CumInCAD is a Cumulative Index about publications in Computer Aided Architectural Design
supported by the sibling associations ACADIA, CAADRIA, eCAADe, SIGraDi, ASCAAD and CAAD futures

PDF papers
References

Hits 1 to 20 of 668

_id ecaade2014_176
id ecaade2014_176
authors Sina Mostafavi and Matthew Tanti
year 2014
title Design to fabrication integration and material craftsmanship - A performance driven stone architecture design system based on material, structural and fabrication constraints and criteria
doi https://doi.org/10.52842/conf.ecaade.2014.1.445
source Thompson, Emine Mine (ed.), Fusion - Proceedings of the 32nd eCAADe Conference - Volume 1, Department of Architecture and Built Environment, Faculty of Engineering and Environment, Newcastle upon Tyne, England, UK, 10-12 September 2014, pp. 445-454
summary This paper presents a computational design methodology through describing of a case study on stone building system. In addition to establishing a performance driven form-finding methodology, the objective is to redefine local craftsmanship methods as industrial fabrication techniques in order to introduce the constructability of the design solutions as one of the main performance criteria. Therefore, the focus of the methodology is to facilitate architectural design processes through developing of customized computational design tools and workflows for data integration and concurrent performance evaluation. The research starts with the hypothesis that the technological advancements in digital design and fabrication can lead to re-exploration and improvement of traditional building techniques with local materials. The paper explains different stages of the methodology and the way the chained design to fabrication processes would lead to constructible, structurally possible and optimal design solutions of small scale and simple symmetric design solutions to complex topologies at the scale of larger complex buildings.
wos WOS:000361384700044
keywords Digital materiality ; design information exchange; compression-only stone structure; computer aided craftsmanship ; robotic fabrication
series eCAADe
email
last changed 2022/06/07 07:56

_id ascaad2014_007
id ascaad2014_007
authors Al-Rawi, Osama
year 2014
title Evolutionary Algorithms in Islamic Architecture
source Digital Crafting [7th International Conference Proceedings of the Arab Society for Computer Aided Architectural Design (ASCAAD 2014 / ISBN 978-603-90142-5-6], Jeddah (Kingdom of Saudi Arabia), 31 March - 3 April 2014, pp. 99-107
summary The cosmological nature of Islamic architecture makes it a useful case study for the capability of the adaptation, assimilation and accommodation with the development of evolutionary algorithms and their applications in architectural design. Genetic algorithm derives its structure from the observation of nature. We shall review the concept of intelligent agents and their organization into complex adaptive systems as well as genetic-type algorithms for learning and evolution. Since algorithmic art consists of generation of images on the basis of algorithms, algorithms can be viewed as a notation, and notation is something that music has but visual artefacts in general miss. This paper aims to discover the role of evolutionary algorithms in historical Islamic architecture. Also, we shall try to investigate the way in which the future development could occur not only through the discovery of new facts or theories, but also through the rise and dissemination of new visions having different explanation of Islamic architecture that considers it as a result of serious application of formation through evolutionary genetic algorithms.
series ASCAAD
email
last changed 2016/02/15 13:09

_id sigradi2014_271
id sigradi2014_271
authors Alvarez, Marcelo Paysse
year 2014
title Relevamiento con drones; el caso Real de San Carlos [Drone mapping; case study: Real de San Carlos]
source SiGraDi 2014 [Proceedings of the 18th Conference of the Iberoamerican Society of Digital Graphics - ISBN: 978-9974-99-655-7] Uruguay - Montevideo 12 - 14 November 2014, pp. 649-652
summary Cultural landscapes, although complex realities, give shape and meaning to the tangible and intangible components which form the foundations of human cultural background. The architecture of the city of Colonia del Sacramento fits within this context, and builds up a unique cultural landscape inserted in the logic of the historical heritage protection system. This concept, which implies wealth but also conflicts, demands a multidisciplinary approach grounded on a wide vision of this issue. Likewise, this comprehensive approach contributes to reverse and correct the lack of capacity and/or interest to save these examples of man-made landscape (prefabrication, mega-projects of the beginnings of the 20th Century, etc.), which are essential pieces of heritage conservation. Since 1943 the bullring is owned by the Municipality of Colonia. In the last decade the building was fenced to prevent breakdown risk. Still, illegal access occurs quite easily, increasing the risk and potential damage, in addition to the spoilage caused by more than one hundred years of inactivity and lack of maintenance. This paper proposes a method to survey and record the current status of the building, from photos taken by unmanned aerial vehicles (UAV, drones), allowing the registry without the need of direct access to the site. The survey will enable three types of results: series of mapped photographs, 3D models and an interactive platform for aerial view. The aim is to provide valuable and essential documentation for next stages of consolidation works, competitions and eventualy, new uses of the heritage building.
series SIGRADI
email
last changed 2016/03/10 09:47

_id ecaade2014_133
id ecaade2014_133
authors Armando Trento, Antonio Fioravanti and Francesco Rossini
year 2014
title Health and Safety Design by means of a Systemic Approach - Linking Construction Entities and Activities for Hazard Prevention
doi https://doi.org/10.52842/conf.ecaade.2014.1.633
source Thompson, Emine Mine (ed.), Fusion - Proceedings of the 32nd eCAADe Conference - Volume 1, Department of Architecture and Built Environment, Faculty of Engineering and Environment, Newcastle upon Tyne, England, UK, 10-12 September 2014, pp. 633-642
summary Education and Research in Computer Aided Architectural Design in Europe faces many urgent tasks. Among the Architecture, Engineering and Construction (AEC)international scientific societies, only few researches systematically investigate on how to integrate the design solutions with Health and Safety (HS) planning measures, enhancing a collaborative “fusion” of all involved actors in Design and Construction decision making. Process automation cannot be enhanced until design/management tools, such as Building Information Models, can rely only on entities formalised "per se" geometrical items fulfilled by isolated-object specific information. To face complex problems, BIM models should be able to implement and manipulate multiple sets of entities, qualified by clearly established relationships, belonging to organically structured and oriented (sub-) systems. This paper reports on an early stage research project, focused on the identification of operative rules for Health and Safety design. Implementation on the unique case study of Palazzo della Civiltà Italiana functional refurbishment faces two main objectives: one, more pragmatic, is concerned with boostingworkers education about non-standard operative tasks, by means of accurate ad-hoc construction narrative visualisation; another one, more challenging and theoretically complex, consists in modelling "judgment-based" rules, aimed at supporting automated reasoning in Safety Design.
wos WOS:000361384700063
keywords Construction hazards prevention through design; project construction management and visualization; health and safety management; risk modelling; knowledge representation
series eCAADe
email
last changed 2022/06/07 07:54

_id caadria2021_089
id caadria2021_089
authors Cristie, Verina, Ibrahim, Nazim and Joyce, Sam Conrad
year 2021
title Capturing and Evaluating Parametric Design Exploration in a Collaborative Environment - A study case of versioning for parametric design
doi https://doi.org/10.52842/conf.caadria.2021.2.131
source A. Globa, J. van Ameijde, A. Fingrut, N. Kim, T.T.S. Lo (eds.), PROJECTIONS - Proceedings of the 26th CAADRIA Conference - Volume 2, The Chinese University of Hong Kong and Online, Hong Kong, 29 March - 1 April 2021, pp. 131-140
summary Although parametric modelling and digital design tools have become ubiquitous in digital design, there is a limited understanding of how designers apply them in their design processes (Yu et al., 2014). This paper looks at the use of GHShot versioning tool developed by the authors (Cristie & Joyce, 2018; 2019) used to capture and track changes and progression of parametric models to understand early-stage design exploration and collaboration empirically. We introduce both development history graph-based metrics (macro-process) and parametric model and geometry change metric (micro-process) as frameworks to explore and understand the captured progression data. These metrics, applied to data collected from three cohorts of classroom collaborative design exercises, exhibited students' distinct modification patterns such as major and complex creation processes or minor parameter explorations. Finally, with the metrics' applicability as an objective language to describe the (collaborative) design process, we recommend using versioning for more data-driven insight into parametric design exploration processes.
keywords Design exploration; parametric design; history recording; version control; collaborative design
series CAADRIA
email
last changed 2022/06/07 07:56

_id ecaade2014_054
id ecaade2014_054
authors Domenico D'Uva
year 2014
title Morphogenesis and panelling, the use of generative tools beyond academia. - Case studies and limits of the method.
doi https://doi.org/10.52842/conf.ecaade.2014.2.081
source Thompson, Emine Mine (ed.), Fusion - Proceedings of the 32nd eCAADe Conference - Volume 2, Department of Architecture and Built Environment, Faculty of Engineering and Environment, Newcastle upon Tyne, England, UK, 10-12 September 2014, pp. 81-87
summary The increasing complexity in architectural design brought a parallel evolution of tools for shape generation and management. Digital tools which better fulfil this need are the generative design software. The aim of this work is finding and testing real life uses of generative design software beyond academic edges. The specific target is transform a complex surface into a similar surface mostly made of flat panels. As a testing ground it has been chosen the support in construction of complex shapes made with ordinary and well known tools. The combination of software used is Rhinoceros, with its plugin Grasshopper, and a couple of opensource add-on, Lunchbox and Paneling tool. The cases are listed from the simplest to the most complex, and the first four are solved with the automated procedure, the fifth, manually. Based on the cases studied it is possible to confirm that the method is applicable to the majority of the complex surfaces.
wos WOS:000361385100007
keywords Generative; panelling; discretization
series eCAADe
email
last changed 2022/06/07 07:55

_id caadria2014_096
id caadria2014_096
authors Grobman, Yasha and Roy Kozlovsky
year 2014
title On the Shores of Architecture
doi https://doi.org/10.52842/conf.caadria.2014.853
source Rethinking Comprehensive Design: Speculative Counterculture, Proceedings of the 19th International Conference on Computer-Aided Architectural Design Research in Asia (CAADRIA 2014) / Kyoto 14-16 May 2014, pp. 853–862
summary This paper explores the implications of complex geometry enabled by computational technology to architectural theory and practice. It reviews the different design paradigms engaged breaking the horizontality of the floor and ceiling or fusing them together. It argues that current advances in fluid dynamics simulations open a new frontier in the conception of the usable architectural surface, in which the architectural product is no longer a fixed object, but the interaction between a fluid, changing environment and built form. The paper presents a case study in which computational fluid dynamics are utilized to reconvert a disused breakwater into a ‘blue garden’. The morphology of the breakwater and its texture are calculated to produce the conditions amiable for supporting a varied marine ecosystem, and to shape the waves to generate aesthetically meaningful sensations. The essay discusses the technical and conceptual challenges of controlling the nonlinear behaviour of fluids. It then speculates on the theoretical ramifications of having the surface interact with exterior forces and the subject's imagination to produce an event enfolding in time.
keywords Computational fluid dynamics; curvilinear surfaces; performance design theory; habitat engineering; coastal infrastructure
series CAADRIA
email
last changed 2022/06/07 07:51

_id sigradi2014_085
id sigradi2014_085
authors Lazewski, Maciej Roman; Bob Martens, Herbert Peter, Katharina Wolf
year 2014
title Virtual Space: Exploring the Freedom of “Reality” in the Framework of Digital Heritage
source SiGraDi 2014 [Proceedings of the 18th Conference of the Iberoamerican Society of Digital Graphics - ISBN: 978-9974-99-655-7] Uruguay- Montevideo 12,13,14 November 2014, pp. 457-460
summary This contribution discusses the benefits of panoramic representations for projects relating to the digital-heritage, a method which allows for an effective presentation and exploration of spatial relationships in structures that no longer exist. The paper provides information on existing software options for the creation of panoramic views. State-of the art representations of this kind derived from a 3D computer model will be discussed on the basis of a case study relating to the destroyed synagogue of Jablonec in the Czech Republic.
keywords Virtual reconstruction model; Digital heritage; Perception; Panoramic representation; Virtual walkthrough
series SIGRADI
email
last changed 2016/03/10 09:54

_id caadria2014_085
id caadria2014_085
authors Leitão, António M.
year 2014
title Improving Generative Design by Combining Abstract Geometry and Higher-Order Programming
doi https://doi.org/10.52842/conf.caadria.2014.575
source Rethinking Comprehensive Design: Speculative Counterculture, Proceedings of the 19th International Conference on Computer-Aided Architectural Design Research in Asia (CAADRIA 2014) / Kyoto 14-16 May 2014, pp. 575–584
summary Generative Design (GD) involves the use of algorithms that compute designs. To take advantage of the computational power of computers, these algorithms must be implemented in a programming language. Although most programming languages have the same computational power, they have very different expressive powers. In this paper we focus on exploring the expressive power of languages and we argue that (1) the ability to use abstract geometry as input and (2) the use of higher-order programming dramatically simplifies the implementation of GD algorithms. We illustrate these concepts using a large and complex example that was developed as a case-study.
keywords Generative design; abstract geometry; higher-order programs
series CAADRIA
email
last changed 2022/06/07 07:52

_id acadia23_v2_294
id acadia23_v2_294
authors Matharu, Sumer; Crawford, Joe; Ohakim, Ugonna
year 2023
title Techno Relics: A Framework for Computation, Materiality, and Fabrication in the Anthropocene
source ACADIA 2023: Habits of the Anthropocene: Scarcity and Abundance in a Post-Material Economy [Volume 2: Proceedings of the 43rd Annual Conference for the Association for Computer Aided Design in Architecture (ACADIA) ISBN 979-8-9891764-0-3]. Denver. 26-28 October 2023. edited by A. Crawford, N. Diniz, R. Beckett, J. Vanucchi, M. Swackhamer 294-303.
summary This paper explores the potential of material, computation, and fabrication methodologies broadly engaging a critical understanding of the human epoch, also known as the anthro- pocene era, and its impact on Earth’s geology. Man-made materials have arguably become ubiquitous and a massively distributed part of the environment, while also placing an involuntary burden on local ecologies. Nature has taken its course and swallowed these synthetic materials to create new compositions of complex conglomerations, thereby blur- ring the boundaries between the agency of man, nature, and technology (Corcoran et al. 2014). The discipline of architecture, too, must reconsider its own boundaries, and evolve to design and fabricate with these techno relics, defined here as a remnant of the techno- logical impact on our planet. In order to understand how these techno relics can be used by designers, this paper pres- ents a general framework for the research, discovery, and validation of computational and fabrication processes. This is done through the examination of the background research in using aluminum waste by leveraging pre-existing digital and physical processes. Furthermore, the paper situates the background work within the broader context of how these techno relics can be mined, or collected. This is done through the examination of a case study that follows plastic waste in the Pacific Northwest through an Indigenous lens, providing possible architectural solutions that are relevant to the building typology in the remote communities most affected.
series ACADIA
type paper
email
last changed 2024/12/20 09:12

_id ecaade2014_144
id ecaade2014_144
authors Michail Georgiou, Odysseas Georgiou and Theresa Kwok
year 2014
title Affordable Complexity - 'God's Eye' - Sukkahville 2013
doi https://doi.org/10.52842/conf.ecaade.2014.2.169
source Thompson, Emine Mine (ed.), Fusion - Proceedings of the 32nd eCAADe Conference - Volume 2, Department of Architecture and Built Environment, Faculty of Engineering and Environment, Newcastle upon Tyne, England, UK, 10-12 September 2014, pp. 169-177
summary The paper presents a novel approach on the design of complex forms by re-formulating the relationships between form, structure, material, fabrication and construction. It is proposed that current design models are supplemented by feedback-enabled frameworks, integrating material properties, fabrication constraints and construction logistics. As such, a series of input parameters based on industry standards, filtered through physical testing and digital simulations, feed a central computational model. The outcome is weighed against a set of objectives towards an optimum design solution which embodies construction logic while ultimately opposing costly inflated ad-hoc solutions. Within the above framework and as part of a broader research conducted at [ARC], this paper illustrates a design methodology implemented at the case study of 'God's Eye', winning entry of Sukkahville 2013 International Design Competition. It is further supported that a high tech, interdisciplinary design process based on efficient material assemblies allows for a complex, yet efficient end result, through low tech affordable construction.
wos WOS:000361385100018
keywords Material-based design; design process; construction logistics; interdisciplinary design; computational design
series eCAADe
email
last changed 2022/06/07 07:58

_id ecaade2014_224
id ecaade2014_224
authors Mohammad Rahmani Asl, Michael Bergin, Adam Menter and Wei Yan
year 2014
title BIM-based Parametric Building Energy Performance Multi-Objective Optimization
doi https://doi.org/10.52842/conf.ecaade.2014.2.455
source Thompson, Emine Mine (ed.), Fusion - Proceedings of the 32nd eCAADe Conference - Volume 2, Department of Architecture and Built Environment, Faculty of Engineering and Environment, Newcastle upon Tyne, England, UK, 10-12 September 2014, pp. 455-464
summary Building energy performance assessments are complex multi-criteria problems. Appropriate tools that can help designers explore design alternatives and assess the energy performance for choosing the most appropriate alternative are in high demand. In this paper, we present a newly developed integrated parametric Building Information Modeling (BIM)-based system to interact with cloud-based whole building energy performance simulation and daylighting tools to optimize building energy performance using a Multi-Objective Optimization (MOO) algorithm. This system enables designers to explore design alternatives using a visual programming interface, while assessing the energy performance of the design models to search for the most appropriate design. A case study of minimizing the energy use while maximizing the appropriate daylighting level of a residential building is provided to showcase the utility of the system and its workflow.
wos WOS:000361385100048
keywords Building energy performance analysis; building information model (bim); parametric modelling; parametric energy simulation; multi-objective optimization
series eCAADe
email
last changed 2022/06/07 07:58

_id acadia14_497
id acadia14_497
authors Nicholas, Paul; Stasiuk, David; Schork, Tim
year 2014
title The Social Weavers: Negotiating a continuum of agency
doi https://doi.org/10.52842/conf.acadia.2014.497
source ACADIA 14: Design Agency [Proceedings of the 34th Annual Conference of the Association for Computer Aided Design in Architecture (ACADIA) ISBN 9781926724478]Los Angeles 23-25 October, 2014), pp. 497-506
summary This paper introduces the notion that top-down and bottom-up design processes should be considered as a continuum, and describes the development of a spring-based simulation modelling system that operates as a means to navigate this continuum in the production of complex, open-ended design spaces. A built case study project demonstrates the underlying modeling concepts and methodology.
keywords Simulation + Intuition, Material Agency, Generative Design, Feedback-driven Design, Dynamic Material Specification, Composites, Active-Bending
series ACADIA
type Normal Paper
email
last changed 2022/06/07 07:58

_id ecaade2014_015
id ecaade2014_015
authors Odysseas Kontovourkis and George Tryfonos
year 2014
title Physical input-driven offline robotic simulation through a feedback loop process
doi https://doi.org/10.52842/conf.ecaade.2014.1.411
source Thompson, Emine Mine (ed.), Fusion - Proceedings of the 32nd eCAADe Conference - Volume 1, Department of Architecture and Built Environment, Faculty of Engineering and Environment, Newcastle upon Tyne, England, UK, 10-12 September 2014, pp. 411-421
summary This ongoing research describes a feedback loop procedure where physical inputs are used as the medium for offline robotic simulation. The purpose is to investigate the ability of industrial robots that are currently used in manufacturing processes to work in a flexible and productive manner whilst providing a continuous feedback loop between physical inputs and fabrication artifacts. In order to achieve this, a methodology is developed that involves the use of data acquisition devices to enable the transference of information from the physical to the digital environment and then to use this data as real-time parameters to control the robot's behaviour during fabrication. The aim is to achieve active involvement of robots in the manufacturing process to address complex construction issues and to ensure accuracy, a reduction in manufacturing defects and flexibility in the materials used. This investigation is accompanied by relevant experiments to exemplify the potential of control mechanisms to be used in prototyping case studies.
wos WOS:000361384700041
keywords Physical input; robotic simulation; feedback loop; manufacturing process; material control
series eCAADe
email
last changed 2022/06/07 08:00

_id caadria2020_249
id caadria2020_249
authors Poustinchi, Ebrahim, Fehrenbach, Joshua and Holmes, Tyler
year 2020
title Ro-Puzzle - A robotic proposal for moving architecture
doi https://doi.org/10.52842/conf.caadria.2020.2.433
source D. Holzer, W. Nakapan, A. Globa, I. Koh (eds.), RE: Anthropocene, Design in the Age of Humans - Proceedings of the 25th CAADRIA Conference - Volume 2, Chulalongkorn University, Bangkok, Thailand, 5-6 August 2020, pp. 433-442
summary This paper presents a project-based research study called Ro-puzzle-a robotic architectural "puzzle," using robotic solutions to illustrate the possibility of an animated/dynamic architectural composition and configurations in the physical world. Through studying super-comportment (Wiscombe, 2014) in both dynamic and static scenarios, this research proposes a new reading to the traditional robotic task of "pick-and-place", through an intuitive motion design process using a custom-made bridge software, Oriole. By revisiting the notion of robotics in the field of design/architecture, Ro-Puzzle investigates the design possibilities of robotics, not merely as fabrication tools, but possibly as physical extensions of the design software into the physical world of architecture, and as a way to expand the digital design imaginations/possibilities beyond the digital screens. In this manuscript and initially tested at the desktop scale, Ro-Puzzle research investigation demonstrated the possibilities of robots as architectural "components" within the architecture/building. This research shows that through the development of custom software/hardware platforms, it is possible to domesticize robotic technology as an active agent in the design process through physical simulation.
keywords Robotics; Design; Animation; Robotic Architecture; Dynamic Architecture
series CAADRIA
email
last changed 2022/06/07 08:00

_id ascaad2014_005
id ascaad2014_005
authors Ramilo, Runddy and Mohamed Rashid Bin Embi
year 2014
title Digital Innovation in Architecture: Key determinants and barriers in the case of small architectural firms
source Digital Crafting [7th International Conference Proceedings of the Arab Society for Computer Aided Architectural Design (ASCAAD 2014 / ISBN 978-603-90142-5-6], Jeddah (Kingdom of Saudi Arabia), 31 March - 3 April 2014, pp. 65-84
summary The rapid development of digital technology has made architecture a succession of different evolutionary design methodologies. As a result, the rise of computationally driven processes has gain popularity in research and shows a great potential to dramatically improve the design process and productivity that evoke innovations in design practices wherein computer-based project plays a vital role. However, as these technologies rapidly develops and increasingly used in practice, there is a realization that substantial organizational and technological barriers exist that inhibit the effective adoption of these technologies in architectural practices wherein complex projects are being handled. Undeniably it happens in small architectural practices whereby resources are very limited. Relevant literature of the subject shows that research in innovations in manufacturing, product design, technology, construction and engineering practices is substantially conducted but research in digital innovation in design practices is very limited. This paper investigates the factors that impede the effective adoption of emerging digital technologies for the efficient delivery of design projects that are computationally and digitally driven. This involves evaluating digital technologies, technical, financial and organizational barriers when digital innovation is implemented. In order to gain insights of these issues, a pilot study was conducted from several small architectural organizations, and found out relevant attributes and pattern of variables that can be used in establishing a framework for digital innovation. Keywords: Digital Innovation, Architectural Practices, Technologies, Challenges, Barriers
series ASCAAD
email
last changed 2016/02/15 13:09

_id ascaad2014_031
id ascaad2014_031
authors Roshanzamir, Shima and Morteza Farhadian Dehkordi
year 2014
title A Model for Land Use Distribution Forecasting: To evaluate and negotiate with design scenarios
source Digital Crafting [7th International Conference Proceedings of the Arab Society for Computer Aided Architectural Design (ASCAAD 2014 / ISBN 978-603-90142-5-6], Jeddah (Kingdom of Saudi Arabia), 31 March - 3 April 2014, pp. 3853-394
summary In designing and managing land use distribution, as a complex system, in addition to providing a visionary and intuitive strategy one should consider the rule based optimization processes and the internal autonomous forces. These ensure cities global eligibility besides their local efficiency and compatibility. This essay suggests a model to create negotiation between these two approaches. The tool is developed as an agent based model in a parametric environment and presented through a hypothetical case study. First, the system structure and behavior is defined and then through direct and indirect control tools, challenge was to achieve suggested design scenario without ignoring the self organizing behavior of agents.
series ASCAAD
email
last changed 2016/02/15 13:09

_id acadia14_177
id acadia14_177
authors Schwinn, Tobias; Krieg, Oliver David; Menges, Achim
year 2014
title Behavioral Strategies: Synthesizing design computation and robotic fabrication of lightweight timber plate structures
doi https://doi.org/10.52842/conf.acadia.2014.177
source ACADIA 14: Design Agency [Proceedings of the 34th Annual Conference of the Association for Computer Aided Design in Architecture (ACADIA) ISBN 9781926724478]Los Angeles 23-25 October, 2014), pp. 177-188
summary The paper presents the research and development related to the “Landesgartenschau Exhibition Hall”, a built case study for a light-weight timber plate structure consisting of beech plywood plates. The paper describes the integrative design and robotic fabrication methods with a particular focus on the behavioral design approach.
keywords agent-based modeling, light-weight construction, optimization, robotic fabrication, tangent plane intersection, timber plate structure
series ACADIA
type Normal Paper
email
last changed 2022/06/07 07:56

_id ascaad2022_099
id ascaad2022_099
authors Sencan, Inanc
year 2022
title Progeny: A Grasshopper Plug-in that Augments Cellular Automata Algorithms for 3D Form Explorations
source Hybrid Spaces of the Metaverse - Architecture in the Age of the Metaverse: Opportunities and Potentials [10th ASCAAD Conference Proceedings] Debbieh (Lebanon) [Virtual Conference] 12-13 October 2022, pp. 377-391
summary Cellular automata (CA) is a well-known computation method introduced by John von Neumann and Stanislaw Ulam in the 1940s. Since then, it has been studied in various fields such as computer science, biology, physics, chemistry, and art. The Classic CA algorithm is a calculation of a grid of cells' binary states based on neighboring cells and a set of rules. With the variation of these parameters, the CA algorithm has evolved into alternative versions such as 3D CA, Multiple neighborhood CA, Multiple rules CA, and Stochastic CA (Url-1). As a rule-based generative algorithm, CA has been used as a bottom-up design approach in the architectural design process in the search for form (Frazer,1995; Dinçer et al., 2014), in simulating the displacement of individuals in space, and in revealing complex relations at the urban scale (Güzelci, 2013). There are implementations of CA tools in 3D design software for designers as additional scripts or plug-ins. However, these often have limited ability to create customized CA algorithms by the designer. This study aims to create a customizable framework for 3D CA algorithms to be used in 3D form explorations by designers. Grasshopper3D, which is a visual scripting environment in Rhinoceros 3D, is used to implement the framework. The main difference between this work and the current Grasshopper3D plug-ins for CA simulation is the customizability and the real-time control of the framework. The parameters that allow the CA algorithm to be customized are; the initial state of the 3D grid, neighborhood conditions, cell states and rules. CA algorithms are created for each customizable parameter using the framework. Those algorithms are evaluated based on the ability to generate form. A voxel-based approach is used to generate geometry from the points created by the 3D cellular automata. In future, forms generated using this framework can be used as a form generating tool for digital environments.
series ASCAAD
email
last changed 2024/02/16 13:38

_id ecaade2015_38
id ecaade2015_38
authors Stavrakantonaki, Marina
year 2015
title A Framework for Input Data Processing During Building Energy Model Calibration. A Case Study
doi https://doi.org/10.52842/conf.ecaade.2015.1.625
source Martens, B, Wurzer, G, Grasl T, Lorenz, WE and Schaffranek, R (eds.), Real Time - Proceedings of the 33rd eCAADe Conference - Volume 1, Vienna University of Technology, Vienna, Austria, 16-18 September 2015, pp. 625-634
summary Key parameter of a reasoning process supporting real time performance is the use of active heuristics that facilitate the achievement of goals in a timely manner (Dodiawala et al. 1989). A real time approach should incorporate speed, timeliness and adaptation during the execution of tasks. Speed and efficient knowledge processing are addressed for the solution of complex building engineering problems, such as the calibration of Building Energy Models (BEM) to the actual performance data. During retrofit projects, calibrated BEM models aid the design process, and provide a solid base for performative assessments. Despite the demand for building performance evaluations, BEM calibration remains a work-intensive task (Lam et al. 2014). This study proposes a time efficient framework for BEM calibration input data management based on the methodology of a blackboard artificial intelligence knowledge processing system. The resulting model was used for sequential data mining for the energy assessment during the renovation of a commercial building.
wos WOS:000372317300068
series eCAADe
email
more https://mh-engage.ltcc.tuwien.ac.at/engage/ui/watch.html?id=e440bdd6-7021-11e5-bdb0-00190f04dc4c
last changed 2022/06/07 07:56

For more results click below:

this is page 0show page 1show page 2show page 3show page 4show page 5... show page 33HOMELOGIN (you are user _anon_748005 from group guest) CUMINCAD Papers Powered by SciX Open Publishing Services 1.002