CumInCAD is a Cumulative Index about publications in Computer Aided Architectural Design
supported by the sibling associations ACADIA, CAADRIA, eCAADe, SIGraDi, ASCAAD and CAAD futures

PDF papers
References

Hits 1 to 20 of 662

_id ijac201412306
id ijac201412306
authors Khodadadi, Anahita; Peter von Buelow
year 2014
title Performance Based Exploration Of Generative Design Solutions Using Formex Algebra
source International Journal of Architectural Computing vol. 12 - no. 3, 321-338
summary This paper illustrates the use of a computational form-finding method called ParaGen which aids the designer in the exploration of arrays of good solutions. Although the method is guided by a multi-objective optimization program, the goal is to promote the exploration of the solution space based on designer selected combinations of performance objectives. The digital form generation of the bridges is carried out using Formian, a program which uses Formex algebra to describe a wide array of geometric configurations. This form generation is linked to structural simulation and design software (STAAD. Pro) to determine performance values. Finally, ParaGen is used to build a database of all solutions and guide the exploration based on performance values. Using this database, both visual and numeric characteristics are explored.
series journal
last changed 2019/05/24 09:55

_id ecaade2014_192
id ecaade2014_192
authors David Stasiuk and Mette Ramsgaard Thomsen
year 2014
title Learning to be a Vault - Implementing learning strategies for design exploration in inter-scalar systems
doi https://doi.org/10.52842/conf.ecaade.2014.1.381
source Thompson, Emine Mine (ed.), Fusion - Proceedings of the 32nd eCAADe Conference - Volume 1, Department of Architecture and Built Environment, Faculty of Engineering and Environment, Newcastle upon Tyne, England, UK, 10-12 September 2014, pp. 381-390
summary Parametric design models enable the production of dynamic form, responsive material assemblies, and numerically and geometrically analytical feedback. The value potential for design produced through the procedural transformation of input parameters (or features) through algorithmic models has been repeatedly demonstrated and epistemically refined. However, despite their capacity to improve productivity and iteration, parametric models are nonetheless prone to inflexibility and reduction, both of which obscure processes of invention and discovery that are central to an effective design practice. This paper presents an experimental approach for the application of multiple, parallel computational design modelling strategies which are tested in the production of an inter-scalar model array that synthesises design intent, the simulation of material behaviours, performance-driven adaptation, and open-ended processes of discovery and categorical description. It is particularly focused on the computational potentials embedded in interdependent applications of simulation and machine learning algorithms as generative and descriptive drivers of form, performance, and architectural quality. It ultimately speculates towards an architectural design modelling method that privileges open model topologies and emergent feature production as critical operators in the generation of flexible and adaptive design solutions.
wos WOS:000361384700038
keywords Parametric design; computational modelling; machine learning; multi-objective optimisation; k-means clustering
series eCAADe
email
last changed 2022/06/07 07:55

_id ecaade2014_067
id ecaade2014_067
authors Mehrnoush Latifi Khorasani, Jane Burry and Mahsa Salehi
year 2014
title Thermal performance of patterned facades - Studies on effects of patterns on the thermal performance of facades
doi https://doi.org/10.52842/conf.ecaade.2014.1.267
source Thompson, Emine Mine (ed.), Fusion - Proceedings of the 32nd eCAADe Conference - Volume 1, Department of Architecture and Built Environment, Faculty of Engineering and Environment, Newcastle upon Tyne, England, UK, 10-12 September 2014, pp. 267-276
summary Skin is the primary shield between our body and its surroundings. It protects the body from the harmful environmental effects like dehydration and radiation from intense sunlight. Likewise, the outer layer, or skin of a building has the same function of protecting its inhabitants against the external elements. This research is a part of a larger investigation into geometrical patterning and layering of facades as an effective intervention between the outdoor space and the indoor environment to regulate the conditions for occupant thermal comfort. This paper reports on exploration of an approach for measurement, evaluation and feedback in the design workflow through a mixed digital -physical simulation platform (MDPS) based on the objectives of the larger study. For this purpose, it introduces a new way of analyzing thermal performance of double skin facades by using temperature sensors, Arduino, post visualization with MATLAB and digital energy simulation. The main aspects of this proposed workflow is the design of a thermal performance feedback loop as an integral part of the process of geometrical patterning design for façade.
wos WOS:000361384700026
keywords Patterned facades; thermal performance; surface temperature; data visualization; mixed digital physical simulation
series eCAADe
email
last changed 2022/06/07 07:58

_id acadia14_111
id acadia14_111
authors Mostafavi, Sina; Yu, Soungmin; Biloria, Nimish M.
year 2014
title Multi-scalar Agent-based complex design systems - The case of CECO (Climatic-Ecologies) studio: Informed generative design systems and performance-driven design workflows
doi https://doi.org/10.52842/conf.acadia.2014.111
source ACADIA 14: Design Agency [Proceedings of the 34th Annual Conference of the Association for Computer Aided Design in Architecture (ACADIA) ISBN 9781926724478]Los Angeles 23-25 October, 2014), pp. 111-116
summary This paper illustrates the application of different types of complex systems for digital form finding and design decision making with underlying methodological and pedagogical aims to emphasize performance-driven design solutions via combining generative methods of complex systems with simulation techniques.
keywords Agent-based systems, generative systems, Performance-driven design, Environmental analysis, Design information integration
series ACADIA
type Normal Paper
email
last changed 2022/06/07 07:58

_id ecaade2014_176
id ecaade2014_176
authors Sina Mostafavi and Matthew Tanti
year 2014
title Design to fabrication integration and material craftsmanship - A performance driven stone architecture design system based on material, structural and fabrication constraints and criteria
doi https://doi.org/10.52842/conf.ecaade.2014.1.445
source Thompson, Emine Mine (ed.), Fusion - Proceedings of the 32nd eCAADe Conference - Volume 1, Department of Architecture and Built Environment, Faculty of Engineering and Environment, Newcastle upon Tyne, England, UK, 10-12 September 2014, pp. 445-454
summary This paper presents a computational design methodology through describing of a case study on stone building system. In addition to establishing a performance driven form-finding methodology, the objective is to redefine local craftsmanship methods as industrial fabrication techniques in order to introduce the constructability of the design solutions as one of the main performance criteria. Therefore, the focus of the methodology is to facilitate architectural design processes through developing of customized computational design tools and workflows for data integration and concurrent performance evaluation. The research starts with the hypothesis that the technological advancements in digital design and fabrication can lead to re-exploration and improvement of traditional building techniques with local materials. The paper explains different stages of the methodology and the way the chained design to fabrication processes would lead to constructible, structurally possible and optimal design solutions of small scale and simple symmetric design solutions to complex topologies at the scale of larger complex buildings.
wos WOS:000361384700044
keywords Digital materiality ; design information exchange; compression-only stone structure; computer aided craftsmanship ; robotic fabrication
series eCAADe
email
last changed 2022/06/07 07:56

_id acadia14_619
id acadia14_619
authors Erhan, Halil; Wang, Ivy; Shireen, Naghmi
year 2014
title Interacting with Thousands: A Parametric-Space Exploration Method in Generative Design
doi https://doi.org/10.52842/conf.acadia.2014.619
source ACADIA 14: Design Agency [Proceedings of the 34th Annual Conference of the Association for Computer Aided Design in Architecture (ACADIA) ISBN 9781926724478]Los Angeles 23-25 October, 2014), pp. 619-626
summary Although generative and parametric design methods open possibilities for working with a large number of solutions, there is almost no computational support for designers to directly manage, sort, filter, and select the generated designs. In this study, we propose an approach that presents a similarity-based design exploration relying on similarity indices that aims to reduce and collapse design space into manageable scales.
keywords parametric design, generative methods, design space reduction, similarity metrics and indices, similarity matrix; BIG DATA
series ACADIA
type Normal Paper
email
last changed 2022/06/07 07:55

_id ecaade2015_18
id ecaade2015_18
authors Agkathidis, Asterios
year 2015
title Generative Design Methods - Implementing Computational Techniques in Undergraduate Architectural Education
doi https://doi.org/10.52842/conf.ecaade.2015.2.047
source Martens, B, Wurzer, G, Grasl T, Lorenz, WE and Schaffranek, R (eds.), Real Time - Proceedings of the 33rd eCAADe Conference - Volume 2, Vienna University of Technology, Vienna, Austria, 16-18 September 2015, pp. 47-55
summary In continuation to the Deceptive Landscape Installation research project (Agkathidis, Kocatürk 2014), this paper investigates the implementation of generative design techniques in undergraduate architectural design education. After reviewing the main definitions of generative design synoptically, we have assessed the application of a modified generative method on a final year, undergraduate design studio, in order to evaluate its potential and its suitability within the framework of a research led design studio, leading to an RIBA accredited Part I degree. Our research findings based on analysis of the design outputs, student performance, external examiners reports as well as student course evaluation surveys indicate a positive outcome on the studio's design approach, as well as its suitability for an undergraduate design studio. They initiate a flourishing debate about accomplishments and failures of a design methodology, which still remains alien to many undergraduate curricula.
wos WOS:000372316000007
series eCAADe
email
more https://mh-engage.ltcc.tuwien.ac.at/engage/ui/watch.html?id=e6f673d4-6e8e-11e5-be22-93874392c2e4
last changed 2022/06/07 07:54

_id caadria2014_042
id caadria2014_042
authors Alam, Jack and Jeremy J. Ham
year 2014
title Towards a BIM-Based Energy Rating System
doi https://doi.org/10.52842/conf.caadria.2014.285
source Rethinking Comprehensive Design: Speculative Counterculture, Proceedings of the 19th International Conference on Computer-Aided Architectural Design Research in Asia (CAADRIA 2014) / Kyoto 14-16 May 2014, pp. 285–294
summary Governments in Australia are faced with policy implementation that mandates higher energy efficient housing (Foran, Lenzen & Dey 2005). To this effect, the National Construction Code (NCC) 2013 stipulates the minimum energy performance for residential buildings as 114MJ/m2 per annum or 6 stars on an energy rating scale. Compliance with this minimum is mandatory but there are several methods through which residential buildings can be rated to comply with the deemed to satisfy provisions outlined in the NCC. FirstRate5 is by far the most commonly used simulation software used in Victoria, Australia. Meanwhile, Building Information Modelling (BIM), using software such as ArchiCAD has gained a foothold in the industry. The energy simulation software within ArchiCAD, EcoDesigner, enables the reporting on the energy performance based on BIM elements that contain thermal information. This research is founded on a comparative study between FirstRate5 and EcoDesigner. Three building types were analysed and compared. The comparison finds significant differences between simulations, being, measured areas, thermal loads and potentially serious shortcomings within FirstRate5, that are discussed along with the future potential of a fully BIM-integrated model for energy rating certification in Victoria.
keywords Building Information Modelling, energy rating, FirstRate 5, ArchiCAD EcoDesigner, Building Energy Model
series CAADRIA
email
last changed 2022/06/07 07:54

_id ecaade2024_167
id ecaade2024_167
authors Alammar, Ammar; Alymani, Abdulrahman; Jabi, Wassim
year 2024
title Building Energy Efficiency Estimations with Random Forest for Single and Multi-Zones
doi https://doi.org/10.52842/conf.ecaade.2024.2.365
source Kontovourkis, O, Phocas, MC and Wurzer, G (eds.), Data-Driven Intelligence - Proceedings of the 42nd Conference on Education and Research in Computer Aided Architectural Design in Europe (eCAADe 2024), Nicosia, 11-13 September 2024, Volume 2, pp. 365–374
summary Surrogate models (SM) present an opportunity for rapid assessment of a building's performance, surpassing the pace of simulation-based methods. Setting up a simulation for a single concept involves defining numerous parameters, disrupting the architect's creative flow due to extended simulation run times. Therefore, this research explores integrating building energy analysis with advanced machine learning techniques to predict heating and cooling loads (KWh/m2) for single and multi-zones in buildings. To generate the dataset, the study adopts a parametric generative workflow, building upon Chou and Bui's (2014) methodology. This dataset encompasses multiple building forms, each with unique topological connections and attributes, ensuring a thorough analysis across varied building scenarios. These scenarios undergo thermal simulation to generate data for machine learning analysis. The study primarily utilizes Random Forest (RF) as a new technique to estimate the heating and cooling loads in buildings, a critical factor in building energy efficiency. Following that, A random search approach is utilized to optimize the hyperparameters, enhancing the robustness and accuracy of the machine learning models employed later in the research. The RF algorithms demonstrate high performance in predicting heating and cooling loads (KWh/m2), contributing to enhanced building energy efficiency. The study underscores the potential of machine learning in optimizing building designs for energy efficiency.
keywords Heating and Cooling loads, Topology, Machine learning, Random Forest
series eCAADe
email
last changed 2024/11/17 22:05

_id sigradi2014_030
id sigradi2014_030
authors Borges, Marina Ferreira; Ricardo Hallal Fakury
year 2014
title Processo iterativo de design paramétrico e projeto estrutural aplicado ao desenvolvimento de torre eólica [Iterative process of parametric design and structural project applied to the development of lattice and wind power]
source SIGraDi 2014 [Proceedings of the 18th Conference of the Iberoamerican Society of Digital Graphics - ISBN: 978-9974-99-655-7] Uruguay - Montevideo 12 - 14 November 2014, pp. 35-38
summary This article proposes to study the process of parametric design integrated analysis and structural design. This application model is called Performative Model; the form is generated based on performance criteria. The digital tools facilitate the information flow between designers using parametric model and Finite Element Analysis. To research the method of Performative Model is proposed the development of a conceptual framework of lattice wind tower with the aim of a quantitative and qualitative structure optimization. Therefore, the parametric modeling will be done using Rhinoceros software, the plugin for creating algorithms Grasshoper and structural analysis plugin Scan & Solve.
keywords Performative model; Parametric model; Finite Element Analysis; Lattice Wind Tower
series SIGRADI
email
last changed 2016/03/10 09:47

_id acadia14projects_63
id acadia14projects_63
authors Bruscia, Nicholas; Romano, Christopher
year 2014
title project 3XLP - Porous Skin Prototype
doi https://doi.org/10.52842/conf.acadia.2014.063.2
source ACADIA 14: Design Agency [Projects of the 34th Annual Conference of the Association for Computer Aided Design in Architecture (ACADIA) ISBN 9789126724478]Los Angeles 23-25 October, 2014), pp. 63-66
summary project 3xLP, the winning submission to the TEX-FAB SKIN competition, is a continuation of design research on the structural properties of textured stainless steel sheeting, which typically is used for skinning and other non-structural purposes. The team conducted performative analyses of the material, and verified the results through full-scale prototyping. Structural studies relied on scale shifts that began with molecular composition and culminated with large-sale geometric systems. The work provides evidence of the adaptability, rigidity, and high performance of thin-gauge, textured metals; it establishes the groundwork for new structurally-based design possibilities using sheet steel.
keywords Material Logics and Tectonics, industry collaboration, digital fabrication, large scale prototyping
series ACADIA
type Research Projects
email
last changed 2022/06/07 07:54

_id ecaade2014_233
id ecaade2014_233
authors Evangelos Pantazis and David Gerber
year 2014
title Material Swarm Articulations - New View Reciprocal Frame Canopy
doi https://doi.org/10.52842/conf.ecaade.2014.1.463
source Thompson, Emine Mine (ed.), Fusion - Proceedings of the 32nd eCAADe Conference - Volume 1, Department of Architecture and Built Environment, Faculty of Engineering and Environment, Newcastle upon Tyne, England, UK, 10-12 September 2014, pp. 463-473
summary Material Swarm Articulations, is an experiment in developing a multi-objective optimization system that incorporates bottom up approaches for informing architectural design. The paper presents an initial built project that demonstrates the combination of a structural form finding method, with an agent based design system through the digital fabrication processes. The objective of this research is to develop a workflow combined with material and construction constraints that has the potential to increase performance objectives while enabling geometric complexity and design driven articulation of a traditional tectonic system. The emphasis of the research at this stage is to take advantage of material properties and assembly methods applied to a digital design and simulation workflow that enables emergent patterns to influence the performance of the space.The paper illustrates the research through a prototype of a self standing canopy structure in 1:1 scale. It presents results of the form finding, generative patterning, digital fabrication affordances and sets and agenda for next steps in the use of multi-agent systems for design purposes.
wos WOS:000361384700046
keywords Computational design; agent-based system; digital fabrication; parametric design; reciprocal frames; form finding; multi-objective optimization, multi-agent systems for design
series eCAADe
email
last changed 2022/06/07 07:55

_id acadia14projects_153
id acadia14projects_153
authors Fornes, Marc; Kusama, Yayoi
year 2014
title Selfridges
doi https://doi.org/10.52842/conf.acadia.2014.153.2
source ACADIA 14: Design Agency [Projects of the 34th Annual Conference of the Association for Computer Aided Design in Architecture (ACADIA) ISBN 9789126724478]Los Angeles 23-25 October, 2014), pp. 153-156
summary The project follows an ongoing research method investigating the control and definition of compound curvature to generate structural forms. Furthermore, the forms are generated through conventional manufacturing processes, and thus, must be defined in the logic of industrial production. The form strives to simultaneously resolve issues of rigidity and performance within the limitations of industry.
keywords Generative Design, Digital fabrication and construction, Practice-based and interdisciplinary computational Design research, Material Logics and Tectonics, Material Agency, parametric and evolutionary Design
series ACADIA
type Practice Projects
email
last changed 2022/06/07 07:51

_id sigradi2014_157
id sigradi2014_157
authors Hemmerling, Marco; Ulrich Nether
year 2014
title Generico - A case study on performance-based design
source SIGraDi 2014 [Proceedings of the 18th Conference of the Iberoamerican Society of Digital Graphics - ISBN: 978-9974-99-655-7] Uruguay- Montevideo 12,13,14 November 2014, pp. 126-129
summary The paper discusses a case study for a seating element that takes into account human factors as well as aspects of structural performance, material properties and production parameters within an integrative design approach. Generico is a prototype for a new way of design thinking, developed with a holistic approach. The design is based on the requirements of comfortable sitting and responds to load forces and ergonomic conditions. The Generico chair – resulting from an all-embracing line of thought, from design to production, is an ideal field of application for 3D-printing-technology as it allows for an optimal material distribution.
keywords Human-centered design; Performance-based design; Generative design; Structural analysis; Additive manufacturing
series SIGRADI
email
last changed 2016/03/10 09:53

_id caadria2014_161
id caadria2014_161
authors Heydarian, Arsalan; Joao P. Carneiro,David Gerber, Burcin Becerik-Gerber, Timothy Hayes and Wendy Wood
year 2014
title Immersive Virtual Environments: Experiments on Impacting Design and Human Building Interaction
doi https://doi.org/10.52842/conf.caadria.2014.729
source Rethinking Comprehensive Design: Speculative Counterculture, Proceedings of the 19th International Conference on Computer-Aided Architectural Design Research in Asia (CAADRIA 2014) / Kyoto 14-16 May 2014, pp. 729–738
summary This research prefaces the need for engaging with endusers in early stages of design as means to achieve higher performing designs with an increased certainty for enduser satisfaction. While the architecture, engineering, and construction (AEC) community has previously used virtual reality, the primary use has been for coordination and visualization of Building Information Models (BIM). This work builds upon the value of use of virtual environments in AEC processes but asks the research question "how can we better test and measure design alternatives through the integration of immersive virtual reality into our digital and physical mock up workflows? " The work is predicated on the need for design exploration through associative parametric design models, as well as, testing and measuring design alternatives with human subjects. The paper focuses on immersive virtual environments (IVEs) and presents a literature review of the use of virtual environments for integrating enduser feedback during the design stage. In a controlled pilot experiment, the authors find that human participants perform similarly in IVE and the physical environment in everyday tasks. The participants indicated they felt a strong sense of "presence" in IVE. In the future, the authors plan on using IVE to explore the integration of multi agent systems to impact building design performance and occupant satisfaction.
keywords Virtual Reality; Prototyping; Design Technology; Immersive Virtual Environments; Feedback
series CAADRIA
email
last changed 2022/06/07 07:51

_id caadria2014_274
id caadria2014_274
authors Kaftan, Martin; Markus Manahl, Jiri Pavlicek, Elmar Hess and Urs Hirschberg
year 2014
title Augmented Parametrics
doi https://doi.org/10.52842/conf.caadria.2014.615
source Rethinking Comprehensive Design: Speculative Counterculture, Proceedings of the 19th International Conference on Computer-Aided Architectural Design Research in Asia (CAADRIA 2014) / Kyoto 14-16 May 2014, pp. 615–624
summary Current parametric design software lacks the capacity to integrate simulation and optimisation when they would be most relevant: at the early stages of the design process. This paper presents a novel framework to address this issue: A parametric program that supports performance-based modelling by integrating detailed physical simulation modules that also take construction issues into account, while at the same time providing easy access to high-level optimisation approaches. Providing bidirectional parametric modelling capabilities, we refer to the system under development as augmented parametrics. It is being developed as part of a research project sponsored by the Austrian Science Foundation.
keywords Parametric design; generative design; optimization; building performance simulation
series CAADRIA
email
last changed 2022/06/07 07:52

_id caadria2014_071
id caadria2014_071
authors Li, Lezhi; Renyuan Hu, Meng Yao, Guangwei Huang and Ziyu Tong
year 2014
title Sculpting the Space: A Circulation Based Approach to Generative Design in a Multi-Agent System
doi https://doi.org/10.52842/conf.caadria.2014.565
source Rethinking Comprehensive Design: Speculative Counterculture, Proceedings of the 19th International Conference on Computer-Aided Architectural Design Research in Asia (CAADRIA 2014) / Kyoto 14-16 May 2014, pp. 565–574
summary This paper discusses an MAS (multiagent system) based approach to generating architectural spaces that afford better modes of human movement. To achieve this, a pedestrian simulation is carried out to record the data with regard to human spatial experience during the walking process. Unlike common practices of performance oriented generation where final results are achieved through cycles of simulation and comparison, what we propose here is to let human’s movement exert direct influence on space. We made this possible by asking "humans" to project simulation data on architectural surroundings, and thus cause the layout to change for the purpose of affording what we designate as good spatial experiences. A generation experiment of an exhibition space is implemented to explore this approach, in which tentative rules of such spatial manipulation are proposed and tested through space syntax analyse. As the results suggested, by looking at spatial layouts through a lens of human behaviour, this projection-and-generation method provides some insight into space qualities that other methods could not have offered.
keywords Performance oriented generative design; projection; multi-agent system; pedestrian simulation; space syntax
series CAADRIA
email
last changed 2022/06/07 07:59

_id ecaade2014_049
id ecaade2014_049
authors Lukáš Kurilla, Henri Achten and Miloš Florián
year 2014
title Structurally Evaluated Shaping Process - Decision-making support in structural design
doi https://doi.org/10.52842/conf.ecaade.2014.2.023
source Thompson, Emine Mine (ed.), Fusion - Proceedings of the 32nd eCAADe Conference - Volume 2, Department of Architecture and Built Environment, Faculty of Engineering and Environment, Newcastle upon Tyne, England, UK, 10-12 September 2014, pp. 23-28
summary This paper deals with possibilities for evaluation and visualization of structural solutions created in the conceptual design phase. The goal is to support transparency of structural analysis results, and to support architects' decision-making by providing them with opportunity to compare different structural solutions. Research will be implemented into the developed software tool, with the aim to support architects in the shaping process and to teach them to better understand form and forces.
wos WOS:000361385100001
keywords Performance-based design; early stage of design; decision-making support; structural analysis; multi-criteria evaluation
series eCAADe
email
last changed 2022/06/07 07:59

_id ecaade2014_224
id ecaade2014_224
authors Mohammad Rahmani Asl, Michael Bergin, Adam Menter and Wei Yan
year 2014
title BIM-based Parametric Building Energy Performance Multi-Objective Optimization
doi https://doi.org/10.52842/conf.ecaade.2014.2.455
source Thompson, Emine Mine (ed.), Fusion - Proceedings of the 32nd eCAADe Conference - Volume 2, Department of Architecture and Built Environment, Faculty of Engineering and Environment, Newcastle upon Tyne, England, UK, 10-12 September 2014, pp. 455-464
summary Building energy performance assessments are complex multi-criteria problems. Appropriate tools that can help designers explore design alternatives and assess the energy performance for choosing the most appropriate alternative are in high demand. In this paper, we present a newly developed integrated parametric Building Information Modeling (BIM)-based system to interact with cloud-based whole building energy performance simulation and daylighting tools to optimize building energy performance using a Multi-Objective Optimization (MOO) algorithm. This system enables designers to explore design alternatives using a visual programming interface, while assessing the energy performance of the design models to search for the most appropriate design. A case study of minimizing the energy use while maximizing the appropriate daylighting level of a residential building is provided to showcase the utility of the system and its workflow.
wos WOS:000361385100048
keywords Building energy performance analysis; building information model (bim); parametric modelling; parametric energy simulation; multi-objective optimization
series eCAADe
email
last changed 2022/06/07 07:58

_id ecaade2014_239
id ecaade2014_239
authors Pedro Filipe Martins and José Pedro Sousa
year 2014
title Digital Fabrication Technology in Concrete Architecture
doi https://doi.org/10.52842/conf.ecaade.2014.1.475
source Thompson, Emine Mine (ed.), Fusion - Proceedings of the 32nd eCAADe Conference - Volume 1, Department of Architecture and Built Environment, Faculty of Engineering and Environment, Newcastle upon Tyne, England, UK, 10-12 September 2014, pp. 475-484
summary Technological innovation has been an important driving force in architecture, enabling and inspiring architects and engineers by giving them new tools for solving existing problems. In the last two decades, the exploration of digital design and fabrication technologies has stimulated the development of a variety of interests and strategies to materialize increasingly complex and customized solutions in architecture, with traditional building materials. Reinforced concrete is the most widely used material in the building industry today and throughout its history has been the subject of vast research into its performance as a construction material and its tectonic potential in architecture. As such, the introduction of digital fabrication processes in concrete construction represents the biggest prospect for renovation of our built environment and at the same time, presents particular difficulties and opportunities, which are now being addressed. In an effort to investigate the alternative design and material possibilities in concrete emerging from the use of digital fabrication technologies in architecture, this paper proposes a focused view of digital fabrication applied to concrete construction with two areas of research. By framing the research in the context of reference works in concrete architecture of the 20th century, this paper describes and illustrates taxonomy of existing and possible types of integration of digital fabrication technologies in concrete architecture in the realms of Practice and Research.This characterization allows the authors to frame the relation between material, technology and architecture in different environments regarding the same material, extracting a clear image of existing processes, their potential and shortcomings, as well as expectations for future developments.
wos WOS:000361384700047
keywords Digital fabrication; concrete; cam; robotics; sustainability
series eCAADe
email
last changed 2022/06/07 07:59

For more results click below:

this is page 0show page 1show page 2show page 3show page 4show page 5... show page 33HOMELOGIN (you are user _anon_754642 from group guest) CUMINCAD Papers Powered by SciX Open Publishing Services 1.002