CumInCAD is a Cumulative Index about publications in Computer Aided Architectural Design
supported by the sibling associations ACADIA, CAADRIA, eCAADe, SIGraDi, ASCAAD and CAAD futures

PDF papers
References

Hits 1 to 13 of 13

_id caadria2014_120
id caadria2014_120
authors Hack, Norman; Willi Viktor Lauer, Fabio Gramazio and Matthias Kohler
year 2014
title Mesh Mould: Differentiation for Enhanced Performance
source Rethinking Comprehensive Design: Speculative Counterculture, Proceedings of the 19th International Conference on Computer-Aided Architectural Design Research in Asia (CAADRIA 2014) / Kyoto 14-16 May 2014, pp. 139–148
doi https://doi.org/10.52842/conf.caadria.2014.139
summary Mesh-Mould is a novel robotic fabrication system for complex, non-standard concrete structures. The system folds together formwork and reinforcement, the two most labour intensive aspects of concrete constructions and offers an alternative approach to the current modes of prefabrication by suggesting an in-situ fabrication process (Figure 1). The paper outlines the development of the Form-work/Reinforcing Meshes through several iterations of physical and digital tests. Initially starting from simple triangulated 3D lattices, the structures evolved to become more complex and differentiated. The incorporating of flow enhancing ducts and surface perimeters with diverse surface aperture densities facilitates an optimal concrete flow and material distribution within the mesh.
keywords Robotic fabrication; concrete formwork; differentiation; spatial extrusion
series CAADRIA
email
last changed 2022/06/07 07:50

_id acadia14projects_87
id acadia14projects_87
authors Ahrens, Chandler; Sprecher, Aaron; Neuman, Eran
year 2014
title WHITEOUT: Topological evolution of embedded geometries
source ACADIA 14: Design Agency [Projects of the 34th Annual Conference of the Association for Computer Aided Design in Architecture (ACADIA) ISBN 9789126724478]Los Angeles 23-25 October, 2014), pp. 87-90
doi https://doi.org/10.52842/conf.acadia.2014.087
summary Whiteout documents the design, fabrication and installation of a full scale prototype using a predictive mesh relaxation algorithm while the physical construct made from white spandex fabric, steel tube, wood members and aluminum connectors verifies the virtual assumptions.
keywords Material Logics and Tectonics
series ACADIA
type Research Projects
email
last changed 2022/06/07 07:54

_id acadia14_589
id acadia14_589
authors Becker, Mirco
year 2014
title Configurations of Intensity
source ACADIA 14: Design Agency [Proceedings of the 34th Annual Conference of the Association for Computer Aided Design in Architecture (ACADIA) ISBN 9781926724478]Los Angeles 23-25 October, 2014), pp. 589-596
doi https://doi.org/10.52842/conf.acadia.2014.589
summary The author is proposing a framework for discussing aesthetics in computational practice. The framework is established based on the analysis and comparison of 8 digitally crafted sculptures - Digital Bodies by Architecture and Performative Design (APD) at Städelschule Architecture Class (SAC)
keywords 3d scanning, digital aesthetic, mesh curvature, design computation
series ACADIA
type Normal Paper
email
last changed 2022/06/07 07:54

_id acadia14_209
id acadia14_209
authors Huang, Alvin; Lewis, Stephen
year 2014
title Nearly Minimal: How intuition and analysis inform the minimal surface geometries in the Pure Tension Pavilion
source ACADIA 14: Design Agency [Proceedings of the 34th Annual Conference of the Association for Computer Aided Design in Architecture (ACADIA) ISBN 9781926724478]Los Angeles 23-25 October, 2014), pp. 209-218
doi https://doi.org/10.52842/conf.acadia.2014.209
summary This paper focuses on the application of tool, exploration of technique, and subsequent development of an informed design intuition for generating "near" minimal surface structures in the design, development and construction of the Pure Tension Pavilion.
keywords Form-finding, Mesh Relaxation, Kangaroo, Intuition, structural analysis
series ACADIA
type Normal Paper
email
last changed 2022/06/07 07:50

_id caadria2014_044
id caadria2014_044
authors Huang, Alvin; Stephen Lewis and Jason Gillette
year 2014
title Pure Tension: Intuition, Engineering & Fabrication
source Rethinking Comprehensive Design: Speculative Counterculture, Proceedings of the 19th International Conference on Computer-Aided Architectural Design Research in Asia (CAADRIA 2014) / Kyoto 14-16 May 2014, pp. 171–180
doi https://doi.org/10.52842/conf.caadria.2014.171
summary The "PURE Tension" Pavilion is a lightweight, rapidly deployable, tensioned membrane structure and portable charging station commissioned by Volvo Car Italia to showcase the new Volvo V60 Hybrid Electric Diesel car. Officially launched in Milan, Italy in October 2013, this experimental structure was developed through a process of rigorous research and development that investigated methods of associative modelling, dynamic mesh relaxation, geometric rationalization, solar incidence analysis, membrane panelling, and material performance. It is an experimental structure that, similar to a concept car, is a working prototype that speculates on the potential future of personal mobility and alternative energy sources for transportation while also exploring digital design methodologies and innovative structural solutions. This paper will illustrate the design, development and fabrication processes involved in realizing this structure.
keywords Form-finding; dynamic-mesh relaxation; geometric rationalisation; patterning, digital fabrication
series CAADRIA
email
last changed 2022/06/07 07:50

_id acadia14_135
id acadia14_135
authors Jahn, Gwyllim; Morgan, Thomas; Roudavski, Stanlislav
year 2014
title Mesh Agency
source ACADIA 14: Design Agency [Proceedings of the 34th Annual Conference of the Association for Computer Aided Design in Architecture (ACADIA) ISBN 9781926724478]Los Angeles 23-25 October, 2014), pp. 135-144
doi https://doi.org/10.52842/conf.acadia.2014.135
summary The paper argues that artifacts of meshes derived from generative processes can prompt designers to seed, analyze, and interact with phenomena otherwise withdrawn from habitual human perception.
keywords digital materiality, modelling and simulation, speculative design, computational creativity, emergence and self-organization, non-human agency
series ACADIA
type Normal Paper
email
last changed 2022/06/07 07:52

_id caadria2014_184
id caadria2014_184
authors Janssen, Patrick and Vignesh Kaushik
year 2014
title Plot Packing
source Rethinking Comprehensive Design: Speculative Counterculture, Proceedings of the 19th International Conference on Computer-Aided Architectural Design Research in Asia (CAADRIA 2014) / Kyoto 14-16 May 2014, pp. 533–542
doi https://doi.org/10.52842/conf.caadria.2014.533
summary Generative design tools can accelerate the optioneering process by allowing designers to quickly generate large numbers of design variants, thereby enabling a wider and more thorough exploration to be conducted. This paper focuses on procedures for generating inner city street networks and city block massing studies for sites within existing urban areas. A novel procedure is proposed that is capable of subdividing complex non-orthogonal sites into similarly sized well-formed plots and subsequently further subdividing these plots into sizes appropriate for selected city block typologies. The application of the procedure is demonstrated on a site in Singapore.
keywords Urban optioneering; street networks; parametric urbanism; quadrilateral mesh generation
series CAADRIA
email
last changed 2022/06/07 07:52

_id ecaade2014_060
id ecaade2014_060
authors Koki Akiyoshi and Hiroya Tanaka
year 2014
title Local-reconfigurable Freeform surface with plywood - From the perspective of Japanese Tsugite-Shiguchi
source Thompson, Emine Mine (ed.), Fusion - Proceedings of the 32nd eCAADe Conference - Volume 1, Department of Architecture and Built Environment, Faculty of Engineering and Environment, Newcastle upon Tyne, England, UK, 10-12 September 2014, pp. 527-535
doi https://doi.org/10.52842/conf.ecaade.2014.1.527
wos WOS:000361384700052
summary This research exhibits a novel construction method for Freeform surfaces with plywood, without using metal joints and bending. By introducing the perspective of Japanese Tsugite-Shiguchi, the research aims for a drastic change from node-oriented thinking to module-oriented thinking. This paper focuses on the investigation of how to simplify fabrication processes, how to realize the environmental capabilities of Freeform wood structures, and how to provide redundancy and stability to the whole architectural system. In order to challenge these problems, we examined three discretion methods. As a result, we have been successful to produce a double-layered surface, filled with triangular mesh, implemented only by cutting one sheet of plywood. Moreover, the system has also acquired a new nature: local-reconfigurability, wherein it can react and adapt to fit local parameters and requirements.
keywords Digital fabrication; freeform timber; without metal and bending; discrete surface; minimal components for mega-assembly
series eCAADe
email
last changed 2022/06/07 07:51

_id ecaade2014_149
id ecaade2014_149
authors Matthias Standfest
year 2014
title Unsupervised Symmetric Polygon Mesh Mapping - The Dualism of Mesh Representation and Its Implementation for Many Layered Self-Organizing Map Architectures
source Thompson, Emine Mine (ed.), Fusion - Proceedings of the 32nd eCAADe Conference - Volume 1, Department of Architecture and Built Environment, Faculty of Engineering and Environment, Newcastle upon Tyne, England, UK, 10-12 September 2014, pp. 505-513
doi https://doi.org/10.52842/conf.ecaade.2014.1.505
wos WOS:000361384700050
summary With this paper we present a fully automated semantic shape similarity detection based on N-rings with further potential for shape synthesis in a topological correct feature space. Therefore a way of symmetric encoding of geometry, optimized for the use as feature-vector in self-organizing maps, is introduced. Furthermore we present a modified kernel for the detection of the best matching unit in self-organizing maps especially designed for a data topology differing from the default predecessor/successor structure. Finally we provide the results of a conducted experiment clustering building blocks of an area in Zürich, Switzerland.
keywords Unsupervised machine learning; geometry clustering; self-organizing map; mesh synthesis; probabilistic modelling
series eCAADe
email
last changed 2022/06/07 07:58

_id lasg_nearlivingarchitecture_2014_085
id lasg_nearlivingarchitecture_2014_085
authors Stacey, Michael; and Chantelle Niblock
year 2014
title Prototyping Protocell Mesh
source Near-Living Architecture; Work in Progress from The Hylozoic Ground Collaboration 2011 - 2013 [ISBN 978-1-926724-45-4 (pbk).--ISBN 978-1-926724-57-7 (epub).--ISBN 978-1-926724-58-4 (mobi)] Riverside Architectural Press: Toronto, Canada 2014 pp. 085 - 096
keywords Living Architecture Systems Group, living architecture, meshworks, metabolisms, kinetic, cybernetic, artificial intelligence, cognition, neuroscience, prototyping, diffusive, subtle phenomena, form-languge, chemistry, natural computing, affect, perception
email
last changed 2019/07/29 14:00

_id ecaade2014_066
id ecaade2014_066
authors Timo Harboe Nielsen, Stephen Melville and Iain Sproat
year 2014
title Populating surfaces with holes using particle repulsion based on scalar fields
source Thompson, Emine Mine (ed.), Fusion - Proceedings of the 32nd eCAADe Conference - Volume 1, Department of Architecture and Built Environment, Faculty of Engineering and Environment, Newcastle upon Tyne, England, UK, 10-12 September 2014, pp. 537-545
doi https://doi.org/10.52842/conf.ecaade.2014.1.537
wos WOS:000361384700053
summary This paper describes the relaxation of charged particles in order to create a pattern of voids based on a scalar field on any complex polygon mesh. A scalar field representing stress values or a greyscale image, can be used to create void patterns of aesthetic or structural character; all with full awareness of the materiality. Following relaxation, areas with low scalar values consist of large voids with a small distance between them. Areas of high scalar value consist of small voids with a greater distance between them. This research has been applied in the design of a sculpture at Oxford Brookes University, where stress data from Finite Element Software has been used for the automatic and rational distribution of holes.
keywords Surface perforation; geometry optimisation; particle repulsion
series eCAADe
email
last changed 2022/06/07 07:56

_id cdrf2023_526
id cdrf2023_526
authors Eric Peterson, Bhavleen Kaur
year 2023
title Printing Compound-Curved Sandwich Structures with Robotic Multi-Bias Additive Manufacturing
source Proceedings of the 2023 DigitalFUTURES The 5st International Conference on Computational Design and Robotic Fabrication (CDRF 2023)
doi https://doi.org/https://doi.org/10.1007/978-981-99-8405-3_44
summary A research team at Florida International University Robotics and Digital Fabrication Lab has developed a novel method for 3d-printing curved open grid core sandwich structures using a thermoplastic extruder mounted on a robotic arm. This print-on-print additive manufacturing (AM) method relies on the 3d modeling software Rhinoceros and its parametric software plugin Grasshopper with Kuka-Parametric Robotic Control (Kuka-PRC) to convert NURBS surfaces into multi-bias additive manufacturing (MBAM) toolpaths. While several high-profile projects including the University of Stuttgart ICD/ITKE Research Pavilions 2014–15 and 2016–17, ETH-Digital Building Technologies project Levis Ergon Chair 2018, and 3D printed chair using Robotic Hybrid Manufacturing at Institute of Advanced Architecture of Catalonia (IAAC) 2019, have previously demonstrated the feasibility of 3d printing with either MBAM or sandwich structures, this method for printing Compound-Curved Sandwich Structures with Robotic MBAM combines these methods offering the possibility to significantly reduce the weight of spanning or cantilevered surfaces by incorporating the structural logic of open grid-core sandwiches with MBAM toolpath printing. Often built with fiber reinforced plastics (FRP), sandwich structures are a common solution for thin wall construction of compound curved surfaces that require a high strength-to-weight ratio with applications including aerospace, wind energy, marine, automotive, transportation infrastructure, architecture, furniture, and sports equipment manufacturing. Typical practices for producing sandwich structures are labor intensive, involving a multi-stage process including (1) the design and fabrication of a mould, (2) the application of a surface substrate such as FRP, (3) the manual application of a light-weight grid-core material, and (4) application of a second surface substrate to complete the sandwich. There are several shortcomings to this moulded manufacturing method that affect both the formal outcome and the manufacturing process: moulds are often costly and labor intensive to build, formal geometric freedom is limited by the minimum draft angles required for successful removal from the mould, and customization and refinement of product lines can be limited by the need for moulds. While the most common material for this construction method is FRP, our proof-of-concept experiments relied on low-cost thermoplastic using a specially configured pellet extruder. While the method proved feasible for small representative examples there remain significant challenges to the successful deployment of this manufacturing method at larger scales that can only be addressed with additional research. The digital workflow includes the following steps: (1) Create a 3D digital model of the base surface in Rhino, (2) Generate toolpaths for laminar printing in Grasshopper by converting surfaces into lists of oriented points, (3) Generate the structural grid-core using the same process, (4) Orient the robot to align in the direction of the substructure geometric planes, (5) Print the grid core using MBAM toolpaths, (6) Repeat step 1 and 2 for printing the outer surface with appropriate adjustments to the extruder orientation. During the design and printing process, we encountered several challenges including selecting geometry suitable for testing, extruder orientation, calibration of the hot end and extrusion/movement speeds, and deviation between the computer model and the physical object on the build platen. Physical models varied from their digital counterparts by several millimeters due to material deformation in the extrusion and cooling process. Real-time deviation verification studies will likely improve the workflow in future studies.
series cdrf
email
last changed 2024/05/29 14:04

_id ecaade2014_167
id ecaade2014_167
authors Pavlos Fereos and Marios Tsiliakos
year 2014
title Isoprototyping - Rapid Robotic Aided Fabrication for Double Curvature Surfaces
source Thompson, Emine Mine (ed.), Fusion - Proceedings of the 32nd eCAADe Conference - Volume 1, Department of Architecture and Built Environment, Faculty of Engineering and Environment, Newcastle upon Tyne, England, UK, 10-12 September 2014, pp. 433-443
doi https://doi.org/10.52842/conf.ecaade.2014.1.433
wos WOS:000361384700043
summary IsoPrototyping is a research initiative, undertaken at the Institute fur experimentelle architektur.hochbau, within the context of the Vertiefung Hochbau and Sonderkapitel des hochbaus courses, which specialize on building construction. Through the case study of an iso-surface spatial configuration, this research targets the exploration of innovative digital prototyping methodologies, that would allow rapid and cost-efficient fabrication, capable of manufacturing any given double curved surface. The ABB industrial robots of REX-Lab programmed in combination with custom designed, recalibrated dry-mold, surface-producing apparatus, formed the framework for a proficient, yet flexible, process describing and fabricating implicit non-linear systems.
keywords Industrial robots; pin-board; rapid-prototyping; dry-recalibrated mould; digital-fabrication
series eCAADe
email
last changed 2022/06/07 07:59

No more hits.

HOMELOGIN (you are user _anon_898542 from group guest) CUMINCAD Papers Powered by SciX Open Publishing Services 1.002