CumInCAD is a Cumulative Index about publications in Computer Aided Architectural Design
supported by the sibling associations ACADIA, CAADRIA, eCAADe, SIGraDi, ASCAAD and CAAD futures

PDF papers
References

Hits 1 to 20 of 46

_id ascaad2014_003
id ascaad2014_003
authors Parlac, Vera
year 2014
title Surface Dynamics: From dynamic surface to agile spaces
source Digital Crafting [7th International Conference Proceedings of the Arab Society for Computer Aided Architectural Design (ASCAAD 2014 / ISBN 978-603-90142-5-6], Jeddah (Kingdom of Saudi Arabia), 31 March - 3 April 2014, pp. 39-48
summary Behavior, adaptation and responsiveness are characteristics of live organisms; architecture on the other hand is structurally, materially and functionally constructed. With the shift from ‘mechanical’ towards ‘organic’ paradigm (Mae-Wan Ho, 1997) attitude towards architectural adaptation, behavior and performance is shifting as well. This change is altering a system of reference and conceptual basis for architecture by suggesting the integration of dynamics – dynamics that don’t address kinetic movement only but include flows of energies, material and information. This paper presents an ongoing research into kinetic material system with the focus on non-mechanical actuation (shape memory alloy) and the structural and material behavior. It proposes an adaptive surface capable of altering its shape and forming small occupiable spaces that respond to external and internal influences and flows of information. The adaptive structure is developed as a physical and digital prototype. Its behavior is examined at a physical level and the findings are used to digitally simulate the behavior of the larger system. The design approach is driven by an interest in adaptive systems in nature and material variability (structural and functional) of naturally constructed materials. The broader goal of the research is to test the scale at which shape memory alloy can be employed as an actuator of dynamic architectural surfaces and to speculate on and explore the capacity of active and responsive systems to produce adaptable surfaces that can form occupiable spaces and with that, added functionalities in architectural and urban environments.
series ASCAAD
email
last changed 2016/02/15 13:09

_id caadria2014_088
id caadria2014_088
authors Puusepp, Renee
year 2014
title Spatial Agglomerates
doi https://doi.org/10.52842/conf.caadria.2014.585
source Rethinking Comprehensive Design: Speculative Counterculture, Proceedings of the 19th International Conference on Computer-Aided Architectural Design Research in Asia (CAADRIA 2014) / Kyoto 14-16 May 2014, pp. 585–594
summary This paper reports on the computational modelling research investigating spatial organisations often associated with unplanned settlements. Such spatial agglomerates are composed of several co-located but autonomous units (agents) that share common facilities and infrastructure (e.g. circulation). Depending on the context, units in the agglomerate represent individual dwellings, apartments or abstract spatial geometry. The paper presents early prototype models that can be interpreted at various scale, and a computational model for generating organic settlement layouts. The originality of the research resides within a new multi-agent algorithm for creating spatial organisations. The agglomeration process benefits from two distinct generative design strategies – self-organisation and adaptive development strategy. While the self-organisation accounts for the emergence of the global structure in the agglomeration, the adaptive development strategy ensures that the basic environmental and spatial requirements of each individual unit are satisfied.
keywords Generative design; agent based modelling; object oriented design; unplanned settlements
series CAADRIA
email
last changed 2022/06/07 08:00

_id acadia14_267
id acadia14_267
authors Ahlquist, Sean
year 2014
title Post-forming Composite Morphologies: Materialization and design methods for inducing form through textile material behavior
doi https://doi.org/10.52842/conf.acadia.2014.267
source ACADIA 14: Design Agency [Proceedings of the 34th Annual Conference of the Association for Computer Aided Design in Architecture (ACADIA) ISBN 9781926724478]Los Angeles 23-25 October, 2014), pp. 267-276
summary This paper presents research in developing materials with integrated pre-stressed textile and rigid composite properties. Such a material system, termed Pre-stressed Textile-Reinforced Composites (pTRC), produces forms with great degrees of both 3-dimensional and structural differentiation, from flat form-work in combination with a curated composite forming process.
keywords Pre-stressed Textile-reinforced Composites, Textile Hybrid, Material Behavior, Form-finding, Spring-based Simulation.Category: Material Logics and Tectonics.
series ACADIA
type Normal Paper
email
last changed 2022/06/07 07:54

_id sigradi2014_036
id sigradi2014_036
authors Anderson, Jonathon; Ming Tang
year 2014
title Crafting Soft Geometry: Form and Materials Informing Analog and Digital Craft Processes
source SIGraDi 2014 [Proceedings of the 18th Conference of the Iberoamerican Society of Digital Graphics - ISBN: 978-9974-99-655-7] Uruguay- Montevideo 12,13,14 November 2014, pp. 183-186
summary This paper outlines a methodology that adds to current craft-based discourse in the digital age. It proposes pedagogy centered on a constant examining of the parametric relationships between form, material, and load. The paper illustrates how materials and loads were integrated as datasets into “soft geometry” modeling and installation pipelines that further explore a hybrid process that incorporates materials and craftsmanship. The results expand the boundary of conventional static form and spatial interaction within the deformation rules (material and force) while seeking form through the exploration of both digital simulation and analog techniques.
keywords Digital-physical; craft; soft geometry; form; material
series SIGRADI
email
last changed 2016/03/10 09:47

_id ijac201412307
id ijac201412307
authors Baerlecken, Daniel; Katherine Blair Wright
year 2014
title Nominalized Matter: Agency of Material
source International Journal of Architectural Computing vol. 12 - no. 3, 339-356
summary This paper investigates making as a process that brings together diverse materials and combines their flow in anticipation of what might emerge. Ingold calls this approach the textility of making, which gives priority to the formation of materials as a process, in which form is generated through interventions within fields of forces and currents of materials - not through a predefined notion of an ideal outcome. The approach opposes the Aristotelian hylomorphic approach, which focuses on final products. This paper investigates textiles techniques and their potential for simultaneously creating ornamental and structural systems. This work is conducted through a sequence of architecture design studios, producing the case studies found in this paper. Within the paper different examples of textile systems are introduced ranging from a Semperian approach (wall as dress) to form finding experiments with active textile materials - demonstrating the potential for methods utilizing material agency to inform architectural design
series journal
last changed 2019/05/24 09:55

_id acadia14_453
id acadia14_453
authors Bell, Brad; Read, T. Cord; Ede, Austin; Barnes, Nathan
year 2014
title Casting non-repetitive Geometries with Digitally Reconfigurable Surfaces
doi https://doi.org/10.52842/conf.acadia.2014.453
source ACADIA 14: Design Agency [Proceedings of the 34th Annual Conference of the Association for Computer Aided Design in Architecture (ACADIA) ISBN 9781926724478]Los Angeles 23-25 October, 2014), pp. 453-462
summary The research is a digitally reconfigurable formwork, controlled by Arduinos and stepper motors, capable of producing a wide range of geometric outcomes for largel-scale panel prototypes using concrete or composite materials.
keywords Reconfigurable Molds, Panelized Surfaces, Precast Concrete, Digital Fabrication and Constructions, 3D Printing, Arduinos, Material Logics and Tectonics
series ACADIA
type Normal Paper
email
last changed 2022/06/07 07:54

_id acadia24_v2_61
id acadia24_v2_61
authors Bhusry, Nandan; Cupkova, Dana; Sawyer, Azadeh
year 2024
title Shaping Passive Dehumidification for Hot and Humid Climates
source ACADIA 2024: Designing Change [Volume 2: Proceedings of the 44th Annual Conference for the Association for Computer Aided Design in Architecture (ACADIA) ISBN 979-8-9891764-8-9]. Calgary. 11-16 November 2024. edited by Alicia Nahmad-Vazquez, Jason Johnson, Joshua Taron, Jinmo Rhee, Daniel Hapton. pp. 275-288
summary This research explores adapting architectural material systems as passive dehumidifiers using hygroscopic coatings and material geometry. The study validates increased passive dehumidification through an experimental hybrid lattice system. Human comfort is affected by temperature, humidity, and metabolic heat. In hot and humid climates, elevated tempera¬tures and humidity pose health risks like hyperthermia and mortality (Mora et al. 2017). Historically, vernacular architecture in tropical regions used hygroscopic materials like mud and thatch (Little and Morton 2001; Monzur 2018), to enhance passive cooling through natural ventilation. In contrast, modern construction often relies on mechanical air condi¬tioning, overlooking passive cooling strategies (Korachy 2020). Inspired by vernacular approaches to the built environment, this experiment adapts Isothermal Membrane-Assisted dehumidification (IMAD) technology (Qu et al. 2018) used in mechanical cooling systems to passively extract moisture through hybridization of geometry and matter. While membrane selectivity is adapted to many applications (Woods 2014), its integration into architectural design remains underexplored. Drawing inspiration from Indian Jaali systems, a lattice scaf¬fold is tested to study lattice morphology, and hygroscopic material properties for effective dehumidification at a building scale. Using computational simulation and physical testing, this proposal integrates IMAD into material geometry, focusing on increasing air velocity and passive dehumidification effectiveness (Figure 1).Ultimately, this research aims to rede¬fine architectural design by integrating innovative, passive dehumidification techniques, thus promoting survivability, enhancing human comfort and reducing reliance on mechan¬ical cooling in extreme climates.
series ACADIA
type paper
email
last changed 2025/07/21 11:41

_id acadia14_327
id acadia14_327
authors Cabrinha, Mark; Ponitz, Jeff
year 2014
title Simplexity: Unitized FRP Façade Systems
doi https://doi.org/10.52842/conf.acadia.2014.327
source ACADIA 14: Design Agency [Proceedings of the 34th Annual Conference of the Association for Computer Aided Design in Architecture (ACADIA) ISBN 9781926724478]Los Angeles 23-25 October, 2014), pp. 327-332
summary Working with industry partners from architecture, engineering, and fabrication, the Material Innovation Lab at Cal Poly Architecture envisions lightweight high-performance fiber-reinforced polymer (FRP) unitized façade systems.
keywords Composite Materials, FRP, Formwork, Unitized, Facades, Parts Consolidation
series ACADIA
type Normal Paper
email
last changed 2022/06/07 07:54

_id acadia14projects_227
id acadia14projects_227
authors Christou, Elina; Dierckx; Pastrana, Rodgrigo; Papic, Nikola
year 2014
title Robofoam
doi https://doi.org/10.52842/conf.acadia.2014.227
source ACADIA 14: Design Agency [Projects of the 34th Annual Conference of the Association for Computer Aided Design in Architecture (ACADIA) ISBN 9789126724478]Los Angeles 23-25 October, 2014), pp.227-230
summary The project examines the evolvement of the uncertainty in the design process to result in an integrated and resilient structure that emerges from local conditions and possesses the ability to create global patterns and emerging forms create global patterns and emerging forms through the increasingly expanding category of foam-based materials
keywords Multi Agent Systems in Design, Robotics and Autonomous Design Systems, Collective Intelligence in Design, Generative Design, Digital fabrication and construction, Material Logics and Tectonics.
series ACADIA
type Student's Research Projects
email
last changed 2022/06/07 07:56

_id ecaade2014_096
id ecaade2014_096
authors Daniel Norell and Einar Rodhe
year 2014
title Erratic - The Material Simulacra of Pliable Surfaces
doi https://doi.org/10.52842/conf.ecaade.2014.2.145
source Thompson, Emine Mine (ed.), Fusion - Proceedings of the 32nd eCAADe Conference - Volume 2, Department of Architecture and Built Environment, Faculty of Engineering and Environment, Newcastle upon Tyne, England, UK, 10-12 September 2014, pp. 145-152
wos WOS:000361385100015
summary This paper examines how designers can invigorate designs with a sense of liveliness and indeterminacy through manipulation of pliable materials. Two approaches to material manipulation are defined and juxtaposed in the paper: The control associated with Frei Otto's elegantly tensioned membranes and the noise associated with Sigurd Lewerentz's intensely material brick walls. These historical approaches become pertinent in relation to current opportunities offered by material simulation software in architecture. Simulation may be used to increase control over the materialization of design, but is at the same time a way to introduce the noise of real-time, real-world experiments into digital design. The paper presents this discussion in parallel with documentation of the research project 'Erratic', a recent installation carried out by the authors' practice Norell/Rodhe. Constructed from polyurethane cold foam, the project combines analogue experiments with digital simulations to target architectural qualities like mass, figuration and relief.
keywords Control; material manipulation; material simulation; noise; pliable surfaces
series eCAADe
email
last changed 2022/06/07 07:55

_id acadia14_573
id acadia14_573
authors Ekmekjian, Nazareth
year 2014
title From Surface to Volume: An Approach to Poche` with Composites
doi https://doi.org/10.52842/conf.acadia.2014.573
source ACADIA 14: Design Agency [Proceedings of the 34th Annual Conference of the Association for Computer Aided Design in Architecture (ACADIA) ISBN 9781926724478]Los Angeles 23-25 October, 2014), pp. 573-578
summary While the digital era has brought with it a vast assortment of tools from which we can generate form and geometry, often the result is a tendency to focus primarily on either surfaces or solids as a means of modeling for representation or fabrication which consequently impact the various fabrication and construction techniques deployed in order to realize such digital models. This paper presents an approach to coalesce techniques of surface generation via computational tools, and strategies for constructing volumetric elements through a process of backfilling with composite materials.
keywords Robotics and Autonomous Design Systems, Craft in a Digital Age, Material Logics and Tectonics, Digital Fabrication and Construction, Computational Design Research, Generative Design.
series ACADIA
type Normal Paper
email
last changed 2022/06/07 07:55

_id sigradi2014_276
id sigradi2014_276
authors Florio, Wilson; Ana Tagliari Correo
year 2014
title Investigação sobre os Espaços Internos de Residências Modernas a partir de Simulações Digitais de Ambientes [Research on Modern Indoor Spaces Houses from Digital Simulation Environments]
source SiGraDi 2014 [Proceedings of the 18th Conference of the Iberoamerican Society of Digital Graphics - ISBN: 978-9974-99-655-7] Uruguay - Montevideo 12 - 14 November 2014, pp. 556-560
summary This article investigates modern unbuilt houses designed by Vilanova Artigas and Carlos Cascaldi in Sao Paulo. The results indicate peculiar indoors features of these residences. Starting from scanned original drawings it was possible to produce 3D geometric models, and the simulation of the materials appearance in the interior spaces of these houses. The programs of these six residences are organized in half-levels, ramps, double height, inner courtyard, zenithal lighting and structural solution defining architecture. The goal is to investigate through renderings and walkthroughs in animations how the architects defined the internal spaces, establishing connections and visual-spatial continuity between floors.
keywords Simulation; Unbuilt; Rendering; Animation; Artigas
series SIGRADI
email
last changed 2016/03/10 09:52

_id ascaad2014_028
id ascaad2014_028
authors Hamza, Neveen
year 2014
title Crafting the Virtual Sensory Environment: building performance simulation visualization as an enabler for creating sensory environments
source Digital Crafting [7th International Conference Proceedings of the Arab Society for Computer Aided Architectural Design (ASCAAD 2014 / ISBN 978-603-90142-5-6], Jeddah (Kingdom of Saudi Arabia), 31 March - 3 April 2014, pp. 353-359
summary The sensory virtual environment is defined as a cognitive method leading to a mental model of potential value in gaining insights of how building spaces may perform to enhance the sensory experience of occupants. For architects, creating a sensory and experiential space is the holy grail of design endeavours. So far, the results of the experiential and sensory success of buildings are dependent on the architects’ own experience and judgment of materials and compositions within the space. Currently the use of tools such as 3D Max provides an ocular experience of the crafted virtual space, rarely giving indications of daylight and possible sensory experiences of the indoor thermal and acoustic conditions. In practice testing the thermal, daylight and other environmental performances of buildings at design stage is within the remit of building services consultants for conformity regulatory checks, and is dominated by extensive 2D (graphs) information exchanges. There is a need to include other formats of visual information exchanges to facilitate decisions on sustainable buildings and to achieve performing sensory environments This paper presents an exploration of endeavours to test the virtual sensory space through visualizations of building performance and aims to provide recommendations on how to fuse endeavours to disseminate knowledge within the design team while creating an information exchange mechanism that captures experts’ explicit and tacit knowledge. Case studies will be presented on how building performance simulation tools are used to provide matrices of relations to indicate the building performance, thermal comfort, daylight and natural ventilation and were used as an aid for architectural design decisions to create sensory environments.
series ASCAAD
email
last changed 2016/02/15 13:09

_id sigradi2014_313
id sigradi2014_313
authors Iglesias, Rodrigo A. Martin
year 2014
title REVERSE DESIGN o de la deconstrucción proyectual del diseño [Reverse Design or the projectual deconstruction of design]
source SIGraDi 2014 [Proceedings of the 18th Conference of the Iberoamerican Society of Digital Graphics - ISBN: 978-9974-99-655-7] Uruguay - Montevideo 12 - 14 November 2014, pp. 101-105
summary Reverse engineering is been applied in industry for many years, particularly in the context of the software industry, with the subsequent theoretical development, especially from the 1990s. In this paper we propose to realize their potential application to the field of design, and then characterize the concept of Reverse Design, associated with the idea of projectual deconstruction, concept that has great potential, from didactics to the optimization of materials and energy. Based on a literature review of the state, we will use the basic texts of reverse engineering to establish parallels, differences and contributions to the discipline.
keywords Reverse Design; Projectual deconstruction; Reverse engineering; Design recovery; Abduction
series SIGRADI
email
last changed 2016/03/10 09:53

_id ecaade2014_057
id ecaade2014_057
authors Ivo Vrouwe and Burak Pak
year 2014
title Framing Parametric and Generative Structures - A Novel Framework for Analysis and Education
doi https://doi.org/10.52842/conf.ecaade.2014.1.365
source Thompson, Emine Mine (ed.), Fusion - Proceedings of the 32nd eCAADe Conference - Volume 1, Department of Architecture and Built Environment, Faculty of Engineering and Environment, Newcastle upon Tyne, England, UK, 10-12 September 2014, pp. 365-371
wos WOS:000361384700036
summary In this paper we aimed at the development of a novel tool to facilitate the structured analysis of architectural construction principles, materials and production methods in digital design and fabrication practices. In order to assist the understanding and teaching of these subjects, we employed a taxonomy of spatial design construction (Vrouwe 2013). By using the taxonomy, we analysed and categorised 34 parametric structures published in the IJAC Journal (2002-2014). Informed by this study, we aligned the initial taxonomy using various framing strategies. As a result we developed a new framework for spatial design construction specifically customised for the design and fabrication of parametric structures which can potentially serve as a constructive tool to create a novel design learning environment and integrated teaching strategies.
keywords Digital fabrication; parametric design; education; framing; pedagogy
series eCAADe
email
last changed 2022/06/07 07:50

_id caadria2014_037
id caadria2014_037
authors Khoo, Chin Koi
year 2014
title Designing a Responsive Material System with Physical Computing
doi https://doi.org/10.52842/conf.caadria.2014.097
source Rethinking Comprehensive Design: Speculative Counterculture, Proceedings of the 19th International Conference on Computer-Aided Architectural Design Research in Asia (CAADRIA 2014) / Kyoto 14-16 May 2014, pp. 97–106
summary This paper focuses on an investigation to explore architectural design potentials with a responsive material system and physical computing. Contemporary architects and designers are seeking to integrate physical computing in responsive architectural designs; however, they have largely borrowed from engineering technology’s mechanical devices and components. There is the opportunity to investigate an unexplored design approach to exploit the responsive capacity of material properties as alternatives to the current focus on mechanical components and discrete sensing devices. This opportunity creates a different design paradigm for responsive architecture that investigates the potential to integrate physical computing with responsive materials as one integrated material system. Instead of adopting highly intricate and expensive materials, this approach is explored through accessible and off-the-shelf materials to form a responsive material system, called Lumina. Lumina is implemented as an architectural installation called Cloud that serves as a morphing architectural skin. Cloud is a proof of concept to embody a responsive material system with physical computing to create a reciprocal and luminous architectural intervention for a selected dark corridor. It represents a different design paradigm for responsive architecture through alternative exploitation of contemporary materials and parametric design tools.
keywords Physical computing; responsive material systems; adaptive architecture
series CAADRIA
email
last changed 2022/06/07 07:52

_id caadria2014_150
id caadria2014_150
authors Knapp, Chris; Jonathan Neslon and Michael Parsons
year 2014
title Constructing Atmospheres
doi https://doi.org/10.52842/conf.caadria.2014.149
source Rethinking Comprehensive Design: Speculative Counterculture, Proceedings of the 19th International Conference on Computer-Aided Architectural Design Research in Asia (CAADRIA 2014) / Kyoto 14-16 May 2014, pp. 149–158
summary This paper documents and critically reflects upon the design, development, fabrication, and implementation of three pavilion projects developed during 2013-14. The core investigation of this work is the production of architectural spaces characterized by a quality of enveloping, diffuse, visual and spatial atmospheres. The principal activity of the research is aimed at refining methods for software-based exploration of formal complexities and the subsequent need to control variability and efficiency in fabrication output, using Grasshopper for Rhino to develop customized definitions particular to each specific project scenario. Linking the projects together are issues of scale, resolution of effect, and intent to move from disparate assemblies of structure and skin toward composite, manifold construction techniques that address multiple concerns (gravity, bracing, affect, etc) with a minimum of assembly. A material palette common to the current vernacular of CNC-based projects such as plywood, plastics, and other sheet materials is utilised. This work is invested in extending the possibilities of the architect and architecture as a discipline, extrapolating the workflow from these successive projects to the speculative impact of the work upon emerging possibilities of architectural construction and craft.
keywords 3d modelling; Digital fabrication; Rhinoceros; Grasshopper; Tessellation
series CAADRIA
email
last changed 2022/06/07 07:51

_id ecaade2014_225
id ecaade2014_225
authors Kostas Grigoriadis
year 2014
title Material Fusion - A research into the simulated blending of materials using particle systems
doi https://doi.org/10.52842/conf.ecaade.2014.2.123
source Thompson, Emine Mine (ed.), Fusion - Proceedings of the 32nd eCAADe Conference - Volume 2, Department of Architecture and Built Environment, Faculty of Engineering and Environment, Newcastle upon Tyne, England, UK, 10-12 September 2014, pp. 123-130
wos WOS:000361385100012
summary Parallel to the early development and recent widespread usage of composite materials in building and manufacturing, the concept of functionally graded materials (FGM) was initiated and developed as far back as the 1980s. In contrast to the composite paradigm, where layers of materials are glued and 'cooked' together under high pressure and temperature to form laminated parts, FGM are singular materials that vary their consistency gradually over their volume. In direct link to their increasing use in fields adjacent to architecture, the scope of the paper is to explore a possible design route for designing with FGM. Of a limited number of available CAD software where material properties can be graded, the intent of the design for a materially graded windbreak module is to utilize particle systems as a technique for simulating fields of interacting, information-loaded material point sets that can be fused together in a gradient manner.
keywords Functionally graded materials; particle system elements
series eCAADe
email
last changed 2022/06/07 07:51

_id ascaad2014_022
id ascaad2014_022
authors Kotsopoulos, Sotirios D.; Leonardo Giusti and Federico Casalegno
year 2014
title Designing Synchronous Interactions for the Fenestration System of a Prototype Sustainable Dwelling
source Digital Crafting [7th International Conference Proceedings of the Arab Society for Computer Aided Architectural Design (ASCAAD 2014 / ISBN 978-603-90142-5-6], Jeddah (Kingdom of Saudi Arabia), 31 March - 3 April 2014, pp. 291-301
summary This paper presents an interactive fenestration system designed for the principal façade of a prototype sustainable dwelling. The system attains autonomous, responsive and interactive modes of operation, and is able to provide synchronous response to a wide variety of environmental conditions and user needs. The method to address the design of the system was to integrate electro-active materials and real time sensing and control technologies. The test was to implement a full-scale façade with the abovementioned capabilities. This presentation discusses the features, technologies and reasoning followed in the design and implementation of the façade.
series ASCAAD
email
last changed 2016/02/15 13:09

_id acadia14_463
id acadia14_463
authors Kretzer, Manuel
year 2014
title Architecture in the Era of Accelerating Change
doi https://doi.org/10.52842/conf.acadia.2014.463
source ACADIA 14: Design Agency [Proceedings of the 34th Annual Conference of the Association for Computer Aided Design in Architecture (ACADIA) ISBN 9781926724478]Los Angeles 23-25 October, 2014), pp. 463-472
summary The present paper highlights the necessity for architecture to become more adaptive and emphasizes the potential of Smart Materials in that context. It elaborates upon an educational approach to provide access and understanding towards novel material developments and points out the need for cross-disciplinary collaboration.
keywords Smart Materials, Flexibility, Education, Open Source, Network, Cross-Disciplinarity, Interactive Architecture
series ACADIA
type Normal Paper
email
last changed 2022/06/07 07:51

For more results click below:

this is page 0show page 1show page 2HOMELOGIN (you are user _anon_236368 from group guest) CUMINCAD Papers Powered by SciX Open Publishing Services 1.002