CumInCAD is a Cumulative Index about publications in Computer Aided Architectural Design
supported by the sibling associations ACADIA, CAADRIA, eCAADe, SIGraDi, ASCAAD and CAAD futures

PDF papers
References

Hits 1 to 20 of 662

_id ijac201412403
id ijac201412403
authors Smithwick, Daniel and Larry Sass
year 2014
title Embodied Design Cognition: Action-Based Formalizations in Architectural Design
source International Journal of Architectural Computing vol. 12 - no. 4, 399-418
summary This paper frames design knowledge as formalizable physical actions that can more fully exploit future design tools and production methods.As computational design tools become more physically interactive and integrated into our environment we need new research frameworks to develop theories of physical design action as a form of knowledge. Symbolic theories of design knowledge traditionally frame design activity as a mental process and as a result researchers have not fully explored the potential for bodily-based computational design knowledge.We present an action- based design notation drawing inspiration from music performance theory to illustrate how this may impact design research.We discuss findings from situated cognition in cognitive science as an alternative framework for exploring and expanding design knowledge.We conclude with suggestions for future work in robotic-aided design cognition.
series journal
last changed 2019/05/24 09:55

_id sigradi2014_213
id sigradi2014_213
authors Daas, Mahesh
year 2014
title Toward a taxonomy of architectural robotics
source SiGraDi 2014 [Proceedings of the 18th Conference of the Iberoamerican Society of Digital Graphics - ISBN: 978-9974-99-655-7] Uruguay- Montevideo 12,13,14 November 2014, pp. 623-626
summary Robotics in architecture is a fast-emerging area of research and design today. The current research and practices of robotics in architecture tend to be, to a great degree, techno-positivist and framed by a narrowly defined instrumentalist view. The paper presents comprehensive taxonomy of a broad range of robotic applications so as to meaningfully guide, systematize, and clarify multi-faceted design or research explorations in architecture and beyond. The paper advances four frameworks: role of robotics in architecture; modes of interaction between robots, humans and architecture; the Vitruvian framework; and robots classified by form; all of which point to new avenues of potential exploration while also revealing the gaps and biases in the current research and design in the discipline.
keywords Robots; Architectural Robotics; Taxonomies; Robotic Fabrication
series SIGRADI
email
last changed 2016/03/10 09:50

_id caadria2014_264
id caadria2014_264
authors Gannon, Madeline and Eric Brockmeyer
year 2014
title Teaching CAD/CAM Workflows to Nascent Designers
doi https://doi.org/10.52842/conf.caadria.2014.801
source Rethinking Comprehensive Design: Speculative Counterculture, Proceedings of the 19th International Conference on Computer-Aided Architectural Design Research in Asia (CAADRIA 2014) / Kyoto 14-16 May 2014, pp. 801–810
summary The following paper presents a suite of custom software environments that make advanced techniques in digital fabrication accessible to novice, first-year designers. The collective design aides facilitate a number of digital-to-physical workflows, including 3D modeling for CNC milling and 3D printing, 2D patterning for laser cutting, and interactive visualization for projection mapping. Each of the workflows illustrate pedagogical principles for embedding tacit and tactile knowledge into computational frameworks: balancing complexity against functional limits, revealing the underlying abstractions connecting digital geometry to CNC machines, engaging the designer through intuitive and responsive environments, and leveraging generative and interactive digital modeling for serial variation. These digital design and fabrication aides have been used to facilitate formal and material explorations for groups of pre-college and freshmen students, aged 16 to 19. Their resulting tangible artifacts—made from foam, birch plywood, paper, plastic, and light—show that CAD/CAM workflows can be an accessible subject matter for students without prior experience in digital modeling or fabrication.
keywords CAD/CAM; computational design education; digital fabrication; design aides; generative design
series CAADRIA
email
last changed 2022/06/07 07:50

_id ascaad2022_099
id ascaad2022_099
authors Sencan, Inanc
year 2022
title Progeny: A Grasshopper Plug-in that Augments Cellular Automata Algorithms for 3D Form Explorations
source Hybrid Spaces of the Metaverse - Architecture in the Age of the Metaverse: Opportunities and Potentials [10th ASCAAD Conference Proceedings] Debbieh (Lebanon) [Virtual Conference] 12-13 October 2022, pp. 377-391
summary Cellular automata (CA) is a well-known computation method introduced by John von Neumann and Stanislaw Ulam in the 1940s. Since then, it has been studied in various fields such as computer science, biology, physics, chemistry, and art. The Classic CA algorithm is a calculation of a grid of cells' binary states based on neighboring cells and a set of rules. With the variation of these parameters, the CA algorithm has evolved into alternative versions such as 3D CA, Multiple neighborhood CA, Multiple rules CA, and Stochastic CA (Url-1). As a rule-based generative algorithm, CA has been used as a bottom-up design approach in the architectural design process in the search for form (Frazer,1995; Dinçer et al., 2014), in simulating the displacement of individuals in space, and in revealing complex relations at the urban scale (Güzelci, 2013). There are implementations of CA tools in 3D design software for designers as additional scripts or plug-ins. However, these often have limited ability to create customized CA algorithms by the designer. This study aims to create a customizable framework for 3D CA algorithms to be used in 3D form explorations by designers. Grasshopper3D, which is a visual scripting environment in Rhinoceros 3D, is used to implement the framework. The main difference between this work and the current Grasshopper3D plug-ins for CA simulation is the customizability and the real-time control of the framework. The parameters that allow the CA algorithm to be customized are; the initial state of the 3D grid, neighborhood conditions, cell states and rules. CA algorithms are created for each customizable parameter using the framework. Those algorithms are evaluated based on the ability to generate form. A voxel-based approach is used to generate geometry from the points created by the 3D cellular automata. In future, forms generated using this framework can be used as a form generating tool for digital environments.
series ASCAAD
email
last changed 2024/02/16 13:38

_id ascaad2014_016
id ascaad2014_016
authors Al-Ratrout, Samer A. and Rana Zureikat
year 2014
title Pedagogic Approach in the Age of Parametric Architecture: Experimental method for teaching architectural design studio to 3rd year level students
source Digital Crafting [7th International Conference Proceedings of the Arab Society for Computer Aided Architectural Design (ASCAAD 2014 / ISBN 978-603-90142-5-6], Jeddah (Kingdom of Saudi Arabia), 31 March - 3 April 2014, pp. 211-226
summary In this era, Architectural Design Practice is faced with a paradigm shift in its conventional approaches towards computational methods. In this regard, it is considered a pedagogic challenge to boost up knowledge and skills of architectural students’ towards an advanced approach of architectural design that emphasizes the potentials and complexity of computational environments and parametric tools for design problem solving. For introducing the concept of Parametric Oriented Design Methods to 3rd year level architectural students, an experimental pedagogic course was designed in the scholastic year of 2012-2013 at German Jordanian University GJU (School of Architecture and Built Environment SABE) to approach this concept. In the preparation phase, the experimental course was designed to incorporate structured instructing and training method to be consecutively performed within experimental lab environment to target predetermined learning outcomes and goals. The involved students were intentionally classified into three levels of previous involvement associated with the related software operating skills and computational design exposure. In the implementation phase, the predetermined instructing and training procedures were performed in the controlled environment according to the planned tasks and time intervals. Preceded tactics were prepared to be executed to resolve various anticipated complication. In this phase also, students’ performance and comprehension capacity were observed and recorded. In data analysis phase, the observed results were verified and correlations were recognized. In the final phase, conclusions were established and recommendations for further related pedagogic experiments were introduced.
series ASCAAD
email
last changed 2016/02/15 13:09

_id caadria2016_787
id caadria2016_787
authors Knapp, Chris; Jonathan Nelson, Andrew Kudless and Sascha Bohnenberger
year 2016
title Lightweight material prototypes using dense bundled systems to emulate an ambient environment
doi https://doi.org/10.52842/conf.caadria.2016.787
source Living Systems and Micro-Utopias: Towards Continuous Designing, Proceedings of the 21st International Conference on Computer-Aided Architectural Design Research in Asia (CAADRIA 2016) / Melbourne 30 March–2 April 2016, pp. 787-796
summary This paper describes and reflects upon a computational de- sign and digital fabrication research project that was developed and implemented over 2014-2015, with subsequent development continu- ing for applications at present. The aim of the research was to develop methods of modelling, analysis, and fabrication that facilitate integra- tive approaches to architectural design and construction. In this con- text, the development of material prototypes, digital simulations, and parametric frameworks were pursued in parallel in order to inform and reform successive iterations throughout the process, leading to a re- fined workflow for engineering, production, and speculation upon fu- ture directions of the work.
keywords Digital fabrication; biomimicry; ambient environments; grasshopper; computational design
series CAADRIA
email
last changed 2022/06/07 07:51

_id ecaade2014_191
id ecaade2014_191
authors Mads Brath Jensen and Isak Worre Foged
year 2014
title Cellular Automata as a learning process in Architecture and Urban design
doi https://doi.org/10.52842/conf.ecaade.2014.1.297
source Thompson, Emine Mine (ed.), Fusion - Proceedings of the 32nd eCAADe Conference - Volume 1, Department of Architecture and Built Environment, Faculty of Engineering and Environment, Newcastle upon Tyne, England, UK, 10-12 September 2014, pp. 297-302
summary This paper explores the application of cellular automata as method for investigating the dynamic parameters and interrelationships that constitute the urban space. With increasing aspects needed for integration during the architectural and urban design process with the relations between these aspects growing in parallel, complexity of the design process and design solution increases. Additionally, aspects and relations are of a transformative character in that they change over time and therefore construct a time-based condition for which problems are presented and solutions are sought. An architectural methodological response to this situation is presented through the development of a conceptual computational design system that allows these dynamics to unfold and to be observed for architectural design decision taking. Reflecting on the development and implementation of a cellular automata based design approach on a master level urban design studio this paper will discuss the strategies for dealing with complexity at an urban scale as well as the pedagogical considerations behind applying computational tools and methods to a urban design education.
wos WOS:000361384700029
keywords Computational design; cellular automata; education; design exploration
series eCAADe
email
last changed 2022/06/07 07:59

_id acadia21_246
id acadia21_246
authors Safley, Nick
year 2021
title Reconnecting...
doi https://doi.org/10.52842/conf.acadia.2021.246
source ACADIA 2021: Realignments: Toward Critical Computation [Proceedings of the 41st Annual Conference of the Association of Computer Aided Design in Architecture (ACADIA) ISBN 979-8-986-08056-7]. Online and Global. 3-6 November 2021. edited by B. Bogosian, K. Dörfler, B. Farahi, J. Garcia del Castillo y López, J. Grant, V. Noel, S. Parascho, and J. Scott. 246-255.
summary This design research reimagines the architectural detail in a postdigital framework and proposes digital methods to work upon discrete tectonics. Drawing upon Marco Frascari's writing The Tell-the-Tale Detail, the study aims to reimagine tectonic thinking for focused attention after the digital turn. Today, computational tools are powerful enough to perform operations more similar to physical tools than in the earlier digital era. These tools create a "digital materiality," where architects can manipulate digital information in parallel and overlapping ways to physical corollaries. (Abrons and Fure, 2018) To date, work in this area has focused on materiality specifically. This project reinterprets tectonics using texture map editing and point cloud information, particularly reconceptualizing jointing using images. Smartphone-based 3D digital scanning was used to captured details from a series of Carlo Scarpa's influential works, isolating these details from their physical sites and focusing attention upon individual tectonic moments. As digital scans, these details problematize the rhetoric of smoothness and seamlessness prevalent in digital architecture as they are discretely construed loci yet composed of digital meshes. (Jones 2014) Once removed from their contexts, reconnecting the digital scans into compositions of "compound details" necessitated a series of new mechanisms for constructing and construing not native to the material world. Using Photoshop editing of texture-mapped images, digital texturing of meshes, and interpretation of the initial material constructions, new joints within and between these the digital scanned details were created to reframe the original detail for the post-digital.
series ACADIA
type paper
email
last changed 2023/10/22 12:06

_id ascaad2014_000
id ascaad2014_000
authors Sidawi, Bhzad and Zaki Mallasi (eds.)
year 2014
title Digital Crafting: Virtualizing Architecture and Delivering Real Built Environment
source 7th International Conference Proceedings of the Arab Society for Computer Aided Architectural Design (ASCAAD 2014) [ISBN 978-603-90142-5-6], Jeddah (Kingdom of Saudi Arabia), 31 March - 3 April 2014, 470 p.
summary In decades past, the architect was the master-builder with hands-on craftsman experience to design and direct the various trades in the construction of the building. The role of digital design, computation methodologies and processes are poised to transform how we think and craft architecture to deliver today's built environment. Digital crafting methods in today's thinking process for a designer/builder/manufacturer are affecting the delivery of buildings as a final product with aspiration to create rich sensory and habitable environments. ASCAAD 7th Conference theme explores the linkages among digital design process thinking, constructability, the digital manufacturing process and their impact on the practice of architecture, engineering and construction. ASCAAD society has invited academics, researchers and professionals to join and contribute to the debate on the use of Computer-Aided Architectural Design and Information Technology and how the use/ implementation would support and lead to innovative concepts, tools, systems and products on architectural, Urban/City/ regional planning, and building science levels.
series ASCAAD
email
last changed 2016/02/15 13:09

_id ecaade2014_176
id ecaade2014_176
authors Sina Mostafavi and Matthew Tanti
year 2014
title Design to fabrication integration and material craftsmanship - A performance driven stone architecture design system based on material, structural and fabrication constraints and criteria
doi https://doi.org/10.52842/conf.ecaade.2014.1.445
source Thompson, Emine Mine (ed.), Fusion - Proceedings of the 32nd eCAADe Conference - Volume 1, Department of Architecture and Built Environment, Faculty of Engineering and Environment, Newcastle upon Tyne, England, UK, 10-12 September 2014, pp. 445-454
summary This paper presents a computational design methodology through describing of a case study on stone building system. In addition to establishing a performance driven form-finding methodology, the objective is to redefine local craftsmanship methods as industrial fabrication techniques in order to introduce the constructability of the design solutions as one of the main performance criteria. Therefore, the focus of the methodology is to facilitate architectural design processes through developing of customized computational design tools and workflows for data integration and concurrent performance evaluation. The research starts with the hypothesis that the technological advancements in digital design and fabrication can lead to re-exploration and improvement of traditional building techniques with local materials. The paper explains different stages of the methodology and the way the chained design to fabrication processes would lead to constructible, structurally possible and optimal design solutions of small scale and simple symmetric design solutions to complex topologies at the scale of larger complex buildings.
wos WOS:000361384700044
keywords Digital materiality ; design information exchange; compression-only stone structure; computer aided craftsmanship ; robotic fabrication
series eCAADe
email
last changed 2022/06/07 07:56

_id ascaad2014_010
id ascaad2014_010
authors Stevens, James and Ralph Nelson
year 2014
title Digital Vernacular: Practicing architectural making
source Digital Crafting [7th International Conference Proceedings of the Arab Society for Computer Aided Architectural Design (ASCAAD 2014 / ISBN 978-603-90142-5-6], Jeddah (Kingdom of Saudi Arabia), 31 March - 3 April 2014, pp. 137-147
summary Prior to the Industrial Age, most architecture was created by the master craftsman or within the vernacular trades where “design” and “making” were aligned. The Industrial Age, and most recently the Information Age, shifted the role of the architect away from that of the “master craftsman” to the professional “knowledge worker.” As a result, a divide between design and making in the practice of architecture occurred.  This shift impacted an essential part of the architect’s process by degrading the symbiotic relationship between mind and hand and limiting the immediate design consequences that only making can provide. But recent technological developments have changed the economic model of design and making in architectural practice and re-established this lost connection. Most importantly, it has provided new opportunities for craft, design, and architectural practice to align. The purpose of this paper is to examine these new opportunities and define what constitutes the digital vernacular. The paper will seek to define the digital vernacular by evaluating each of the following variables: materials, knowledge, and tools. Using normative practice as a control, the paper will conduct a comparative analysis of these variables by examining economic viability (cost-to-wage ratios), logistical feasibility (training & facilities), and skillset availability within the domain of architecture (insourced versus outsourced). Using this data, and resulting guidelines, the paper will demonstrate the successes and failures of a practice using the digital vernacular as its primary project delivery methodology. The focus of this research is not to build an inventory of equipment and methods; rather it is to develop a higher understanding of what constitutes vernacular practice within the digital age. Exploring the digital vernacular is not intended to seek new form-making, but to improve and inform understanding of traditional vernacular methods and to enable a new generation of master craftsmen. This clarity is imperative as to ensure the quality of design and making with emerging technologies and help to prevent high-volume, low-quality results.
series ASCAAD
email
last changed 2016/02/15 13:09

_id caadria2014_254
id caadria2014_254
authors Tuker, Cetin and Halil Erhan
year 2014
title An Architectural Modeling Method for Game Environments and Visualization
doi https://doi.org/10.52842/conf.caadria.2014.605
source Rethinking Comprehensive Design: Speculative Counterculture, Proceedings of the 19th International Conference on Computer-Aided Architectural Design Research in Asia (CAADRIA 2014) / Kyoto 14-16 May 2014, pp. 605–614
summary Modeling 3D architectural environments for games and design visualization is different than modelling for other purposes, such as for construction. These models include only the outer surfaces as ‘skin’ structures of the facades for rendering for which existing tools are too complex. After interviewing fourteen domain experts and evaluating available modelling tools, we observed a need for new modelling methods for rapid visualizations that leaves redundant model parts out for efficiency. We have developed a surface modelling method and a formalism for modelling architectural environments by slicing a building into layers with strips of façade element sequences. In the first prototype, we focused on parametric structures using userdefined architectonic vocabulary such as voids and solids. We conducted an expert review study with four participants: two user-experience and two domain experts. All participants responded that the method is easy to learn even for non-experts. Based on the tasks completed, they agreed that the method can speed the process of modelling large continuous façades, single-mass single-storey geometries, and repetitive floor layers; they also made suggestions for improvement. The results from the initial evaluation show that the method presented has some merits to be used in practice.
keywords 3D modelling; facade reconstruction; game; visualization
series CAADRIA
email
last changed 2022/06/07 07:57

_id ecaade2014_198
id ecaade2014_198
authors Erik Kjems
year 2014
title Data Fusion Using Geographic Managed Objects
doi https://doi.org/10.52842/conf.ecaade.2014.2.495
source Thompson, Emine Mine (ed.), Fusion - Proceedings of the 32nd eCAADe Conference - Volume 2, Department of Architecture and Built Environment, Faculty of Engineering and Environment, Newcastle upon Tyne, England, UK, 10-12 September 2014, pp. 495-504
summary The way we design our buildings and cities has not really changed a lot for decades. Drawing boards have been exchanged with relatively small 30” inch monitors, pens and rulers have been exchanged with advanced digital tools mostly though disturbing, making the creative process of design merely a frustrating one. So what have we gained from CAD. Certainly a lot, but mostly the possibility to combine and fuse projects. Simulating future use and behaviour, revealing design issues and failures before actually built. Still data fusion is a relatively new challenge albeit quite obvious trying to assemble models coming from different systems and vendors representing different professional domains. This paper discusses data exchange and data fusion in general and presents a new development, which gives the possibility to enhance data as intelligent objects opening a whole new paradigm for both data exchange and data fusion.
wos WOS:000361385100052
keywords Data fusion; cad; managed object; data exchange; virtual machine
series eCAADe
email
last changed 2022/06/07 07:55

_id ijac202321102
id ijac202321102
authors Özerol, Gizem; Semra Arslan Selçuk
year 2023
title Machine learning in the discipline of architecture: A review on the research trends between 2014 and 2020
source International Journal of Architectural Computing 2023, Vol. 21 - no. 1, pp. 23–41
summary Abstract Through the recent technological developments within the fourth industrial revolution, artificial intelligence (AI) studies have had a huge impact on various disciplines such as social sciences, information communication technologies (ICTs), architecture, engineering, and construction (AEC). Regarding decision-making and forecasting systems in particular, AI and machine learning (ML) technologies have provided an opportunity to improve the mutual relationships between machines and humans. When the connection between ML and architecture is considered, it is possible to claim that there is no parallel acceleration as in other disciplines. In this study, and considering the latest breakthroughs, we focus on revealing what ML and architecture have in common. Our focal point is to reveal common points by classifying and analyzing current literature through describing the potential of ML in architecture. Studies conducted using ML techniques and subsets of AI technologies were used in this paper, and the resulting data were interpreted using the bibliometric analysis method. In order to discuss the state-of-the-art research articles which have been published between 2014 and 2020, main subjects, subsets, and keywords were refined through the search engines. The statistical figures were demonstrated as huge datasets, and the results were clearly delineated through Sankey diagrams. Thanks to bibliometric analyses of the current literature of WOS (Web of Science), CUMINCAD (Cumulative Index about publications in Computer Aided Architectural Design supported by the sibling associations ACADIA, CAADRIA, eCAADe, SIGraDi, ASCAAD, and CAAD futures), predictable data have been presented allowing recommendations for possible future studies for researchers.
keywords Artificial intelligence, machine learning, deep learning, architectural research, bibliometric analysis
series journal
last changed 2024/04/17 14:30

_id ijac201412407
id ijac201412407
authors Abdelmohsen, Sherif M.
year 2014
title An Inquiry into Designing in Context using Generative Systems
source International Journal of Architectural Computing vol. 12 - no. 4, 477-494
summary The use of generative systems has been widely investigated in the architectural design process through different procedures and levels of autonomy to generate form.The digression from abstract pre- existing notions of vocabulary and rules – even when resulting in emergent forms – to address complex real- world contexts is yet a challenging undertaking.This paper explores incorporating context in the process of designing using generative systems from ideation to fabrication, and explores the relationship between the emergent nature of generative design and the situated act of designing while using generative design tools.A course offered for 3rd year architecture students at the Department of Architecture, Ain Shams University, Egypt, was designed for this purpose. 110 students employed systems including shape grammars, L- systems, fractals and cellular automata, to design and fabricate 8 group projects.A discussion around emergence and situatedness is presented, with special attention to the designing process from ideation to fabrication.
series journal
last changed 2019/05/24 09:55

_id ascaad2014_004
id ascaad2014_004
authors Afsari, Kereshmeh; Matthew E. Swarts and T. Russell Gentry
year 2014
title Integrated Generative Technique for Interactive Design of Brickworks
source Digital Crafting [7th International Conference Proceedings of the Arab Society for Computer Aided Architectural Design (ASCAAD 2014 / ISBN 978-603-90142-5-6], Jeddah (Kingdom of Saudi Arabia), 31 March - 3 April 2014, pp. 49-64
summary Bricks have been used in the construction industry as a building medium for millennia. Distinct patterns of bricks depict the unique aesthetic intentions found in Roman, Gothic and Islamic architecture. In contemporary practice, the use of digital tools in design has enabled methodologies for creating new forms in architecture. CAD and BIM systems provide new opportunities for designers to create parametric objects for building form generation. In masonry design, there exists an inherent contradiction between traditional patterns in brick design, which are formal and prescribed, and the potential for new patterns generated using design scripting. In addition, current tools do not provide interactive techniques for the design of brickwork patterns that can manage constant changes parametrically, to inform and influence design process, by providing design feedback on the constructive and structural aspects of the proposed brick pattern and geometry. This research looks into the parametric techniques that can be applied to create different kinds of patterns on brick walls. It discusses a methodology for an interactive brickwork design within generative techniques. By integrating data between two computational platforms – the first based on image analysis and the second on parametric modeling, we demonstrate a methodology and application that can generate interactive arbitrary patterns and map it to the brick wall in real-time.
series ASCAAD
email
last changed 2016/02/15 13:09

_id ecaade2015_18
id ecaade2015_18
authors Agkathidis, Asterios
year 2015
title Generative Design Methods - Implementing Computational Techniques in Undergraduate Architectural Education
doi https://doi.org/10.52842/conf.ecaade.2015.2.047
source Martens, B, Wurzer, G, Grasl T, Lorenz, WE and Schaffranek, R (eds.), Real Time - Proceedings of the 33rd eCAADe Conference - Volume 2, Vienna University of Technology, Vienna, Austria, 16-18 September 2015, pp. 47-55
summary In continuation to the Deceptive Landscape Installation research project (Agkathidis, Kocatürk 2014), this paper investigates the implementation of generative design techniques in undergraduate architectural design education. After reviewing the main definitions of generative design synoptically, we have assessed the application of a modified generative method on a final year, undergraduate design studio, in order to evaluate its potential and its suitability within the framework of a research led design studio, leading to an RIBA accredited Part I degree. Our research findings based on analysis of the design outputs, student performance, external examiners reports as well as student course evaluation surveys indicate a positive outcome on the studio's design approach, as well as its suitability for an undergraduate design studio. They initiate a flourishing debate about accomplishments and failures of a design methodology, which still remains alien to many undergraduate curricula.
wos WOS:000372316000007
series eCAADe
email
more https://mh-engage.ltcc.tuwien.ac.at/engage/ui/watch.html?id=e6f673d4-6e8e-11e5-be22-93874392c2e4
last changed 2022/06/07 07:54

_id ascaad2014_035
id ascaad2014_035
authors Al-Kazzaz, Dhuha A. and Assda A. Al-Tuhafi
year 2014
title Using Genetic Algorithms for the Generation of New Designs Derived from Islamic Schools Plans
source Digital Crafting [7th International Conference Proceedings of the Arab Society for Computer Aided Architectural Design (ASCAAD 2014 / ISBN 978-603-90142-5-6], Jeddah (Kingdom of Saudi Arabia), 31 March - 3 April 2014, pp. 119; 431-442
summary Historic buildings are fruitful sources of architectural concepts which can be used to generate new designs characterized by authenticity and originality. Design computing methods have used varied techniques of knowledge representation in deriving new designs from architectural precedents such as: case-based design and genetic algorithms. This research has adopted genetic algorithms, a simulation of biological evolution to generate new plans from old ones belonging to the Islamic historical schools. The implemented method represents architectural knowledge in a simple schema (chromosome) and allows it to be modified easily using crossover operation to generate new plans with high fitness value. The research considered the fitness function as a measure of differences among the design characteristics of the sample of the Islamic schools. The results show the effectiveness of genetic algorithms in both analyzing past precedents and synthesizing their characteristics to produce new designs.
series ASCAAD
last changed 2016/02/15 13:09

_id ascaad2014_023
id ascaad2014_023
authors Al-Maiyah, Sura and Hisham Elkadi
year 2014
title Assessing the Use of Advanced Daylight Simulation Modelling Tools in Enhancing the Student Learning Experience
source Digital Crafting [7th International Conference Proceedings of the Arab Society for Computer Aided Architectural Design (ASCAAD 2014 / ISBN 978-603-90142-5-6], Jeddah (Kingdom of Saudi Arabia), 31 March - 3 April 2014, pp. 303-313
summary In architecture schools, where the ‘studio culture’ lies at the heart of students’ learning, taught courses, particularly technology ones, are often seen as secondary or supplementary units. Successful delivery of such courses, where students can act effectively, be motivated and engaged, is a rather demanding task requiring careful planning and the use of various teaching styles. A recent challenge that faces architecture education today, and subsequently influences the way technology courses are being designed, is the growing trend in practice towards environmentally responsive design and the need for graduates with new skills in sustainable construction and urban ecology (HEFCE’s consultation document, 2005). This article presents the role of innovative simulation modelling tools in the enhancement of the student learning experience and professional development. Reference is made to a teaching practice that has recently been applied at Portsmouth School of Architecture in the United Kingdom and piloted at Deakin University in Australia. The work focuses on the structure and delivery of one of the two main technology units in the second year architecture programme that underwent two main phases of revision during the academic years 2009/10 and 2010/11. The article examines the inclusion of advanced daylight simulation modelling tools in the unit programme, and measures the effectiveness of enhancing its delivery as a key component of the curriculum on the student learning experience. A main objective of the work was to explain whether or not the introduction of a simulation modelling component, and the later improvement of its integration with the course programme and assessment, has contributed to a better learning experience and level of engagement. Student feedback and the grade distribution pattern over the last three academic years were collected and analyzed. The analysis of student feedback on the revised modelling component showed a positive influence on the learning experience and level of satisfaction and engagement. An improvement in student performance was also recorded over the last two academic years and following the implementation of new assessment design.
series ASCAAD
email
last changed 2016/02/15 13:09

_id caadria2014_042
id caadria2014_042
authors Alam, Jack and Jeremy J. Ham
year 2014
title Towards a BIM-Based Energy Rating System
doi https://doi.org/10.52842/conf.caadria.2014.285
source Rethinking Comprehensive Design: Speculative Counterculture, Proceedings of the 19th International Conference on Computer-Aided Architectural Design Research in Asia (CAADRIA 2014) / Kyoto 14-16 May 2014, pp. 285–294
summary Governments in Australia are faced with policy implementation that mandates higher energy efficient housing (Foran, Lenzen & Dey 2005). To this effect, the National Construction Code (NCC) 2013 stipulates the minimum energy performance for residential buildings as 114MJ/m2 per annum or 6 stars on an energy rating scale. Compliance with this minimum is mandatory but there are several methods through which residential buildings can be rated to comply with the deemed to satisfy provisions outlined in the NCC. FirstRate5 is by far the most commonly used simulation software used in Victoria, Australia. Meanwhile, Building Information Modelling (BIM), using software such as ArchiCAD has gained a foothold in the industry. The energy simulation software within ArchiCAD, EcoDesigner, enables the reporting on the energy performance based on BIM elements that contain thermal information. This research is founded on a comparative study between FirstRate5 and EcoDesigner. Three building types were analysed and compared. The comparison finds significant differences between simulations, being, measured areas, thermal loads and potentially serious shortcomings within FirstRate5, that are discussed along with the future potential of a fully BIM-integrated model for energy rating certification in Victoria.
keywords Building Information Modelling, energy rating, FirstRate 5, ArchiCAD EcoDesigner, Building Energy Model
series CAADRIA
email
last changed 2022/06/07 07:54

For more results click below:

this is page 0show page 1show page 2show page 3show page 4show page 5... show page 33HOMELOGIN (you are user _anon_501538 from group guest) CUMINCAD Papers Powered by SciX Open Publishing Services 1.002