoire of tools and possibilities seems to undergo similar cycles of attraction and rejection: enthusiasm about digital innovations – whether in Virtual Reality, Augmented Reality, Energy Design, Robotic Fabrication, the many Dimensions of BIM or, as right now, in AI and Machine Learning – is typically followed by a certain disillusionment and a realization that the promises were somewhat overblown. But a turn away from these digital innovations can only be temporary. In our call for papers we refer to the first and second ‘digital turns’, a term Mario Carpo coined. Yes, it’s a bit of a pun, but you could indeed see these digital turns in our logo as well. Carpo would probably agree that design and the digital have become inseparably intertwined. While they may be circling in different directions, an innovative rejoinder is always just around the corner. The theme of the conference asked participants to re-consider the relationship between Design and the Digital. The notion of a cycle is already present in the syllable “re”. Indeed, 20 years earlier, in 2003, we held an ECAADE conference in Graz simply under the title “Digital Design” and our re-using – or is it re-cycling? – the theme can be seen as the completion of one of those cycles described above: One level up, we meet again, we’ve come full circle. The question of the relationship between Design and the Digital is still in flux, still worthy of renewed consideration. There is a historical notion implicit in the theme. To reconsider something, one needs to take a step back, to look into the past as well as into the future. Indeed, at this conference we wanted to take a longer view, something not done often enough in the fast-paced world of digital technology. Carefully considering one’s past can be a source of inspiration. In fact, the double spiral stair that inspired our conference logo also inspired many architects through the ages. Konrad Wachsmann, for example, is said to have come up with his famous Grapevine assembly system based on this double spiral stair and its intricate joinery. More recently, Rem Koolhaas deemed the double spiral staircase in Graz important enough to include a detailed model of it in his “elements of architecture” exhibition at the Venice Biennale in 2014. Our interpretation of the stair is a typically digital one, you might say. First of all: it’s a rendering of a virtual model; it only exists inside a computer. Secondly, this virtual model isn’t true to the original. Instead, it does what the digital has made so easy to do: it exaggerates. Where the original has just two spiral stairs that separate and join, our model consists of countless stairs that are joined in this way. We see only a part of the model, but the stairs appear to continue in all directions. The implication is of an endless field of spiral stairs. As the 3D model was generated with a parametric script, it would be very easy to change all parameters of it – including the number of stairs that make it up. Everyone at this conference is familiar with the concept of parametric design: it makes generating models of seemingly endless amounts of connected spiral stairs really easy. Although, of course, if we’re too literal about the term ‘endless’, generating our stair model will eventually crash even the most advanced computers. We know that, too. – That's another truth about the Digital: it makes a promise of infinity, which, in the end, it can’t keep. And even if it could: what’s the point of just adding more of the same: more variations, more options, more possible ways to get lost? Doesn’t the original double spiral staircase contain all those derivatives already? Don’t we know that ‘more’ isn’t necessarily better? In the original double spiral stair the happy end is guaranteed: the lovers’ paths meet at the top as well as when they exit the building. Therefore, the stair is also colloquially known as the Busserlstiege (the kissing stair) or the Versöhnungsstiege (reconciliation stair). In our digitally enhanced version, this outcome is no longer clear: we can choose between multiple directions at each level and we risk losing sight of the one we were with. This is also emblematic of our field of research. eCAADe was founded to promote “good practice and sharing information in relation to the use of computers in research and education in architecture and related professions” (see ecaade.org). That may have seemed a straightforward proposition forty years ago, when the association was founded. A look at the breadth and depth of research topics presented and discussed at this conference (and as a consequence in this book, for which you’re reading the editorial) shows how the field has developed over these forty years. There are sessions on Digital Design Education, on Digital Fabrication, on Virtual Reality, on Virtual Heritage, on Generative Design and Machine Learning, on Digital Cities, on Simulation and Digital Twins, on BIM, on Sustainability, on Circular Design, on Design Theory and on Digital Design Experimentations. We hope you will find what you’re looking for in this book and at the conference – and maybe even more than that: surprising turns and happy encounters between Design and the Digital.
series eCAADe
type normal paper
email
last changed 2024/08/29 08:36

For more results click below:

this is page 0show page 1show page 2show page 3show page 4show page 5... show page 33HOMELOGIN (you are user _anon_503207 from group guest) CUMINCAD Papers Powered by SciX Open Publishing Services 1.002