CumInCAD is a Cumulative Index about publications in Computer Aided Architectural Design
supported by the sibling associations ACADIA, CAADRIA, eCAADe, SIGraDi, ASCAAD and CAAD futures

PDF papers
References

Hits 1 to 20 of 661

_id ecaade2014_015
id ecaade2014_015
authors Odysseas Kontovourkis and George Tryfonos
year 2014
title Physical input-driven offline robotic simulation through a feedback loop process
source Thompson, Emine Mine (ed.), Fusion - Proceedings of the 32nd eCAADe Conference - Volume 1, Department of Architecture and Built Environment, Faculty of Engineering and Environment, Newcastle upon Tyne, England, UK, 10-12 September 2014, pp. 411-421
doi https://doi.org/10.52842/conf.ecaade.2014.1.411
wos WOS:000361384700041
summary This ongoing research describes a feedback loop procedure where physical inputs are used as the medium for offline robotic simulation. The purpose is to investigate the ability of industrial robots that are currently used in manufacturing processes to work in a flexible and productive manner whilst providing a continuous feedback loop between physical inputs and fabrication artifacts. In order to achieve this, a methodology is developed that involves the use of data acquisition devices to enable the transference of information from the physical to the digital environment and then to use this data as real-time parameters to control the robot's behaviour during fabrication. The aim is to achieve active involvement of robots in the manufacturing process to address complex construction issues and to ensure accuracy, a reduction in manufacturing defects and flexibility in the materials used. This investigation is accompanied by relevant experiments to exemplify the potential of control mechanisms to be used in prototyping case studies.
keywords Physical input; robotic simulation; feedback loop; manufacturing process; material control
series eCAADe
email
last changed 2022/06/07 08:00

_id caadria2014_173
id caadria2014_173
authors Lim, Jason; Ammar Mirjan, Fabio Gramazio and Matthias Kohler
year 2014
title Robotic Metal Aggregations
source Rethinking Comprehensive Design: Speculative Counterculture, Proceedings of the 19th International Conference on Computer-Aided Architectural Design Research in Asia (CAADRIA 2014) / Kyoto 14-16 May 2014, pp. 159–168
doi https://doi.org/10.52842/conf.caadria.2014.159
summary The recent convergence of computational design and digital fabrication has made new forms of architectural materialization possible. A workshop conducted at the Royal Melbourne Institute of Technology investigated how differentiated lightweight metal structures may be designed and fabricated under these new conditions. The workshop aim was to complete three such structures; each one is aggregated from aluminum profiles that are robotically assembled according to computationally driven geometric logics. The key challenge was to enable participants, assumed to lack programming and robotic fabrication experience, to design and construct their structures within imposed time constraints. This paper describes the subsequent development of accessible computational design tools and a robust robotic fabrication method for the workshop, and highlights the key decisions taken with their implementation. The workshop results are discussed and the design tools evaluated with respect to them. The paper concludes by recommending an approach to developing computational design tools which emphasizes the importance of usability and integration with the fabrication process.
keywords Robotic fabrication; computational design; visual programming; lightweight structures
series CAADRIA
email
last changed 2022/06/07 07:59

_id ecaade2014_114
id ecaade2014_114
authors Trevor Hess and Eric Sauda
year 2014
title Urban Place and Networked Data - Space, Content and Time
source Thompson, Emine Mine (ed.), Fusion - Proceedings of the 32nd eCAADe Conference - Volume 1, Department of Architecture and Built Environment, Faculty of Engineering and Environment, Newcastle upon Tyne, England, UK, 10-12 September 2014, pp. 71-78
doi https://doi.org/10.52842/conf.ecaade.2014.1.071
wos WOS:000361384700006
summary This paper explores the relationship between physical space, and virtual networks in the city. Topic modeling is utilized to provide robust descriptions of virtual conversations occurring over city-wide social networks, and data driven events are used to describe virtual projections of physical events. By comparing the prevalence and pervasiveness of topics and events in the city, the paper seeks a comprehensive understanding of the city as an increasingly interconnected entity.
keywords Place; network; urban; topic modeling; events
series eCAADe
email
last changed 2022/06/07 07:57

_id caadria2021_089
id caadria2021_089
authors Cristie, Verina, Ibrahim, Nazim and Joyce, Sam Conrad
year 2021
title Capturing and Evaluating Parametric Design Exploration in a Collaborative Environment - A study case of versioning for parametric design
source A. Globa, J. van Ameijde, A. Fingrut, N. Kim, T.T.S. Lo (eds.), PROJECTIONS - Proceedings of the 26th CAADRIA Conference - Volume 2, The Chinese University of Hong Kong and Online, Hong Kong, 29 March - 1 April 2021, pp. 131-140
doi https://doi.org/10.52842/conf.caadria.2021.2.131
summary Although parametric modelling and digital design tools have become ubiquitous in digital design, there is a limited understanding of how designers apply them in their design processes (Yu et al., 2014). This paper looks at the use of GHShot versioning tool developed by the authors (Cristie & Joyce, 2018; 2019) used to capture and track changes and progression of parametric models to understand early-stage design exploration and collaboration empirically. We introduce both development history graph-based metrics (macro-process) and parametric model and geometry change metric (micro-process) as frameworks to explore and understand the captured progression data. These metrics, applied to data collected from three cohorts of classroom collaborative design exercises, exhibited students' distinct modification patterns such as major and complex creation processes or minor parameter explorations. Finally, with the metrics' applicability as an objective language to describe the (collaborative) design process, we recommend using versioning for more data-driven insight into parametric design exploration processes.
keywords Design exploration; parametric design; history recording; version control; collaborative design
series CAADRIA
email
last changed 2022/06/07 07:56

_id ecaade2014_096
id ecaade2014_096
authors Daniel Norell and Einar Rodhe
year 2014
title Erratic - The Material Simulacra of Pliable Surfaces
source Thompson, Emine Mine (ed.), Fusion - Proceedings of the 32nd eCAADe Conference - Volume 2, Department of Architecture and Built Environment, Faculty of Engineering and Environment, Newcastle upon Tyne, England, UK, 10-12 September 2014, pp. 145-152
doi https://doi.org/10.52842/conf.ecaade.2014.2.145
wos WOS:000361385100015
summary This paper examines how designers can invigorate designs with a sense of liveliness and indeterminacy through manipulation of pliable materials. Two approaches to material manipulation are defined and juxtaposed in the paper: The control associated with Frei Otto's elegantly tensioned membranes and the noise associated with Sigurd Lewerentz's intensely material brick walls. These historical approaches become pertinent in relation to current opportunities offered by material simulation software in architecture. Simulation may be used to increase control over the materialization of design, but is at the same time a way to introduce the noise of real-time, real-world experiments into digital design. The paper presents this discussion in parallel with documentation of the research project 'Erratic', a recent installation carried out by the authors' practice Norell/Rodhe. Constructed from polyurethane cold foam, the project combines analogue experiments with digital simulations to target architectural qualities like mass, figuration and relief.
keywords Control; material manipulation; material simulation; noise; pliable surfaces
series eCAADe
email
last changed 2022/06/07 07:55

_id ecaade2014_192
id ecaade2014_192
authors David Stasiuk and Mette Ramsgaard Thomsen
year 2014
title Learning to be a Vault - Implementing learning strategies for design exploration in inter-scalar systems
source Thompson, Emine Mine (ed.), Fusion - Proceedings of the 32nd eCAADe Conference - Volume 1, Department of Architecture and Built Environment, Faculty of Engineering and Environment, Newcastle upon Tyne, England, UK, 10-12 September 2014, pp. 381-390
doi https://doi.org/10.52842/conf.ecaade.2014.1.381
wos WOS:000361384700038
summary Parametric design models enable the production of dynamic form, responsive material assemblies, and numerically and geometrically analytical feedback. The value potential for design produced through the procedural transformation of input parameters (or features) through algorithmic models has been repeatedly demonstrated and epistemically refined. However, despite their capacity to improve productivity and iteration, parametric models are nonetheless prone to inflexibility and reduction, both of which obscure processes of invention and discovery that are central to an effective design practice. This paper presents an experimental approach for the application of multiple, parallel computational design modelling strategies which are tested in the production of an inter-scalar model array that synthesises design intent, the simulation of material behaviours, performance-driven adaptation, and open-ended processes of discovery and categorical description. It is particularly focused on the computational potentials embedded in interdependent applications of simulation and machine learning algorithms as generative and descriptive drivers of form, performance, and architectural quality. It ultimately speculates towards an architectural design modelling method that privileges open model topologies and emergent feature production as critical operators in the generation of flexible and adaptive design solutions.
keywords Parametric design; computational modelling; machine learning; multi-objective optimisation; k-means clustering
series eCAADe
email
last changed 2022/06/07 07:55

_id ascaad2014_014
id ascaad2014_014
authors Abuelmaatti, Aisha A.; Vian S. Ahmed and Heveine S. Baban
year 2014
title Collaborative Environments in Small and Medium-sized Enterprises in Architecture, Engineering and Construction
source Digital Crafting [7th International Conference Proceedings of the Arab Society for Computer Aided Architectural Design (ASCAAD 2014 / ISBN 978-603-90142-5-6], Jeddah (Kingdom of Saudi Arabia), 31 March - 3 April 2014, pp. 183-193
summary The general picture of Architecture Engineering and Construction (AEC) is of a sector that is a pyramid with control being in the hands of large players with a large base of Small and Medium Enterprises (SMEs). It ensues naturally that SMEs are key players in supporting the large companies. This suggests that, the AEC sector has a continuous demand for collaboration. Collaborative working has been implemented in numerous companies. These efforts have resulted in the wide recognition of the opportunity that emerging technologies offer the AEC sector. It is, however, commonly observed that SMEs are likely to magnify the sector trend and to be less technically forward thinking than large companies. The main focus of this paper is, therefore, to explore the use of IT within AEC, and the barriers and different implementation factors that can influence SMEs to develop, in response to business pressures using the opportunities provided by collaborative technologies.
series ASCAAD
email
last changed 2016/02/15 13:09

_id sigradi2014_108
id sigradi2014_108
authors Alves, Gilfranco Medeiros; Anja Pratschke
year 2014
title De Uexküll à Pask: a Conversação aplicada à Processos Digitais de Projeto [From Uexküll to Pask: Conversation applied to Didital Design Process]
source SIGraDi 2014 [Proceedings of the 18th Conference of the Iberoamerican Society of Digital Graphics - ISBN: 978-9974-99-655-7] Uruguay - Montevideo 12 - 14 November 2014, pp. 82-85
summary The paper will present one specific aspect of the PhD research called Cibersemiótica e Processos de Projeto: Metodologia em Revisão, funded by FAPESP, which in turn is linked to the Nomads.usp research group of the University of São Paulo. The paper discusses the relevance of communication and information management in the digital design processes from the synchronic study of concepts such as feedback loop, control and self-regulation. These concepts are present in both biosemiotic and interactive design of functional cycle proposed in 1934 by biologist Jakob von Uexküll, as in cybernetic development proposed by Gordon Pask in his sophisticated Conversation Theory in the early 1970’s.
keywords Biosemiotics; Cybernetics; Cybersemiotics; Conversation Theory; functional cycle;
series SIGRADI
email
last changed 2016/03/10 09:47

_id acadia14_579
id acadia14_579
authors Brell-Cokcan, Sigrid; Braumann, Johannes
year 2014
title Robotic Production Immanent Design: Creative toolpath Design in Micro and Macro Scale
source ACADIA 14: Design Agency [Proceedings of the 34th Annual Conference of the Association for Computer Aided Design in Architecture (ACADIA) ISBN 9781926724478]Los Angeles 23-25 October, 2014), pp. 579-588
doi https://doi.org/10.52842/conf.acadia.2014.579
summary This paper discusses applications of production immanent design in the context of robotic fabrication and offers an outlook to a new research project on robotic stone structuring.
keywords production immanent design, robotic fabrication, parametric robot control, visual programming, Grasshopper
series ACADIA
type Normal Paper
email
last changed 2022/06/07 07:54

_id sigradi2014_144
id sigradi2014_144
authors Böhme, Luis Felipe González; Cristián Calvo Barentin
year 2014
title Desarrollo de competencias avanzadas en computación en la formación de los arquitectos latinoamericanos del siglo XXI [Advanced Computing Competence Development in 21st-century Latin American Architects’ Education]
source SIGraDi 2014 [Proceedings of the 18th Conference of the Iberoamerican Society of Digital Graphics - ISBN: 978-9974-99-655-7] Uruguay - Montevideo 12 - 14 November 2014, pp. 217-221
summary Automation and robotics are increasingly penetrating all types of industries in developed countries including architecture, i.e., products and services related to architectural practice. Therefore, more than ever, architects, designers and artists are interested in developing computational thinking skills to be able to integrate more functionality into their creations and take direct control of their fabrication. But what can a small school of architecture in Latin America do to prevent the deskilling of its graduates and, instead, create new labor opportunities for them abroad. Third-year students integrate physical computing with visual programming in an active learning environment to develop free proposals.
keywords Architectural education; Physical computing; Visual programming; Computational thinking; Active learning
series SIGRADI
email
last changed 2016/03/10 09:47

_id acadia14_709
id acadia14_709
authors Cantrell, Bradley; Holzman, Justine
year 2014
title Synthetic Ecologies: protocols, simulation, and manipulation for indeterminate landscapes
source ACADIA 14: Design Agency [Proceedings of the 34th Annual Conference of the Association for Computer Aided Design in Architecture (ACADIA) ISBN 9781926724478]Los Angeles 23-25 October, 2014), pp. 709-718
doi https://doi.org/10.52842/conf.acadia.2014.709
summary This paper positions the design and curation of synthetic ecologies through the lens of simulation and monitoring as a way to develop logics of interaction and proposes autonomous decision-making, manipulations, and management of the landscape to establish adaptive and indeterminate landscapes.
keywords Synthetic Ecologies, Responsive System, Monitoring, Simulation, Feedback Loop, Protocological Control, Intelligent Environments
series ACADIA
type Normal Paper
email
last changed 2022/06/07 07:54

_id cdrf2023_526
id cdrf2023_526
authors Eric Peterson, Bhavleen Kaur
year 2023
title Printing Compound-Curved Sandwich Structures with Robotic Multi-Bias Additive Manufacturing
source Proceedings of the 2023 DigitalFUTURES The 5st International Conference on Computational Design and Robotic Fabrication (CDRF 2023)
doi https://doi.org/https://doi.org/10.1007/978-981-99-8405-3_44
summary A research team at Florida International University Robotics and Digital Fabrication Lab has developed a novel method for 3d-printing curved open grid core sandwich structures using a thermoplastic extruder mounted on a robotic arm. This print-on-print additive manufacturing (AM) method relies on the 3d modeling software Rhinoceros and its parametric software plugin Grasshopper with Kuka-Parametric Robotic Control (Kuka-PRC) to convert NURBS surfaces into multi-bias additive manufacturing (MBAM) toolpaths. While several high-profile projects including the University of Stuttgart ICD/ITKE Research Pavilions 2014–15 and 2016–17, ETH-Digital Building Technologies project Levis Ergon Chair 2018, and 3D printed chair using Robotic Hybrid Manufacturing at Institute of Advanced Architecture of Catalonia (IAAC) 2019, have previously demonstrated the feasibility of 3d printing with either MBAM or sandwich structures, this method for printing Compound-Curved Sandwich Structures with Robotic MBAM combines these methods offering the possibility to significantly reduce the weight of spanning or cantilevered surfaces by incorporating the structural logic of open grid-core sandwiches with MBAM toolpath printing. Often built with fiber reinforced plastics (FRP), sandwich structures are a common solution for thin wall construction of compound curved surfaces that require a high strength-to-weight ratio with applications including aerospace, wind energy, marine, automotive, transportation infrastructure, architecture, furniture, and sports equipment manufacturing. Typical practices for producing sandwich structures are labor intensive, involving a multi-stage process including (1) the design and fabrication of a mould, (2) the application of a surface substrate such as FRP, (3) the manual application of a light-weight grid-core material, and (4) application of a second surface substrate to complete the sandwich. There are several shortcomings to this moulded manufacturing method that affect both the formal outcome and the manufacturing process: moulds are often costly and labor intensive to build, formal geometric freedom is limited by the minimum draft angles required for successful removal from the mould, and customization and refinement of product lines can be limited by the need for moulds. While the most common material for this construction method is FRP, our proof-of-concept experiments relied on low-cost thermoplastic using a specially configured pellet extruder. While the method proved feasible for small representative examples there remain significant challenges to the successful deployment of this manufacturing method at larger scales that can only be addressed with additional research. The digital workflow includes the following steps: (1) Create a 3D digital model of the base surface in Rhino, (2) Generate toolpaths for laminar printing in Grasshopper by converting surfaces into lists of oriented points, (3) Generate the structural grid-core using the same process, (4) Orient the robot to align in the direction of the substructure geometric planes, (5) Print the grid core using MBAM toolpaths, (6) Repeat step 1 and 2 for printing the outer surface with appropriate adjustments to the extruder orientation. During the design and printing process, we encountered several challenges including selecting geometry suitable for testing, extruder orientation, calibration of the hot end and extrusion/movement speeds, and deviation between the computer model and the physical object on the build platen. Physical models varied from their digital counterparts by several millimeters due to material deformation in the extrusion and cooling process. Real-time deviation verification studies will likely improve the workflow in future studies.
series cdrf
email
last changed 2024/05/29 14:04

_id acadia14projects_153
id acadia14projects_153
authors Fornes, Marc; Kusama, Yayoi
year 2014
title Selfridges
source ACADIA 14: Design Agency [Projects of the 34th Annual Conference of the Association for Computer Aided Design in Architecture (ACADIA) ISBN 9789126724478]Los Angeles 23-25 October, 2014), pp. 153-156
doi https://doi.org/10.52842/conf.acadia.2014.153.2
summary The project follows an ongoing research method investigating the control and definition of compound curvature to generate structural forms. Furthermore, the forms are generated through conventional manufacturing processes, and thus, must be defined in the logic of industrial production. The form strives to simultaneously resolve issues of rigidity and performance within the limitations of industry.
keywords Generative Design, Digital fabrication and construction, Practice-based and interdisciplinary computational Design research, Material Logics and Tectonics, Material Agency, parametric and evolutionary Design
series ACADIA
type Practice Projects
email
last changed 2022/06/07 07:51

_id ecaade2014_042
id ecaade2014_042
authors Henri Achten
year 2014
title The Psychology of Buildings - Computational cognitive strategies for interactive buildings
source Thompson, Emine Mine (ed.), Fusion - Proceedings of the 32nd eCAADe Conference - Volume 2, Department of Architecture and Built Environment, Faculty of Engineering and Environment, Newcastle upon Tyne, England, UK, 10-12 September 2014, pp. 621-627
doi https://doi.org/10.52842/conf.ecaade.2014.2.621
wos WOS:000361385100065
summary Buildings have to respond to changes in order to remain functional. Traditional means to adapt to change are to design relatively static shells that can accommodate to some degree changes. Recently a number of technologies have come into existence that extend the capacity of buildings to change in a more autonomous way. Such buildings are responsive buildings. In this paper we deal with a special case of such responsive buildings: interactive buildings. Interactive buildings engage in a dialogue with the user and have an internal representation of the user. Interactive buildings can display a variety of 'styles' how they interact with people - these are known as attitudes. As a building may go through a number of attitudes during the interaction with the user, control structures are necessary to determine this change. The mechanisms for these changes are the 'psychology' of the building.
keywords Interactive architecture; building attitudes; computational cognition
series eCAADe
email
last changed 2022/06/07 07:49

_id sigradi2014_023
id sigradi2014_023
authors Hernández, Silvia Patricia; Gabriela Mengo, María José Verón, Luciana Lanzone, María Figueroa, Alejandra Rezk
year 2014
title Microarquitectura Urbana Inmótica Propuesta de diseño útil y de interacción libre del usuario atendiendo la sustentabilidad y la inclusividad, para espacios intersticiales de la ciudad de ……. [Inmotics Urban Micro-architeture Design proposal]
source SIGraDi 2014 [Proceedings of the 18th Conference of the Iberoamerican Society of Digital Graphics - ISBN: 978-9974-99-655-7] Uruguay - Montevideo 12 - 14 November 2014, pp. 31-34
summary The following paper continues with the evaluation of technologies used for the application of domotics in our country, Argentina. It was proposed to work in microarchitecture, applying it to proposals with useful design for specific urban spaces called residuals or interstitial. With this purpose an analysis was done with several existent examples of microarchitecture, systematizing the contributions of automation, regula- tion and computerized control that they may have, and assessing achievements of sustainability and user _s comfort. It was started to propose urban social typologies, for the whole society, as in information centers, experimentation, vaccination center, etc. The work is in progress.
series SIGRADI
email
last changed 2016/03/10 09:53

_id caadria2014_510
id caadria2014_510
authors Joaquim, Silvestre and Ikeda Yasushi
year 2014
title Granularity of Control with Parametric Design in a Digital Fabrication Scope
source Rethinking Comprehensive Design: Speculative Counterculture, Proceedings of the 19th International Conference on Computer-Aided Architectural Design Research in Asia (CAADRIA 2014) / Kyoto 14-16 May 2014, pp. 933–934
doi https://doi.org/10.52842/conf.caadria.2014.933
series CAADRIA
type poster
email
last changed 2022/06/07 07:52

_id caadria2014_150
id caadria2014_150
authors Knapp, Chris; Jonathan Neslon and Michael Parsons
year 2014
title Constructing Atmospheres
source Rethinking Comprehensive Design: Speculative Counterculture, Proceedings of the 19th International Conference on Computer-Aided Architectural Design Research in Asia (CAADRIA 2014) / Kyoto 14-16 May 2014, pp. 149–158
doi https://doi.org/10.52842/conf.caadria.2014.149
summary This paper documents and critically reflects upon the design, development, fabrication, and implementation of three pavilion projects developed during 2013-14. The core investigation of this work is the production of architectural spaces characterized by a quality of enveloping, diffuse, visual and spatial atmospheres. The principal activity of the research is aimed at refining methods for software-based exploration of formal complexities and the subsequent need to control variability and efficiency in fabrication output, using Grasshopper for Rhino to develop customized definitions particular to each specific project scenario. Linking the projects together are issues of scale, resolution of effect, and intent to move from disparate assemblies of structure and skin toward composite, manifold construction techniques that address multiple concerns (gravity, bracing, affect, etc) with a minimum of assembly. A material palette common to the current vernacular of CNC-based projects such as plywood, plastics, and other sheet materials is utilised. This work is invested in extending the possibilities of the architect and architecture as a discipline, extrapolating the workflow from these successive projects to the speculative impact of the work upon emerging possibilities of architectural construction and craft.
keywords 3d modelling; Digital fabrication; Rhinoceros; Grasshopper; Tessellation
series CAADRIA
email
last changed 2022/06/07 07:51

_id acadia14projects_235
id acadia14projects_235
authors Ko, Minjae; Hwang, Jie-Eun
year 2014
title Scattered Solid
source ACADIA 14: Design Agency [Projects of the 34th Annual Conference of the Association for Computer Aided Design in Architecture (ACADIA) ISBN 9789126724478]Los Angeles 23-25 October, 2014), pp. 235-238
doi https://doi.org/10.52842/conf.acadia.2014.235
summary Scattered solid is a conceptual model consists of a pair of force sources - attractor and repulsor - and particles that possibly bonds together. We hypothesized an abstract or imaginary force field causing particles to move that we can control the tendency of organization by modifying the force fields with a set of parameters such as intensity by distance, time and geometry.
keywords Crystallization, Force Field, Particle, Bond System, Shape-Control, Self-Assembly, Generative, parametric and evolutionary design
series ACADIA
type Student's Research Projects
email
last changed 2022/06/07 07:51

_id ascaad2014_022
id ascaad2014_022
authors Kotsopoulos, Sotirios D.; Leonardo Giusti and Federico Casalegno
year 2014
title Designing Synchronous Interactions for the Fenestration System of a Prototype Sustainable Dwelling
source Digital Crafting [7th International Conference Proceedings of the Arab Society for Computer Aided Architectural Design (ASCAAD 2014 / ISBN 978-603-90142-5-6], Jeddah (Kingdom of Saudi Arabia), 31 March - 3 April 2014, pp. 291-301
summary This paper presents an interactive fenestration system designed for the principal façade of a prototype sustainable dwelling. The system attains autonomous, responsive and interactive modes of operation, and is able to provide synchronous response to a wide variety of environmental conditions and user needs. The method to address the design of the system was to integrate electro-active materials and real time sensing and control technologies. The test was to implement a full-scale façade with the abovementioned capabilities. This presentation discusses the features, technologies and reasoning followed in the design and implementation of the façade.
series ASCAAD
email
last changed 2016/02/15 13:09

_id caadria2014_060
id caadria2014_060
authors Kuma, Taichi
year 2014
title Shrink Film Architecture
source Rethinking Comprehensive Design: Speculative Counterculture, Proceedings of the 19th International Conference on Computer-Aided Architectural Design Research in Asia (CAADRIA 2014) / Kyoto 14-16 May 2014, pp. 181–190
doi https://doi.org/10.52842/conf.caadria.2014.181
summary This paper is about designing a process to create a lightweight building envelope using a shrinkfilm. The advantage of using this material for architecture is that we can simply construct the complex geometry without requiring an expensive formwork. In addition to this, this research illustrates the methodology to control the 3-dimensional form of the shrink-film by using simple 2-dimensional patterns. These patterns enable us to easily manipulate the form. In this paper, the simulation and the prototyping are conducted in both physical and computational methods.
keywords Material Computation; responsive material; form-finding
series CAADRIA
email
last changed 2022/06/07 07:52

For more results click below:

this is page 0show page 1show page 2show page 3show page 4show page 5... show page 33HOMELOGIN (you are user _anon_619016 from group guest) CUMINCAD Papers Powered by SciX Open Publishing Services 1.002