CumInCAD is a Cumulative Index about publications in Computer Aided Architectural Design
supported by the sibling associations ACADIA, CAADRIA, eCAADe, SIGraDi, ASCAAD and CAAD futures

PDF papers
References

Hits 1 to 20 of 390

_id caadria2014_120
id caadria2014_120
authors Hack, Norman; Willi Viktor Lauer, Fabio Gramazio and Matthias Kohler
year 2014
title Mesh Mould: Differentiation for Enhanced Performance
doi https://doi.org/10.52842/conf.caadria.2014.139
source Rethinking Comprehensive Design: Speculative Counterculture, Proceedings of the 19th International Conference on Computer-Aided Architectural Design Research in Asia (CAADRIA 2014) / Kyoto 14-16 May 2014, pp. 139–148
summary Mesh-Mould is a novel robotic fabrication system for complex, non-standard concrete structures. The system folds together formwork and reinforcement, the two most labour intensive aspects of concrete constructions and offers an alternative approach to the current modes of prefabrication by suggesting an in-situ fabrication process (Figure 1). The paper outlines the development of the Form-work/Reinforcing Meshes through several iterations of physical and digital tests. Initially starting from simple triangulated 3D lattices, the structures evolved to become more complex and differentiated. The incorporating of flow enhancing ducts and surface perimeters with diverse surface aperture densities facilitates an optimal concrete flow and material distribution within the mesh.
keywords Robotic fabrication; concrete formwork; differentiation; spatial extrusion
series CAADRIA
email
last changed 2022/06/07 07:50

_id cdrf2023_526
id cdrf2023_526
authors Eric Peterson, Bhavleen Kaur
year 2023
title Printing Compound-Curved Sandwich Structures with Robotic Multi-Bias Additive Manufacturing
doi https://doi.org/https://doi.org/10.1007/978-981-99-8405-3_44
source Proceedings of the 2023 DigitalFUTURES The 5st International Conference on Computational Design and Robotic Fabrication (CDRF 2023)
summary A research team at Florida International University Robotics and Digital Fabrication Lab has developed a novel method for 3d-printing curved open grid core sandwich structures using a thermoplastic extruder mounted on a robotic arm. This print-on-print additive manufacturing (AM) method relies on the 3d modeling software Rhinoceros and its parametric software plugin Grasshopper with Kuka-Parametric Robotic Control (Kuka-PRC) to convert NURBS surfaces into multi-bias additive manufacturing (MBAM) toolpaths. While several high-profile projects including the University of Stuttgart ICD/ITKE Research Pavilions 2014–15 and 2016–17, ETH-Digital Building Technologies project Levis Ergon Chair 2018, and 3D printed chair using Robotic Hybrid Manufacturing at Institute of Advanced Architecture of Catalonia (IAAC) 2019, have previously demonstrated the feasibility of 3d printing with either MBAM or sandwich structures, this method for printing Compound-Curved Sandwich Structures with Robotic MBAM combines these methods offering the possibility to significantly reduce the weight of spanning or cantilevered surfaces by incorporating the structural logic of open grid-core sandwiches with MBAM toolpath printing. Often built with fiber reinforced plastics (FRP), sandwich structures are a common solution for thin wall construction of compound curved surfaces that require a high strength-to-weight ratio with applications including aerospace, wind energy, marine, automotive, transportation infrastructure, architecture, furniture, and sports equipment manufacturing. Typical practices for producing sandwich structures are labor intensive, involving a multi-stage process including (1) the design and fabrication of a mould, (2) the application of a surface substrate such as FRP, (3) the manual application of a light-weight grid-core material, and (4) application of a second surface substrate to complete the sandwich. There are several shortcomings to this moulded manufacturing method that affect both the formal outcome and the manufacturing process: moulds are often costly and labor intensive to build, formal geometric freedom is limited by the minimum draft angles required for successful removal from the mould, and customization and refinement of product lines can be limited by the need for moulds. While the most common material for this construction method is FRP, our proof-of-concept experiments relied on low-cost thermoplastic using a specially configured pellet extruder. While the method proved feasible for small representative examples there remain significant challenges to the successful deployment of this manufacturing method at larger scales that can only be addressed with additional research. The digital workflow includes the following steps: (1) Create a 3D digital model of the base surface in Rhino, (2) Generate toolpaths for laminar printing in Grasshopper by converting surfaces into lists of oriented points, (3) Generate the structural grid-core using the same process, (4) Orient the robot to align in the direction of the substructure geometric planes, (5) Print the grid core using MBAM toolpaths, (6) Repeat step 1 and 2 for printing the outer surface with appropriate adjustments to the extruder orientation. During the design and printing process, we encountered several challenges including selecting geometry suitable for testing, extruder orientation, calibration of the hot end and extrusion/movement speeds, and deviation between the computer model and the physical object on the build platen. Physical models varied from their digital counterparts by several millimeters due to material deformation in the extrusion and cooling process. Real-time deviation verification studies will likely improve the workflow in future studies.
series cdrf
email
last changed 2024/05/29 14:04

_id caadria2014_118
id caadria2014_118
authors Herr, Christiane M. and Thomas Fischer
year 2014
title A Notation to Aid Column and Beam Layout Design for Reinforced Concrete Construction in China
doi https://doi.org/10.52842/conf.caadria.2014.399
source Rethinking Comprehensive Design: Speculative Counterculture, Proceedings of the 19th International Conference on Computer-Aided Architectural Design Research in Asia (CAADRIA 2014) / Kyoto 14-16 May 2014, pp. 399–408
summary In this paper we report on the ongoing development of a toolkit to support the design of column and beam layouts for reinforced concrete structures in China. We present a visual, human- and machine-readable notation for architects and structural engineers to rapidly model column and beam layouts, as well as our underlying considerations. In conjunction with the toolkit, which consists of a CAD package, an editor, a parser, and an interpreter, the notation addresses aspects of local construction practice and supports design considerations including appearance, structural viability, constructability, and cost.
keywords Generative design; structural design; local materialisation; concrete; China; cost evaluation
series CAADRIA
email
last changed 2022/06/07 07:51

_id caadria2020_363
id caadria2020_363
authors Pal, Abhipsa, Chan, Wi Leen, Tan, Ying Yi, Chia, Pei Zhi and Tracy, Kenneth Joseph
year 2020
title Knit Concrete Formwork
doi https://doi.org/10.52842/conf.caadria.2020.1.213
source D. Holzer, W. Nakapan, A. Globa, I. Koh (eds.), RE: Anthropocene, Design in the Age of Humans - Proceedings of the 25th CAADRIA Conference - Volume 1, Chulalongkorn University, Bangkok, Thailand, 5-6 August 2020, pp. 213-222
summary The manufacture of concrete funicular shells often relies on traditional formwork construction techniques to provide a sculptured cavity for the fluid material to occupy (Bechthold, 2004). While this enables a predictable geometric outcome, the extensive use of timber and/or steel to construct these formworks account for up to 60% of the total production cost of concrete and are discarded after the casting is complete (Lloret et al. 2014). Thus, we propose an alternative method to create prefabricated modular systems out of concrete casted in customised tubular knitted membranes. These perform as a network of struts that can be affixed onto 3D printed nodes of a singular design. Altogether, these components serve as a kit-of-parts that can be transported to site and assembled together to create shell geometries.
keywords Knitted Textile; Fabric Formwork; Concrete Casting
series CAADRIA
email
last changed 2022/06/07 08:00

_id ecaade2014_239
id ecaade2014_239
authors Pedro Filipe Martins and José Pedro Sousa
year 2014
title Digital Fabrication Technology in Concrete Architecture
doi https://doi.org/10.52842/conf.ecaade.2014.1.475
source Thompson, Emine Mine (ed.), Fusion - Proceedings of the 32nd eCAADe Conference - Volume 1, Department of Architecture and Built Environment, Faculty of Engineering and Environment, Newcastle upon Tyne, England, UK, 10-12 September 2014, pp. 475-484
summary Technological innovation has been an important driving force in architecture, enabling and inspiring architects and engineers by giving them new tools for solving existing problems. In the last two decades, the exploration of digital design and fabrication technologies has stimulated the development of a variety of interests and strategies to materialize increasingly complex and customized solutions in architecture, with traditional building materials. Reinforced concrete is the most widely used material in the building industry today and throughout its history has been the subject of vast research into its performance as a construction material and its tectonic potential in architecture. As such, the introduction of digital fabrication processes in concrete construction represents the biggest prospect for renovation of our built environment and at the same time, presents particular difficulties and opportunities, which are now being addressed. In an effort to investigate the alternative design and material possibilities in concrete emerging from the use of digital fabrication technologies in architecture, this paper proposes a focused view of digital fabrication applied to concrete construction with two areas of research. By framing the research in the context of reference works in concrete architecture of the 20th century, this paper describes and illustrates taxonomy of existing and possible types of integration of digital fabrication technologies in concrete architecture in the realms of Practice and Research.This characterization allows the authors to frame the relation between material, technology and architecture in different environments regarding the same material, extracting a clear image of existing processes, their potential and shortcomings, as well as expectations for future developments.
wos WOS:000361384700047
keywords Digital fabrication; concrete; cam; robotics; sustainability
series eCAADe
email
last changed 2022/06/07 07:59

_id acadia14_517
id acadia14_517
authors Peters, Brian
year 2014
title Additive Formwork: 3D Printed Flexible Formwork
doi https://doi.org/10.52842/conf.acadia.2014.517
source ACADIA 14: Design Agency [Proceedings of the 34th Annual Conference of the Association for Computer Aided Design in Architecture (ACADIA) ISBN 9781926724478]Los Angeles 23-25 October, 2014), pp.517-522
summary Additive Formwork explores the potential and advantages of 3D printed, flexible formwork for architectural applications, specifically precast concrete panels. This research experiments with 3D printed malleable polymers as a mold at both a small and large scale, to determine the limitations and opportunities for architects and designers in construction.
keywords Digital fabrication and construction3D Printing, Parametric Design, Robotic Fabrication, Flexible, Precast Concrete, Material Research
series ACADIA
type Normal Paper
email
last changed 2022/06/07 08:00

_id acadia14_135
id acadia14_135
authors Jahn, Gwyllim; Morgan, Thomas; Roudavski, Stanlislav
year 2014
title Mesh Agency
doi https://doi.org/10.52842/conf.acadia.2014.135
source ACADIA 14: Design Agency [Proceedings of the 34th Annual Conference of the Association for Computer Aided Design in Architecture (ACADIA) ISBN 9781926724478]Los Angeles 23-25 October, 2014), pp. 135-144
summary The paper argues that artifacts of meshes derived from generative processes can prompt designers to seed, analyze, and interact with phenomena otherwise withdrawn from habitual human perception.
keywords digital materiality, modelling and simulation, speculative design, computational creativity, emergence and self-organization, non-human agency
series ACADIA
type Normal Paper
email
last changed 2022/06/07 07:52

_id ecaade2014_060
id ecaade2014_060
authors Koki Akiyoshi and Hiroya Tanaka
year 2014
title Local-reconfigurable Freeform surface with plywood - From the perspective of Japanese Tsugite-Shiguchi
doi https://doi.org/10.52842/conf.ecaade.2014.1.527
source Thompson, Emine Mine (ed.), Fusion - Proceedings of the 32nd eCAADe Conference - Volume 1, Department of Architecture and Built Environment, Faculty of Engineering and Environment, Newcastle upon Tyne, England, UK, 10-12 September 2014, pp. 527-535
summary This research exhibits a novel construction method for Freeform surfaces with plywood, without using metal joints and bending. By introducing the perspective of Japanese Tsugite-Shiguchi, the research aims for a drastic change from node-oriented thinking to module-oriented thinking. This paper focuses on the investigation of how to simplify fabrication processes, how to realize the environmental capabilities of Freeform wood structures, and how to provide redundancy and stability to the whole architectural system. In order to challenge these problems, we examined three discretion methods. As a result, we have been successful to produce a double-layered surface, filled with triangular mesh, implemented only by cutting one sheet of plywood. Moreover, the system has also acquired a new nature: local-reconfigurability, wherein it can react and adapt to fit local parameters and requirements.
wos WOS:000361384700052
keywords Digital fabrication; freeform timber; without metal and bending; discrete surface; minimal components for mega-assembly
series eCAADe
email
last changed 2022/06/07 07:51

_id ecaade2014_149
id ecaade2014_149
authors Matthias Standfest
year 2014
title Unsupervised Symmetric Polygon Mesh Mapping - The Dualism of Mesh Representation and Its Implementation for Many Layered Self-Organizing Map Architectures
doi https://doi.org/10.52842/conf.ecaade.2014.1.505
source Thompson, Emine Mine (ed.), Fusion - Proceedings of the 32nd eCAADe Conference - Volume 1, Department of Architecture and Built Environment, Faculty of Engineering and Environment, Newcastle upon Tyne, England, UK, 10-12 September 2014, pp. 505-513
summary With this paper we present a fully automated semantic shape similarity detection based on N-rings with further potential for shape synthesis in a topological correct feature space. Therefore a way of symmetric encoding of geometry, optimized for the use as feature-vector in self-organizing maps, is introduced. Furthermore we present a modified kernel for the detection of the best matching unit in self-organizing maps especially designed for a data topology differing from the default predecessor/successor structure. Finally we provide the results of a conducted experiment clustering building blocks of an area in Zürich, Switzerland.
wos WOS:000361384700050
keywords Unsupervised machine learning; geometry clustering; self-organizing map; mesh synthesis; probabilistic modelling
series eCAADe
email
last changed 2022/06/07 07:58

_id ecaade2014_167
id ecaade2014_167
authors Pavlos Fereos and Marios Tsiliakos
year 2014
title Isoprototyping - Rapid Robotic Aided Fabrication for Double Curvature Surfaces
doi https://doi.org/10.52842/conf.ecaade.2014.1.433
source Thompson, Emine Mine (ed.), Fusion - Proceedings of the 32nd eCAADe Conference - Volume 1, Department of Architecture and Built Environment, Faculty of Engineering and Environment, Newcastle upon Tyne, England, UK, 10-12 September 2014, pp. 433-443
summary IsoPrototyping is a research initiative, undertaken at the Institute fur experimentelle architektur.hochbau, within the context of the Vertiefung Hochbau and Sonderkapitel des hochbaus courses, which specialize on building construction. Through the case study of an iso-surface spatial configuration, this research targets the exploration of innovative digital prototyping methodologies, that would allow rapid and cost-efficient fabrication, capable of manufacturing any given double curved surface. The ABB industrial robots of REX-Lab programmed in combination with custom designed, recalibrated dry-mold, surface-producing apparatus, formed the framework for a proficient, yet flexible, process describing and fabricating implicit non-linear systems.
wos WOS:000361384700043
keywords Industrial robots; pin-board; rapid-prototyping; dry-recalibrated mould; digital-fabrication
series eCAADe
email
last changed 2022/06/07 07:59

_id caadria2014_173
id caadria2014_173
authors Lim, Jason; Ammar Mirjan, Fabio Gramazio and Matthias Kohler
year 2014
title Robotic Metal Aggregations
doi https://doi.org/10.52842/conf.caadria.2014.159
source Rethinking Comprehensive Design: Speculative Counterculture, Proceedings of the 19th International Conference on Computer-Aided Architectural Design Research in Asia (CAADRIA 2014) / Kyoto 14-16 May 2014, pp. 159–168
summary The recent convergence of computational design and digital fabrication has made new forms of architectural materialization possible. A workshop conducted at the Royal Melbourne Institute of Technology investigated how differentiated lightweight metal structures may be designed and fabricated under these new conditions. The workshop aim was to complete three such structures; each one is aggregated from aluminum profiles that are robotically assembled according to computationally driven geometric logics. The key challenge was to enable participants, assumed to lack programming and robotic fabrication experience, to design and construct their structures within imposed time constraints. This paper describes the subsequent development of accessible computational design tools and a robust robotic fabrication method for the workshop, and highlights the key decisions taken with their implementation. The workshop results are discussed and the design tools evaluated with respect to them. The paper concludes by recommending an approach to developing computational design tools which emphasizes the importance of usability and integration with the fabrication process.
keywords Robotic fabrication; computational design; visual programming; lightweight structures
series CAADRIA
email
last changed 2022/06/07 07:59

_id acadia14_399
id acadia14_399
authors Ozel, Guvenc
year 2014
title Case For an Architectural Singularity: Synchronization of Robotically Actuated Motion, Sense-Based Interaction and Computational Interface
doi https://doi.org/10.52842/conf.acadia.2014.399
source ACADIA 14: Design Agency [Proceedings of the 34th Annual Conference of the Association for Computer Aided Design in Architecture (ACADIA) ISBN 9781926724478]Los Angeles 23-25 October, 2014), pp. 399-408
summary By fusing sensing technology, robotics and coding in unison with architectural form designed to move and reconfigure itself, a new kind of architecture that goes through a formal transformation in interaction with the user can be imagined and devised. Aiming to merge human presence with space through technology, this new architecture defines space as an extension of the human body and consciousness rather than one that regulates and controls it.
keywords Sensing technology, robotics, consciousness
series ACADIA
type Normal Paper
email
last changed 2022/06/07 08:00

_id ecaade2014_036
id ecaade2014_036
authors Afonso Maria de Castro Fernandes Abreu Gonçalves
year 2014
title A Grammar for Shelters - An exploration of rule-based designs in prefabricated and modular shelters.
doi https://doi.org/10.52842/conf.ecaade.2014.2.327
source Thompson, Emine Mine (ed.), Fusion - Proceedings of the 32nd eCAADe Conference - Volume 2, Department of Architecture and Built Environment, Faculty of Engineering and Environment, Newcastle upon Tyne, England, UK, 10-12 September 2014, pp. 327-336
summary This work explores the possible use of the shape grammar formalism in generating small/medium sized dwellings or shelters as a possible and effective solution for shelter shortages that usually follows in the wake of a natural disaster. The shelters are generated using a set of pre-fabricated elements that add up to form a coherent and functional dwelling. The grammar exemplified here, being a shape grammar, deals specially with generating the underlying functional diagram and the floor plan of one possible solution based on a set of typologies design a priori.
wos WOS:000361385100034
keywords Shape grammars; modular architecture; emergency architecture
series eCAADe
email
last changed 2022/06/07 07:54

_id acadia14projects_193
id acadia14projects_193
authors Koerner, Julia; Boltenstern, Marie; Al-Rawi, Kais
year 2014
title Cellular Complexity "Evolve"
doi https://doi.org/10.52842/conf.acadia.2014.193
source ACADIA 14: Design Agency [Projects of the 34th Annual Conference of the Association for Computer Aided Design in Architecture (ACADIA) ISBN 9789126724478]Los Angeles 23-25 October, 2014), pp. 193-196
summary Cellular Complexity “Evolve” is an installation, which exhibits the potential of cellular geometries at a spatial architectural scale. The complex twisted geometry was generatively designed and digitally fabricated and stands out for cutting edge digital design concept and strategy.
keywords cellular geometries, biological systems, performative parameters
series ACADIA
type Practice Projects
email
last changed 2022/06/07 07:51

_id sigradi2014_128
id sigradi2014_128
authors Alves Veloso, Pedro Luís
year 2014
title Explorando o diagrama de bolhas [Exploring the bubble diagram]
source SIGraDi 2014 [Proceedings of the 18th Conference of the Iberoamerican Society of Digital Graphics - ISBN: 978-9974-99-655-7] Uruguay - Montevideo 12 - 14 November 2014, pp. 115-119
summary This paper presents an interactive bubble diagram developed to support design exploration. The proposed diagram consists of multiple goal-oriented agents, whose interaction with the user stimulates the analysis and exploration of new spatial patterns. Until now, there are two versions implemented. The first was developed combining scripting language and a graphical editor of algorithms embedded in modeling software. The second was developed with event-driven programming techniques emphasizing functions to amplify the interaction between user and agents. Finally, as the result of this exploratory stage of the research, we propose new paths of development for the next versions of the diagram.
keywords Architectural design; bubble diagram; graph; interaction
series SIGRADI
email
last changed 2016/03/10 09:47

_id sigradi2014_036
id sigradi2014_036
authors Anderson, Jonathon; Ming Tang
year 2014
title Crafting Soft Geometry: Form and Materials Informing Analog and Digital Craft Processes
source SIGraDi 2014 [Proceedings of the 18th Conference of the Iberoamerican Society of Digital Graphics - ISBN: 978-9974-99-655-7] Uruguay- Montevideo 12,13,14 November 2014, pp. 183-186
summary This paper outlines a methodology that adds to current craft-based discourse in the digital age. It proposes pedagogy centered on a constant examining of the parametric relationships between form, material, and load. The paper illustrates how materials and loads were integrated as datasets into “soft geometry” modeling and installation pipelines that further explore a hybrid process that incorporates materials and craftsmanship. The results expand the boundary of conventional static form and spatial interaction within the deformation rules (material and force) while seeking form through the exploration of both digital simulation and analog techniques.
keywords Digital-physical; craft; soft geometry; form; material
series SIGRADI
email
last changed 2016/03/10 09:47

_id sigradi2014_021
id sigradi2014_021
authors Araujo, André L.; Wilson Barbosa Neto, Gabriela Celani
year 2014
title Treliças espaciais metálicas: combinação de parâmetros formais e materiais nos estágios iniciais do processo de projeto [Spatial steel trusses: Integrating structural pre-dimensioning requirements in the early stages of the parametric design]
source SiGraDi 2014 [Proceedings of the 18th Conference of the Iberoamerican Society of Digital Graphics - ISBN: 978-9974-99-655-7] Uruguay - Montevideo 12 - 14 November 2014, pp. 355-359
summary The integration of structural considerations in architectural geometry processing is among the topics most discussed in the complex shapes design. While some design tools allow the designer to begin with an inefficient form and then turn it into a more efficient one, other tools allow exploring and creating structural forms considering both formal and structural aspects from the beginning. This paper presents a parametric design approach to create spatial steel trusses with the combination of two strategies: (1) shell surface to set out structural elements; (2) cross section properties to ensure structural stability aspects. In this paper we discuss how the combination of these strategies can contribute to the use of parametric design techniques in the early stages of the design process, taking into account both structural optimization and production aspects.
keywords Structural design; Spatial Structures; Tubular trusses; Parametric Design; Dimensioning
series SIGRADI
email
last changed 2016/03/10 09:47

_id ecaade2014_187
id ecaade2014_187
authors Asli Cekmis
year 2014
title Fuzzy computing for layout design in ill-defined, uncertain spaces
doi https://doi.org/10.52842/conf.ecaade.2014.1.277
source Thompson, Emine Mine (ed.), Fusion - Proceedings of the 32nd eCAADe Conference - Volume 1, Department of Architecture and Built Environment, Faculty of Engineering and Environment, Newcastle upon Tyne, England, UK, 10-12 September 2014, pp. 277-286
summary Layout design has been supported by some computational tools, where fuzzy systems have been approved as an appropriate method to handle uncertainty in the early design stage. In this paper, a new mathematical model depending on the fuzzy logic and sets theory is proposed to assist in layout design. The model distinctly deals with spatial uncertainty in open planned designs, where there is no clear layout configuration or definite patterns of usage. The model calculates the possibility of occupancy according to space, function and user related parameters and logical rules. It also visualises the architectural plan as being comprised of sub-spaces formed by the distribution of those possibilities. Sub-spaces are characterised as “Fuzzy Architectural Spatial Objects” (FASOs). As a result, layouts are represented as an accumulation of FASOs showing a certain inhabitation pattern. Various layouts can be generated within the identity of FASOs. Architects can evaluate the layouts and propose new ones by organising the FASOs on the plan and considering their relations. After describing the model the paper demonstrates an application which aims to design a proper layout for a major exhibition hall in Istanbul.
wos WOS:000361384700027
keywords Spatial uncertainty; open-plans; inhabitation patterns; layout design; fuzzy architectural spatial objects (fasos)
series eCAADe
email
last changed 2022/06/07 07:54

_id ascaad2014_036
id ascaad2014_036
authors Assassi, Abdelhalim; Belal Taher and Samai Rachida
year 2014
title Intelligent Digital Craft to Recognize Spatial Installations for Residential Designs: Approach to Understand the Design of Housing Barbaric in Algeria using the Majali Composition Software
source Digital Crafting [7th International Conference Proceedings of the Arab Society for Computer Aided Architectural Design (ASCAAD 2014 / ISBN 978-603-90142-5-6], Jeddah (Kingdom of Saudi Arabia), 31 March - 3 April 2014, pp. 195-196; 443-456
summary Architecture took an evolutionary context over time, where designers were interested in finding pragmatic spontaneous appropriate solutions and met the needs of people in urban and architectural spaces. Whereas, in modern architecture an intense and varied competition happens between architects through various currents of thoughts , schools and movements, however, that creativity was the ultimate goal , and a the same time we find that every architect distinguishes himself individually or collectively through tools of architectural expression and design representation adopting a school of thought, using , for example, the leaves of various sizes and diverse technical drawing tools to accurately show that he can be read by professionals or craftsmen outside the geographical scope to which it belongs .With the rapid technological development which accompanied the digital craft in the contemporary world , The digital craft summed up time, distance and tools , so they gave the concept more appropriate accuracy , as virtualization has become the most effective tool for Architecture To reach the ideal and typical results at the practical level, or pure research. At the level of residential design and on the grounds that housing plays an important role in the government policies and given that housing is a basic unit common to all urban communities on earth , the use of different programs to show its typicality in two dimensions or in the third dimension - for example, using software "AutoCAD " " 3D Max " , " ArchiCAD " ... etc. - gave virtualisation smart, creative and beautiful forms which lead to better understand the used /or to be used residential spaces, and thus the conclusion that the life system of dwelling under design or under study , as can specifically recognize spatial structure in housing design - using digital software applying "Space Syntax" for example - in the shadow of slowly growing digital and creative development with the help of high-speed computers . the morphological structure of the dwelling is considered to be the most important contemporary residential designs Investigation through which the researcher in this area aims to understand the various behavioral relations and social structures within the projected residential area, using Space Syntax techniques. Through the structural morphology of dwellings can be inferred quality networks, levels of connectivity and depth and places of openness or closure within the dwelling under study, or under design. How, then, have intelligently contributed this digital craft to the perception of those spatial fixtures ? The aim of this research is to apply an appropriate program in the field of vernacular residential design and notably Space syntax which relate to the understanding and analysis of spatial structures, and also demonstrate its role at the morphological and spatial structure aspects, and prove how effective it helps to understand the social logic of domestic space through social individual/collective relationships and behaviors projected on the spatial configurations of dwellings. The answer to the issue raised above and at the methodological aspect, the study discussed the application of space syntax techniques on the subject. The findings tend to prove the efficiency by comparing samples of Berber vernacular domestic spaces from the Mzab, the Aures and Kabilya in Algeria, and has also led to ascertain the intelligibility of space syntax techniques in reading the differences between the behaviors in domestic spaces in different areas of the sample through long periods of time .
series ASCAAD
type normal paper
email
last changed 2021/07/16 10:39

_id caadria2014_201
id caadria2014_201
authors Cabrinha, Mark N.
year 2014
title Lattice Shell Methodologies
doi https://doi.org/10.52842/conf.caadria.2014.191
source Rethinking Comprehensive Design: Speculative Counterculture, Proceedings of the 19th International Conference on Computer-Aided Architectural Design Research in Asia (CAADRIA 2014) / Kyoto 14-16 May 2014, pp. 191–200
summary This paper outlines a working methodology for the parametric development of lattice shell structures combining surface topology and form-finding with the material constraints of straight lath members woven into a geodesic network. By employing non-uniform grid spacing, a wider typology of spatial types can be employed than can be achieved with traditional flat-matt lattice shell construction. As a parametric design tool and working methodology, some of the heavy lifting in form-finding and geodesic analysis can be off-loaded to the tool, such that a more comprehensive attention can be placed on other design criteria such as spatial development and environmental response while maintaining the elegance and economy of lattice shells.
keywords gridshells; geodesics; form-finding; bending-active structures; wood; digital fabrication
series CAADRIA
email
last changed 2022/06/07 07:54

For more results click below:

this is page 0show page 1show page 2show page 3show page 4show page 5... show page 19HOMELOGIN (you are user _anon_221366 from group guest) CUMINCAD Papers Powered by SciX Open Publishing Services 1.002