CumInCAD is a Cumulative Index about publications in Computer Aided Architectural Design
supported by the sibling associations ACADIA, CAADRIA, eCAADe, SIGraDi, ASCAAD and CAAD futures

PDF papers
References

Hits 1 to 20 of 30

_id acadia14_453
id acadia14_453
authors Bell, Brad; Read, T. Cord; Ede, Austin; Barnes, Nathan
year 2014
title Casting non-repetitive Geometries with Digitally Reconfigurable Surfaces
doi https://doi.org/10.52842/conf.acadia.2014.453
source ACADIA 14: Design Agency [Proceedings of the 34th Annual Conference of the Association for Computer Aided Design in Architecture (ACADIA) ISBN 9781926724478]Los Angeles 23-25 October, 2014), pp. 453-462
summary The research is a digitally reconfigurable formwork, controlled by Arduinos and stepper motors, capable of producing a wide range of geometric outcomes for largel-scale panel prototypes using concrete or composite materials.
keywords Reconfigurable Molds, Panelized Surfaces, Precast Concrete, Digital Fabrication and Constructions, 3D Printing, Arduinos, Material Logics and Tectonics
series ACADIA
type Normal Paper
email
last changed 2022/06/07 07:54

_id acadia14_327
id acadia14_327
authors Cabrinha, Mark; Ponitz, Jeff
year 2014
title Simplexity: Unitized FRP Façade Systems
doi https://doi.org/10.52842/conf.acadia.2014.327
source ACADIA 14: Design Agency [Proceedings of the 34th Annual Conference of the Association for Computer Aided Design in Architecture (ACADIA) ISBN 9781926724478]Los Angeles 23-25 October, 2014), pp. 327-332
summary Working with industry partners from architecture, engineering, and fabrication, the Material Innovation Lab at Cal Poly Architecture envisions lightweight high-performance fiber-reinforced polymer (FRP) unitized façade systems.
keywords Composite Materials, FRP, Formwork, Unitized, Facades, Parts Consolidation
series ACADIA
type Normal Paper
email
last changed 2022/06/07 07:54

_id caadria2014_120
id caadria2014_120
authors Hack, Norman; Willi Viktor Lauer, Fabio Gramazio and Matthias Kohler
year 2014
title Mesh Mould: Differentiation for Enhanced Performance
doi https://doi.org/10.52842/conf.caadria.2014.139
source Rethinking Comprehensive Design: Speculative Counterculture, Proceedings of the 19th International Conference on Computer-Aided Architectural Design Research in Asia (CAADRIA 2014) / Kyoto 14-16 May 2014, pp. 139–148
summary Mesh-Mould is a novel robotic fabrication system for complex, non-standard concrete structures. The system folds together formwork and reinforcement, the two most labour intensive aspects of concrete constructions and offers an alternative approach to the current modes of prefabrication by suggesting an in-situ fabrication process (Figure 1). The paper outlines the development of the Form-work/Reinforcing Meshes through several iterations of physical and digital tests. Initially starting from simple triangulated 3D lattices, the structures evolved to become more complex and differentiated. The incorporating of flow enhancing ducts and surface perimeters with diverse surface aperture densities facilitates an optimal concrete flow and material distribution within the mesh.
keywords Robotic fabrication; concrete formwork; differentiation; spatial extrusion
series CAADRIA
email
last changed 2022/06/07 07:50

_id ascaad2014_027
id ascaad2014_027
authors Hadilou, Arman
year 2014
title Flexible Formwork: A methodology for casting funicular structures
source Digital Crafting [7th International Conference Proceedings of the Arab Society for Computer Aided Architectural Design (ASCAAD 2014 / ISBN 978-603-90142-5-6], Jeddah (Kingdom of Saudi Arabia), 31 March - 3 April 2014, pp. 345-352
summary This paper describes a method for design and fabrication of funicular structures from discrete precast concrete components. It has a critical look over traditional casting techniques and proposes a new methodology to fabricate a flexible formwork. The design process is engaged with a thorough series of analytical models and employs digital computation techniques to test their structural efficiency. Scripting, modeling and prototyping have been integrated to investigate several case studies through which a set of criteria was developed. Digital modeling tries to keep a limited number of varied components that have certain conditions at joints and flexible in other parts. This variation helps to meet the structural criterion and the flexibility of formwork results the efficiency of fabrication.
series ASCAAD
email
last changed 2016/02/15 13:09

_id caadria2014_060
id caadria2014_060
authors Kuma, Taichi
year 2014
title Shrink Film Architecture
doi https://doi.org/10.52842/conf.caadria.2014.181
source Rethinking Comprehensive Design: Speculative Counterculture, Proceedings of the 19th International Conference on Computer-Aided Architectural Design Research in Asia (CAADRIA 2014) / Kyoto 14-16 May 2014, pp. 181–190
summary This paper is about designing a process to create a lightweight building envelope using a shrinkfilm. The advantage of using this material for architecture is that we can simply construct the complex geometry without requiring an expensive formwork. In addition to this, this research illustrates the methodology to control the 3-dimensional form of the shrink-film by using simple 2-dimensional patterns. These patterns enable us to easily manipulate the form. In this paper, the simulation and the prototyping are conducted in both physical and computational methods.
keywords Material Computation; responsive material; form-finding
series CAADRIA
email
last changed 2022/06/07 07:52

_id caadria2020_363
id caadria2020_363
authors Pal, Abhipsa, Chan, Wi Leen, Tan, Ying Yi, Chia, Pei Zhi and Tracy, Kenneth Joseph
year 2020
title Knit Concrete Formwork
doi https://doi.org/10.52842/conf.caadria.2020.1.213
source D. Holzer, W. Nakapan, A. Globa, I. Koh (eds.), RE: Anthropocene, Design in the Age of Humans - Proceedings of the 25th CAADRIA Conference - Volume 1, Chulalongkorn University, Bangkok, Thailand, 5-6 August 2020, pp. 213-222
summary The manufacture of concrete funicular shells often relies on traditional formwork construction techniques to provide a sculptured cavity for the fluid material to occupy (Bechthold, 2004). While this enables a predictable geometric outcome, the extensive use of timber and/or steel to construct these formworks account for up to 60% of the total production cost of concrete and are discarded after the casting is complete (Lloret et al. 2014). Thus, we propose an alternative method to create prefabricated modular systems out of concrete casted in customised tubular knitted membranes. These perform as a network of struts that can be affixed onto 3D printed nodes of a singular design. Altogether, these components serve as a kit-of-parts that can be transported to site and assembled together to create shell geometries.
keywords Knitted Textile; Fabric Formwork; Concrete Casting
series CAADRIA
email
last changed 2022/06/07 08:00

_id acadia14_517
id acadia14_517
authors Peters, Brian
year 2014
title Additive Formwork: 3D Printed Flexible Formwork
doi https://doi.org/10.52842/conf.acadia.2014.517
source ACADIA 14: Design Agency [Proceedings of the 34th Annual Conference of the Association for Computer Aided Design in Architecture (ACADIA) ISBN 9781926724478]Los Angeles 23-25 October, 2014), pp.517-522
summary Additive Formwork explores the potential and advantages of 3D printed, flexible formwork for architectural applications, specifically precast concrete panels. This research experiments with 3D printed malleable polymers as a mold at both a small and large scale, to determine the limitations and opportunities for architects and designers in construction.
keywords Digital fabrication and construction3D Printing, Parametric Design, Robotic Fabrication, Flexible, Precast Concrete, Material Research
series ACADIA
type Normal Paper
email
last changed 2022/06/07 08:00

_id acadia14_523
id acadia14_523
authors Tracy, Kenneth; Yogiaman, Christine; Tessmer, Lavender
year 2014
title Tensile Effects: Semi-rigid concrete formwork
doi https://doi.org/10.52842/conf.acadia.2014.523
source ACADIA 14: Design Agency [Proceedings of the 34th Annual Conference of the Association for Computer Aided Design in Architecture (ACADIA) ISBN 9781926724478]Los Angeles 23-25 October, 2014), pp. 523-530
summary This paper describes ongoing research in developing thin plastic formwork for multi-story, cast-in-place concrete structures. These techniques build upon Cast Thicket, a previous installation which provides a built example of the system.
keywords Plastic Cast Concrete, Flexible Molds, File-to-Fabrication, Minimal Surface Optimization, Physics Simulation, Digital Craft, Material Logics and Tectonics
series ACADIA
type Normal Paper
email
last changed 2022/06/07 07:57

_id ecaade2014_021
id ecaade2014_021
authors Aant van der Zee, Bauke de Vries and Theo Salet
year 2014
title From rapid prototyping to automated manufacturing
doi https://doi.org/10.52842/conf.ecaade.2014.1.455
source Thompson, Emine Mine (ed.), Fusion - Proceedings of the 32nd eCAADe Conference - Volume 1, Department of Architecture and Built Environment, Faculty of Engineering and Environment, Newcastle upon Tyne, England, UK, 10-12 September 2014, pp. 455-461
summary In this paper we present an outline of a newly started project to develop a tool which connects BIM to a manufacturing technique like 3D printing. First we will look some promising manufacturing techniques. We will design a small dwelling and export it into a BIM, from which we will extract our data to generate the path the nozzle has to follow. The chosen path is constrained by the material properties, the design and speed of the nozzle. To validate the system we develop a small VR tool in which we mimic a manufacturing tool.
wos WOS:000361384700045
keywords Rapid prototyping; rapid manufacturing; robotics; automation; building information model (bim)
series eCAADe
email
last changed 2022/06/07 07:54

_id acadia14_409
id acadia14_409
authors Bard, Joshua; Gannon, Madeline; Jacobson-Weaver, Zachary; Jeffers, Michael; Smith, Brian; Contreras, Mauricio
year 2014
title Seeing is Doing: Synthetic Tools for Robotically Augmented Fabrication in High-Skill Domains
doi https://doi.org/10.52842/conf.acadia.2014.409
source ACADIA 14: Design Agency [Proceedings of the 34th Annual Conference of the Association for Computer Aided Design in Architecture (ACADIA) ISBN 9781926724478]Los Angeles 23-25 October, 2014), pp. 409-416
summary The historical split between visualization and actualization in architectural design has encouraged a disciplinary split between representation (the domain of the designer) and construction (a domain entirely removed from the Architect’s purview). This split between seeing and doing in architectural design can be questioned in the context of contemporary robotic technologies where physical and digital workflows comingle in high-skill, collaborative domains.
keywords Architectural Robotics, Human-Robot Collaboration, MOCAP, Adaptive Fabrication, High-Skill Domain, Robotics and Autonomous Design Systems
series ACADIA
type Normal Paper
email
last changed 2022/06/07 07:54

_id sigradi2014_144
id sigradi2014_144
authors Böhme, Luis Felipe González; Cristián Calvo Barentin
year 2014
title Desarrollo de competencias avanzadas en computación en la formación de los arquitectos latinoamericanos del siglo XXI [Advanced Computing Competence Development in 21st-century Latin American Architects’ Education]
source SIGraDi 2014 [Proceedings of the 18th Conference of the Iberoamerican Society of Digital Graphics - ISBN: 978-9974-99-655-7] Uruguay - Montevideo 12 - 14 November 2014, pp. 217-221
summary Automation and robotics are increasingly penetrating all types of industries in developed countries including architecture, i.e., products and services related to architectural practice. Therefore, more than ever, architects, designers and artists are interested in developing computational thinking skills to be able to integrate more functionality into their creations and take direct control of their fabrication. But what can a small school of architecture in Latin America do to prevent the deskilling of its graduates and, instead, create new labor opportunities for them abroad. Third-year students integrate physical computing with visual programming in an active learning environment to develop free proposals.
keywords Architectural education; Physical computing; Visual programming; Computational thinking; Active learning
series SIGRADI
email
last changed 2016/03/10 09:47

_id acadia14projects_227
id acadia14projects_227
authors Christou, Elina; Dierckx; Pastrana, Rodgrigo; Papic, Nikola
year 2014
title Robofoam
doi https://doi.org/10.52842/conf.acadia.2014.227
source ACADIA 14: Design Agency [Projects of the 34th Annual Conference of the Association for Computer Aided Design in Architecture (ACADIA) ISBN 9789126724478]Los Angeles 23-25 October, 2014), pp.227-230
summary The project examines the evolvement of the uncertainty in the design process to result in an integrated and resilient structure that emerges from local conditions and possesses the ability to create global patterns and emerging forms create global patterns and emerging forms through the increasingly expanding category of foam-based materials
keywords Multi Agent Systems in Design, Robotics and Autonomous Design Systems, Collective Intelligence in Design, Generative Design, Digital fabrication and construction, Material Logics and Tectonics.
series ACADIA
type Student's Research Projects
email
last changed 2022/06/07 07:56

_id sigradi2014_213
id sigradi2014_213
authors Daas, Mahesh
year 2014
title Toward a taxonomy of architectural robotics
source SiGraDi 2014 [Proceedings of the 18th Conference of the Iberoamerican Society of Digital Graphics - ISBN: 978-9974-99-655-7] Uruguay- Montevideo 12,13,14 November 2014, pp. 623-626
summary Robotics in architecture is a fast-emerging area of research and design today. The current research and practices of robotics in architecture tend to be, to a great degree, techno-positivist and framed by a narrowly defined instrumentalist view. The paper presents comprehensive taxonomy of a broad range of robotic applications so as to meaningfully guide, systematize, and clarify multi-faceted design or research explorations in architecture and beyond. The paper advances four frameworks: role of robotics in architecture; modes of interaction between robots, humans and architecture; the Vitruvian framework; and robots classified by form; all of which point to new avenues of potential exploration while also revealing the gaps and biases in the current research and design in the discipline.
keywords Robots; Architectural Robotics; Taxonomies; Robotic Fabrication
series SIGRADI
email
last changed 2016/03/10 09:50

_id acadia14_573
id acadia14_573
authors Ekmekjian, Nazareth
year 2014
title From Surface to Volume: An Approach to Poche` with Composites
doi https://doi.org/10.52842/conf.acadia.2014.573
source ACADIA 14: Design Agency [Proceedings of the 34th Annual Conference of the Association for Computer Aided Design in Architecture (ACADIA) ISBN 9781926724478]Los Angeles 23-25 October, 2014), pp. 573-578
summary While the digital era has brought with it a vast assortment of tools from which we can generate form and geometry, often the result is a tendency to focus primarily on either surfaces or solids as a means of modeling for representation or fabrication which consequently impact the various fabrication and construction techniques deployed in order to realize such digital models. This paper presents an approach to coalesce techniques of surface generation via computational tools, and strategies for constructing volumetric elements through a process of backfilling with composite materials.
keywords Robotics and Autonomous Design Systems, Craft in a Digital Age, Material Logics and Tectonics, Digital Fabrication and Construction, Computational Design Research, Generative Design.
series ACADIA
type Normal Paper
email
last changed 2022/06/07 07:55

_id cdrf2023_526
id cdrf2023_526
authors Eric Peterson, Bhavleen Kaur
year 2023
title Printing Compound-Curved Sandwich Structures with Robotic Multi-Bias Additive Manufacturing
doi https://doi.org/https://doi.org/10.1007/978-981-99-8405-3_44
source Proceedings of the 2023 DigitalFUTURES The 5st International Conference on Computational Design and Robotic Fabrication (CDRF 2023)
summary A research team at Florida International University Robotics and Digital Fabrication Lab has developed a novel method for 3d-printing curved open grid core sandwich structures using a thermoplastic extruder mounted on a robotic arm. This print-on-print additive manufacturing (AM) method relies on the 3d modeling software Rhinoceros and its parametric software plugin Grasshopper with Kuka-Parametric Robotic Control (Kuka-PRC) to convert NURBS surfaces into multi-bias additive manufacturing (MBAM) toolpaths. While several high-profile projects including the University of Stuttgart ICD/ITKE Research Pavilions 2014–15 and 2016–17, ETH-Digital Building Technologies project Levis Ergon Chair 2018, and 3D printed chair using Robotic Hybrid Manufacturing at Institute of Advanced Architecture of Catalonia (IAAC) 2019, have previously demonstrated the feasibility of 3d printing with either MBAM or sandwich structures, this method for printing Compound-Curved Sandwich Structures with Robotic MBAM combines these methods offering the possibility to significantly reduce the weight of spanning or cantilevered surfaces by incorporating the structural logic of open grid-core sandwiches with MBAM toolpath printing. Often built with fiber reinforced plastics (FRP), sandwich structures are a common solution for thin wall construction of compound curved surfaces that require a high strength-to-weight ratio with applications including aerospace, wind energy, marine, automotive, transportation infrastructure, architecture, furniture, and sports equipment manufacturing. Typical practices for producing sandwich structures are labor intensive, involving a multi-stage process including (1) the design and fabrication of a mould, (2) the application of a surface substrate such as FRP, (3) the manual application of a light-weight grid-core material, and (4) application of a second surface substrate to complete the sandwich. There are several shortcomings to this moulded manufacturing method that affect both the formal outcome and the manufacturing process: moulds are often costly and labor intensive to build, formal geometric freedom is limited by the minimum draft angles required for successful removal from the mould, and customization and refinement of product lines can be limited by the need for moulds. While the most common material for this construction method is FRP, our proof-of-concept experiments relied on low-cost thermoplastic using a specially configured pellet extruder. While the method proved feasible for small representative examples there remain significant challenges to the successful deployment of this manufacturing method at larger scales that can only be addressed with additional research. The digital workflow includes the following steps: (1) Create a 3D digital model of the base surface in Rhino, (2) Generate toolpaths for laminar printing in Grasshopper by converting surfaces into lists of oriented points, (3) Generate the structural grid-core using the same process, (4) Orient the robot to align in the direction of the substructure geometric planes, (5) Print the grid core using MBAM toolpaths, (6) Repeat step 1 and 2 for printing the outer surface with appropriate adjustments to the extruder orientation. During the design and printing process, we encountered several challenges including selecting geometry suitable for testing, extruder orientation, calibration of the hot end and extrusion/movement speeds, and deviation between the computer model and the physical object on the build platen. Physical models varied from their digital counterparts by several millimeters due to material deformation in the extrusion and cooling process. Real-time deviation verification studies will likely improve the workflow in future studies.
series cdrf
email
last changed 2024/05/29 14:04

_id acadia14projects_231
id acadia14projects_231
authors Friedman, Jared; Hosny, Ahmed; Lee, Amanda
year 2014
title Robotic Bead Rolling
doi https://doi.org/10.52842/conf.acadia.2014.231
source ACADIA 14: Design Agency [Projects of the 34th Annual Conference of the Association for Computer Aided Design in Architecture (ACADIA) ISBN 9789126724478]Los Angeles 23-25 October, 2014), pp. 231-234
summary The work presented provides an overview of the design to production workflow that has been developed, as well as sample panels that have been produced using the tools developed by the researchers.
keywords Robotics, Bead Rolling, Finite Element Analysis, Metal, Tooling, Digital Workflow, Robotics and Autonomous Design Systems
series ACADIA
type Student's Research Projects
email
last changed 2022/06/07 07:50

_id acadia14projects_223
id acadia14projects_223
authors Friedman, Jared; Kim, Heamin; Mesa, Olga
year 2014
title Woven Clay
doi https://doi.org/10.52842/conf.acadia.2014.223
source ACADIA 14: Design Agency [Projects of the 34th Annual Conference of the Association for Computer Aided Design in Architecture (ACADIA) ISBN 9789126724478]Los Angeles 23-25 October, 2014), pp. 223-226
summary The accompanying poster outlines the research behind a robotic clay deposition technique that weaves clay coils in order to build up a surface. The façade panels produced by the research team act as a proxy for potential applications of the fabrication technique.
keywords Robotics, Ceramics, Additive Manufacturing, 3D Printing, Weaving, Craft in a Digital Age
series ACADIA
type Student's Research Projects
email
last changed 2022/06/07 07:50

_id acadia14projects_131
id acadia14projects_131
authors Ibañez, Mariana; Kim, Simon
year 2014
title CentriPETAL
doi https://doi.org/10.52842/conf.acadia.2014.131
source ACADIA 14: Design Agency [Projects of the 34th Annual Conference of the Association for Computer Aided Design in Architecture (ACADIA) ISBN 9789126724478]Los Angeles 23-25 October, 2014), pp. 131-134
summary This is a prototype for an architectural device with two performative behaviors. The first is to rotate open and close for apertures, and to spin so that sound and air movement is produced.
keywords Robotics and Autonomous Design Systems, Human-Machine Interaction
series ACADIA
type Research Projects
email
last changed 2022/06/07 07:50

_id acadia14projects_91
id acadia14projects_91
authors Maeshiro, Jeffrey
year 2014
title Geoweaver
doi https://doi.org/10.52842/conf.acadia.2014.091.2
source ACADIA 14: Design Agency [Projects of the 34th Annual Conference of the Association for Computer Aided Design in Architecture (ACADIA) ISBN 9789126724478]Los Angeles 23-25 October, 2014), pp. 91-94
summary Geoweaver is a six-legged walking 3D printer that extrudes thermoplastic as it walks, translating parametric data into two- and three-dimensional products.
keywords Robotics and Autonomous Design Systems, robotics, parametric design, 3D printing, craft, data-driven, computation
series ACADIA
type Research Projects
email
last changed 2022/06/07 07:59

_id acadia14projects_219
id acadia14projects_219
authors Mirmotahari, AmirReza; Theodosiou, Joanna; Al-Hadeethi, Shahad Thamer
year 2014
title CrystalCloud
doi https://doi.org/10.52842/conf.acadia.2014.219.2
source ACADIA 14: Design Agency [Projects of the 34th Annual Conference of the Association for Computer Aided Design in Architecture (ACADIA) ISBN 9789126724478]Los Angeles 23-25 October, 2014), pp. 219-222
summary The aim of this project is to create a system that hybridizes two natural systems, clouds and crystals, and simultaneously explores the aspect of light. These rich domains with the introduction of small glass beads lead to an intricate fabric of architecture and moreover to a high-resolution fabric of light.
keywords synthetic constructability, Multi Agent Systems in Design, Robotics and Autonomous Design Systems, Big Data, Simulation + Intuition, Design Decision Making, Generative Design, Multidisciplinary Design Optimization, Design Computing and Cognition
series ACADIA
type Student's Research Projects
email
last changed 2022/06/07 07:58

For more results click below:

this is page 0show page 1HOMELOGIN (you are user _anon_316830 from group guest) CUMINCAD Papers Powered by SciX Open Publishing Services 1.002