CumInCAD is a Cumulative Index about publications in Computer Aided Architectural Design
supported by the sibling associations ACADIA, CAADRIA, eCAADe, SIGraDi, ASCAAD and CAAD futures

PDF papers
References

Hits 1 to 20 of 531

_id acadia14_189
id acadia14_189
authors Robeller, Christopher; Mayencourt, Paul; Weinand, Yves
year 2014
title Snap-fit Joints: CNC fabricated, integrated mechanical attachment for structural wood panels
doi https://doi.org/10.52842/conf.acadia.2014.189
source ACADIA 14: Design Agency [Proceedings of the 34th Annual Conference of the Association for Computer Aided Design in Architecture (ACADIA) ISBN 9781926724478]Los Angeles 23-25 October, 2014), pp. 189-198
summary Snap-fit joints are new to the building sector, but commonly used in other domains. This paper presents an adaptation of such connectors for the edgewise jointing of timber panels.
keywords Snap-fit Joints, Tab-and-slot Joints, Design for Assembly, Structural Wood Panels, Folded Plate Structures, CNC Fabrication, Digital fabrication and construction
series ACADIA
type Normal Paper
email
last changed 2022/06/07 07:56

_id ecaade2014_060
id ecaade2014_060
authors Koki Akiyoshi and Hiroya Tanaka
year 2014
title Local-reconfigurable Freeform surface with plywood - From the perspective of Japanese Tsugite-Shiguchi
doi https://doi.org/10.52842/conf.ecaade.2014.1.527
source Thompson, Emine Mine (ed.), Fusion - Proceedings of the 32nd eCAADe Conference - Volume 1, Department of Architecture and Built Environment, Faculty of Engineering and Environment, Newcastle upon Tyne, England, UK, 10-12 September 2014, pp. 527-535
summary This research exhibits a novel construction method for Freeform surfaces with plywood, without using metal joints and bending. By introducing the perspective of Japanese Tsugite-Shiguchi, the research aims for a drastic change from node-oriented thinking to module-oriented thinking. This paper focuses on the investigation of how to simplify fabrication processes, how to realize the environmental capabilities of Freeform wood structures, and how to provide redundancy and stability to the whole architectural system. In order to challenge these problems, we examined three discretion methods. As a result, we have been successful to produce a double-layered surface, filled with triangular mesh, implemented only by cutting one sheet of plywood. Moreover, the system has also acquired a new nature: local-reconfigurability, wherein it can react and adapt to fit local parameters and requirements.
wos WOS:000361384700052
keywords Digital fabrication; freeform timber; without metal and bending; discrete surface; minimal components for mega-assembly
series eCAADe
email
last changed 2022/06/07 07:51

_id ascaad2014_027
id ascaad2014_027
authors Hadilou, Arman
year 2014
title Flexible Formwork: A methodology for casting funicular structures
source Digital Crafting [7th International Conference Proceedings of the Arab Society for Computer Aided Architectural Design (ASCAAD 2014 / ISBN 978-603-90142-5-6], Jeddah (Kingdom of Saudi Arabia), 31 March - 3 April 2014, pp. 345-352
summary This paper describes a method for design and fabrication of funicular structures from discrete precast concrete components. It has a critical look over traditional casting techniques and proposes a new methodology to fabricate a flexible formwork. The design process is engaged with a thorough series of analytical models and employs digital computation techniques to test their structural efficiency. Scripting, modeling and prototyping have been integrated to investigate several case studies through which a set of criteria was developed. Digital modeling tries to keep a limited number of varied components that have certain conditions at joints and flexible in other parts. This variation helps to meet the structural criterion and the flexibility of formwork results the efficiency of fabrication.
series ASCAAD
email
last changed 2016/02/15 13:09

_id sigradi2014_180
id sigradi2014_180
authors Bernardo, Marcus Vinicius Fernandes Rocha; Jose dos Santos Cabral Filho Correo
year 2014
title Fabricação digital e variedade fora do contexto industrial
source SiGraDi 2014 [Proceedings of the 18th Conference of the Iberoamerican Society of Digital Graphics - ISBN: 978-9974-99-655-7] Uruguay - Montevideo 12 - 14 November 2014, pp. 320-323
summary This paper discusses issues raised during an experiment about the use of digital fabrication technologies in non-industrial contexts in three concurrent fronts: The first front was to get familiarized with the production ecology of a non-industrial building context, the favela. The second front was to verify the accessibility of digital fabrication technologies outside the industry by building a low cost CNC milling machine based on DIY instructions available in the internet. And the last front was to develop useful solutions with this technology to that context. Partial results are guidelines for improving the technology in order to fit the context
series SIGRADI
email
last changed 2016/03/10 09:47

_id acadia14projects_157
id acadia14projects_157
authors Fornes, Marc
year 2014
title Double Agent White
doi https://doi.org/10.52842/conf.acadia.2014.157
source ACADIA 14: Design Agency [Projects of the 34th Annual Conference of the Association for Computer Aided Design in Architecture (ACADIA) ISBN 9789126724478]Los Angeles 23-25 October, 2014), pp. 157-160
summary At the boundary between art and architecture, Double Agent White must satisfy constraints of enclosure, experience and portability. The structural skin is optimized through a dual set of descriptionsOne system of “macro” agents driven toward the minimum amount of parts for fabrication and maximum length to fit within transportation case; overlapping with secondary agent traces driven toward maximum intricacy of aperture and transversal structural connections onto parts.
keywords Multi Agent Systems in Design, Generative Design, Digital fabrication and construction, Practice-based and interdisciplinary computational design research, Material Logics and Tectonics, Material Agency
series ACADIA
type Practice Projects
email
last changed 2022/06/07 07:51

_id caadria2014_147
id caadria2014_147
authors Dounas, Theodoros and A. Benjamin Spaeth
year 2014
title Universal Dovetail Joint
doi https://doi.org/10.52842/conf.caadria.2014.409
source Rethinking Comprehensive Design: Speculative Counterculture, Proceedings of the 19th International Conference on Computer-Aided Architectural Design Research in Asia (CAADRIA 2014) / Kyoto 14-16 May 2014, pp. 409–418
summary The paper presents the geometrical investigation of a three-dimensional dovetail joint that can lead (timber) frame construction to more than two-dimensional frames; the creation of timber construction with timber members meeting at irregular angles can be shown to be feasible, simplifying overall construction. Traditional joints in timber construction usually work only in two dimensions, in other words in planar surfaces, resulting thus in complicated assemblies in three-dimensions. Stemming from traditional timber dovetail joints, the universal joint under investigation is produced under revolution of the geometry of a dovetail fastener through its middle axis. The resulting concave disk can connect timber elements under irregular angles, without the need for the structural members to lie in the same plane. The joint works due to friction between members rather than using any other element of bonding, allowing for the assembly of joints and structural members with no specialized tools. The paper explores the geometric constraints and degrees of freedom that such a disk creates in timber construction, and consequently in similar linear construction systems.
keywords Universal Joint; timber construction; geometric investigation
series CAADRIA
email
last changed 2022/06/07 07:55

_id caadria2014_099
id caadria2014_099
authors Koh, Immanuel
year 2014
title Generative-Glass: Prototyping Generative Architectural Systems with Artisan’s Glass-Blowing and Automated Digital Fabrication Techniques
doi https://doi.org/10.52842/conf.caadria.2014.389
source Rethinking Comprehensive Design: Speculative Counterculture, Proceedings of the 19th International Conference on Computer-Aided Architectural Design Research in Asia (CAADRIA 2014) / Kyoto 14-16 May 2014, pp. 389–398
summary This paper aims to investigate the ways in which the traditional processes of glassblowing techniques could be incorporated with contemporary generative design processes in the realization of new novel architectural systems. Pedagogical issues on how such prototyping processes could be better integrated within architectural education are also discussed. With the use of algorithmic design methodology to generate/visualize the components assembled in multitudes and digital fabrication machineries to produce the necessary moulds/jigs/tools/connection joints, a series of 5 different glass prototypes have been actualized at the scale of 1:1 or otherwise. The work is the direct outcome of a new programme founded and directed by the author as part of the Architectural Association (AA) School of Architecture‘s Visiting School in 2013. Part 1 briefly introduces the specific agenda and how the corresponding structure of the programme is designed to facilitate the glass research work done concurrently at the digital fabrication laboratory and glassblowing studio. Part 2 would systematically discuss in detail the design of each of the 5 main glass prototypes made, presented alongside photographs and diagrams to illustrate the prototypes’ respective assembly and fabrication logics. Part 3 would evaluate the work done and project plans for the next iteration of the research in 2014.
keywords Glass; Digital Fabrication; Generative Design; Traditional Crafts
series CAADRIA
email
last changed 2022/06/07 07:51

_id ijac201412201
id ijac201412201
authors Schindler, Christoph; Martin Tamke, Ali Tabatabai, et al.
year 2014
title Processing Branches: Reactivating the performativity of natural wooden form with contemporary information technology
source International Journal of Architectural Computing vol. 12 - no. 2, 101-116
summary Angled and forked wood – a desired material until 19th century, was swept away by industrialization and its standardization of processes and materials. Contemporary information technology has the potential for the capturing and recognition of individual geometries through laser scanning and computation and subsequently design and bespoke CNC fabrication. The question whether this allows for a new approach to the uniqueness that is offered to us by nature is discussed in a series of workshops and projects, which explore the performative potential of naturally grown materials.
series journal
last changed 2019/05/24 09:55

_id acadia14projects_59
id acadia14projects_59
authors Tang, Ming; Klimesh, Colin
year 2014
title Integrated work of MAN and MACHINE: digital craft as design agent
doi https://doi.org/10.52842/conf.acadia.2014.059
source ACADIA 14: Design Agency [Projects of the 34th Annual Conference of the Association for Computer Aided Design in Architecture (ACADIA) ISBN 9789126724478]Los Angeles 23-25 October, 2014), pp. 59-62
summary The practice of machining artifacts follows the idea of embedding memory of fabrication and design processes into the built artifact. The project titled “dragon skin” presents research conducted in CNC customized tool path for generating complex surface texture
keywords Digital fabrication, Craft in a Digital Age
series ACADIA
type Research Projects
email
last changed 2022/06/07 07:56

_id ecaade2014_009
id ecaade2014_009
authors Marie Davidova, Martin Šichman and Martin Gsandtner
year 2014
title Material Performance of Solid Wood:Paresite, The Environmental Summer Pavilion
doi https://doi.org/10.52842/conf.ecaade.2014.2.139
source Thompson, Emine Mine (ed.), Fusion - Proceedings of the 32nd eCAADe Conference - Volume 2, Department of Architecture and Built Environment, Faculty of Engineering and Environment, Newcastle upon Tyne, England, UK, 10-12 September 2014, pp. 139-144
summary The Paresite - The Environmental Summer Pavilion designed for reSITE festival, is a möbius shaped structure, built from torsed pine wood planks in triangular grid with half cm thin pine wood triangular sheets that provide shadow and evaporate moisture in dry weather. The sheets, cut in a tangential section, interact with humidity by warping themselves, allowing air circulation for the evaporation in arid conditions. The design was accomplished in Grasshopper for Rhino in combination with Rhino and afterwards digitally fabricated. This interdisciplinary project involved students from the Architectural Institute in Prague (ARCHIP) and the students of the Faculty of Forestry and Wood Sciences at the Czech University of Life Sciences Prague (FLD CZU). The goal was to design and build a pavilion from a solid pine wood in order to analyse its material properties and reactions to the environment and to accommodate functions for reSITE festival. The design was prepared within half term studio course and completed in June 2013 on Karlovo Square in Prague where it hosted1600 visitors during festival weekend.
wos WOS:000361385100014
keywords Material performance; solid wood; wood - humidity interaction
series eCAADe
email
last changed 2022/06/07 07:59

_id ascaad2014_004
id ascaad2014_004
authors Afsari, Kereshmeh; Matthew E. Swarts and T. Russell Gentry
year 2014
title Integrated Generative Technique for Interactive Design of Brickworks
source Digital Crafting [7th International Conference Proceedings of the Arab Society for Computer Aided Architectural Design (ASCAAD 2014 / ISBN 978-603-90142-5-6], Jeddah (Kingdom of Saudi Arabia), 31 March - 3 April 2014, pp. 49-64
summary Bricks have been used in the construction industry as a building medium for millennia. Distinct patterns of bricks depict the unique aesthetic intentions found in Roman, Gothic and Islamic architecture. In contemporary practice, the use of digital tools in design has enabled methodologies for creating new forms in architecture. CAD and BIM systems provide new opportunities for designers to create parametric objects for building form generation. In masonry design, there exists an inherent contradiction between traditional patterns in brick design, which are formal and prescribed, and the potential for new patterns generated using design scripting. In addition, current tools do not provide interactive techniques for the design of brickwork patterns that can manage constant changes parametrically, to inform and influence design process, by providing design feedback on the constructive and structural aspects of the proposed brick pattern and geometry. This research looks into the parametric techniques that can be applied to create different kinds of patterns on brick walls. It discusses a methodology for an interactive brickwork design within generative techniques. By integrating data between two computational platforms – the first based on image analysis and the second on parametric modeling, we demonstrate a methodology and application that can generate interactive arbitrary patterns and map it to the brick wall in real-time.
series ASCAAD
email
last changed 2016/02/15 13:09

_id acadia14_267
id acadia14_267
authors Ahlquist, Sean
year 2014
title Post-forming Composite Morphologies: Materialization and design methods for inducing form through textile material behavior
doi https://doi.org/10.52842/conf.acadia.2014.267
source ACADIA 14: Design Agency [Proceedings of the 34th Annual Conference of the Association for Computer Aided Design in Architecture (ACADIA) ISBN 9781926724478]Los Angeles 23-25 October, 2014), pp. 267-276
summary This paper presents research in developing materials with integrated pre-stressed textile and rigid composite properties. Such a material system, termed Pre-stressed Textile-Reinforced Composites (pTRC), produces forms with great degrees of both 3-dimensional and structural differentiation, from flat form-work in combination with a curated composite forming process.
keywords Pre-stressed Textile-reinforced Composites, Textile Hybrid, Material Behavior, Form-finding, Spring-based Simulation.Category: Material Logics and Tectonics.
series ACADIA
type Normal Paper
email
last changed 2022/06/07 07:54

_id sigradi2014_030
id sigradi2014_030
authors Borges, Marina Ferreira; Ricardo Hallal Fakury
year 2014
title Processo iterativo de design paramétrico e projeto estrutural aplicado ao desenvolvimento de torre eólica [Iterative process of parametric design and structural project applied to the development of lattice and wind power]
source SIGraDi 2014 [Proceedings of the 18th Conference of the Iberoamerican Society of Digital Graphics - ISBN: 978-9974-99-655-7] Uruguay - Montevideo 12 - 14 November 2014, pp. 35-38
summary This article proposes to study the process of parametric design integrated analysis and structural design. This application model is called Performative Model; the form is generated based on performance criteria. The digital tools facilitate the information flow between designers using parametric model and Finite Element Analysis. To research the method of Performative Model is proposed the development of a conceptual framework of lattice wind tower with the aim of a quantitative and qualitative structure optimization. Therefore, the parametric modeling will be done using Rhinoceros software, the plugin for creating algorithms Grasshoper and structural analysis plugin Scan & Solve.
keywords Performative model; Parametric model; Finite Element Analysis; Lattice Wind Tower
series SIGRADI
email
last changed 2016/03/10 09:47

_id caadria2014_037
id caadria2014_037
authors Khoo, Chin Koi
year 2014
title Designing a Responsive Material System with Physical Computing
doi https://doi.org/10.52842/conf.caadria.2014.097
source Rethinking Comprehensive Design: Speculative Counterculture, Proceedings of the 19th International Conference on Computer-Aided Architectural Design Research in Asia (CAADRIA 2014) / Kyoto 14-16 May 2014, pp. 97–106
summary This paper focuses on an investigation to explore architectural design potentials with a responsive material system and physical computing. Contemporary architects and designers are seeking to integrate physical computing in responsive architectural designs; however, they have largely borrowed from engineering technology’s mechanical devices and components. There is the opportunity to investigate an unexplored design approach to exploit the responsive capacity of material properties as alternatives to the current focus on mechanical components and discrete sensing devices. This opportunity creates a different design paradigm for responsive architecture that investigates the potential to integrate physical computing with responsive materials as one integrated material system. Instead of adopting highly intricate and expensive materials, this approach is explored through accessible and off-the-shelf materials to form a responsive material system, called Lumina. Lumina is implemented as an architectural installation called Cloud that serves as a morphing architectural skin. Cloud is a proof of concept to embody a responsive material system with physical computing to create a reciprocal and luminous architectural intervention for a selected dark corridor. It represents a different design paradigm for responsive architecture through alternative exploitation of contemporary materials and parametric design tools.
keywords Physical computing; responsive material systems; adaptive architecture
series CAADRIA
email
last changed 2022/06/07 07:52

_id ecaade2014_011
id ecaade2014_011
authors Marie Davidova
year 2014
title Ray 2:The Material Performance of Solid Wood Based Screen
doi https://doi.org/10.52842/conf.ecaade.2014.2.153
source Thompson, Emine Mine (ed.), Fusion - Proceedings of the 32nd eCAADe Conference - Volume 2, Department of Architecture and Built Environment, Faculty of Engineering and Environment, Newcastle upon Tyne, England, UK, 10-12 September 2014, pp. 153-158
summary The wood - humidity interaction of solid wood has been tested through generations on Norwegian traditional panelling. This concept has been further explored by Michael Hensel and Steffen Reichert with Achim Menges on plywood and laminates in basic research. Plywood or laminates are better programmable but they are less sustainable due to the use of glue. This research focused on predicting the performance of solid wood in tangential section which is applied to humidity-temperature responsive screen for industrial production. With the method Systems Oriented Design, the research evaluated data from material science, forestry, meteorology, biology, chemistry and the production market. Themethod was introduced by Birger Sevaldson in 2007 with the argument that the changes in our globalized world and the need for sustainability demands an increase of the complexity of the design process. (Sevaldson 2013)Several samples has been tested for its environmental interaction. The data has been integrated in parametric models that tested the overall systems. Based on the simulations, the most suitable concept has been prototyped and measured for its performance. This lead to another sampling of the material whose data are the basis for another prototype. Ray 2 is an environmental responsive screen that is airing the structure in dry weather, while closing up when the humidity level is high, not allowing the moisture inside.
wos WOS:000361385100016
keywords Material performance; solid wood; wood - humidity interaction
series eCAADe
email
last changed 2022/06/07 07:59

_id ascaad2014_003
id ascaad2014_003
authors Parlac, Vera
year 2014
title Surface Dynamics: From dynamic surface to agile spaces
source Digital Crafting [7th International Conference Proceedings of the Arab Society for Computer Aided Architectural Design (ASCAAD 2014 / ISBN 978-603-90142-5-6], Jeddah (Kingdom of Saudi Arabia), 31 March - 3 April 2014, pp. 39-48
summary Behavior, adaptation and responsiveness are characteristics of live organisms; architecture on the other hand is structurally, materially and functionally constructed. With the shift from ‘mechanical’ towards ‘organic’ paradigm (Mae-Wan Ho, 1997) attitude towards architectural adaptation, behavior and performance is shifting as well. This change is altering a system of reference and conceptual basis for architecture by suggesting the integration of dynamics – dynamics that don’t address kinetic movement only but include flows of energies, material and information. This paper presents an ongoing research into kinetic material system with the focus on non-mechanical actuation (shape memory alloy) and the structural and material behavior. It proposes an adaptive surface capable of altering its shape and forming small occupiable spaces that respond to external and internal influences and flows of information. The adaptive structure is developed as a physical and digital prototype. Its behavior is examined at a physical level and the findings are used to digitally simulate the behavior of the larger system. The design approach is driven by an interest in adaptive systems in nature and material variability (structural and functional) of naturally constructed materials. The broader goal of the research is to test the scale at which shape memory alloy can be employed as an actuator of dynamic architectural surfaces and to speculate on and explore the capacity of active and responsive systems to produce adaptable surfaces that can form occupiable spaces and with that, added functionalities in architectural and urban environments.
series ASCAAD
email
last changed 2016/02/15 13:09

_id ecaade2014_080
id ecaade2014_080
authors Sevil Yazici
year 2014
title Efficiency in Architectural Geometry Informed by Materials
doi https://doi.org/10.52842/conf.ecaade.2014.1.547
source Thompson, Emine Mine (ed.), Fusion - Proceedings of the 32nd eCAADe Conference - Volume 1, Department of Architecture and Built Environment, Faculty of Engineering and Environment, Newcastle upon Tyne, England, UK, 10-12 September 2014, pp. 547-554
summary Although some studies investigate physics-based dynamic systems to generate structurally efficient forms by incorporating geometry with performance requirements, there is a gap in the field questioning on how to link structurally efficient architectural geometry with mechanical properties of materials. The aim of this paper is to question the possibility of generating an information loop in which Young's Modulus, stiffness of the material may both inform the form-finding process and the structural performance simulation. The proposed method offers steps including form-finding, series of analyses applied for architectural geometry and structural performance, as well as optimization. Based on the simulation results, efficiency values are calculated driven by the use of different materials. The significance of incorporating material properties in the early design stage is underlined, by comparing differences, whether the stiffness of material informs the form-finding process or not.
wos WOS:000361384700054
keywords Form-finding; material; architectural geometry; finite element method; optimization
series eCAADe
email
last changed 2022/06/07 07:57

_id acadia21_246
id acadia21_246
authors Safley, Nick
year 2021
title Reconnecting...
doi https://doi.org/10.52842/conf.acadia.2021.246
source ACADIA 2021: Realignments: Toward Critical Computation [Proceedings of the 41st Annual Conference of the Association of Computer Aided Design in Architecture (ACADIA) ISBN 979-8-986-08056-7]. Online and Global. 3-6 November 2021. edited by B. Bogosian, K. Dörfler, B. Farahi, J. Garcia del Castillo y López, J. Grant, V. Noel, S. Parascho, and J. Scott. 246-255.
summary This design research reimagines the architectural detail in a postdigital framework and proposes digital methods to work upon discrete tectonics. Drawing upon Marco Frascari's writing The Tell-the-Tale Detail, the study aims to reimagine tectonic thinking for focused attention after the digital turn. Today, computational tools are powerful enough to perform operations more similar to physical tools than in the earlier digital era. These tools create a "digital materiality," where architects can manipulate digital information in parallel and overlapping ways to physical corollaries. (Abrons and Fure, 2018) To date, work in this area has focused on materiality specifically. This project reinterprets tectonics using texture map editing and point cloud information, particularly reconceptualizing jointing using images. Smartphone-based 3D digital scanning was used to captured details from a series of Carlo Scarpa's influential works, isolating these details from their physical sites and focusing attention upon individual tectonic moments. As digital scans, these details problematize the rhetoric of smoothness and seamlessness prevalent in digital architecture as they are discretely construed loci yet composed of digital meshes. (Jones 2014) Once removed from their contexts, reconnecting the digital scans into compositions of "compound details" necessitated a series of new mechanisms for constructing and construing not native to the material world. Using Photoshop editing of texture-mapped images, digital texturing of meshes, and interpretation of the initial material constructions, new joints within and between these the digital scanned details were created to reframe the original detail for the post-digital.
series ACADIA
type paper
email
last changed 2023/10/22 12:06

_id ecaade2014_053
id ecaade2014_053
authors Baris Cokcan, Johannes Braumann and Sigrid Brell-Cokcan
year 2014
title Performative Wood
doi https://doi.org/10.52842/conf.ecaade.2014.2.131
source Thompson, Emine Mine (ed.), Fusion - Proceedings of the 32nd eCAADe Conference - Volume 2, Department of Architecture and Built Environment, Faculty of Engineering and Environment, Newcastle upon Tyne, England, UK, 10-12 September 2014, pp. 131-138
summary This research builds upon projects from both university and practice to explore new approaches on how the multifunctionality, flexibility, and performance of wood can be utilized to inform new approaches towards both design and fabrication. The following projects use physical prototypes to bend wood just within its tolerances, design with the high precision of multi-axis robotic fabrication in mind, and finally inform the shape of a large free-form structure through material properties.
wos WOS:000361385100013
keywords Wood; high-performance material; cnc; robotic fabrication; geometric design
series eCAADe
email
last changed 2022/06/07 07:54

_id caadria2014_264
id caadria2014_264
authors Gannon, Madeline and Eric Brockmeyer
year 2014
title Teaching CAD/CAM Workflows to Nascent Designers
doi https://doi.org/10.52842/conf.caadria.2014.801
source Rethinking Comprehensive Design: Speculative Counterculture, Proceedings of the 19th International Conference on Computer-Aided Architectural Design Research in Asia (CAADRIA 2014) / Kyoto 14-16 May 2014, pp. 801–810
summary The following paper presents a suite of custom software environments that make advanced techniques in digital fabrication accessible to novice, first-year designers. The collective design aides facilitate a number of digital-to-physical workflows, including 3D modeling for CNC milling and 3D printing, 2D patterning for laser cutting, and interactive visualization for projection mapping. Each of the workflows illustrate pedagogical principles for embedding tacit and tactile knowledge into computational frameworks: balancing complexity against functional limits, revealing the underlying abstractions connecting digital geometry to CNC machines, engaging the designer through intuitive and responsive environments, and leveraging generative and interactive digital modeling for serial variation. These digital design and fabrication aides have been used to facilitate formal and material explorations for groups of pre-college and freshmen students, aged 16 to 19. Their resulting tangible artifacts—made from foam, birch plywood, paper, plastic, and light—show that CAD/CAM workflows can be an accessible subject matter for students without prior experience in digital modeling or fabrication.
keywords CAD/CAM; computational design education; digital fabrication; design aides; generative design
series CAADRIA
email
last changed 2022/06/07 07:50

For more results click below:

this is page 0show page 1show page 2show page 3show page 4show page 5... show page 26HOMELOGIN (you are user _anon_774088 from group guest) CUMINCAD Papers Powered by SciX Open Publishing Services 1.002