CumInCAD is a Cumulative Index about publications in Computer Aided Architectural Design
supported by the sibling associations ACADIA, CAADRIA, eCAADe, SIGraDi, ASCAAD and CAAD futures

PDF papers
References

Hits 1 to 20 of 637

_id ecaade2014_060
id ecaade2014_060
authors Koki Akiyoshi and Hiroya Tanaka
year 2014
title Local-reconfigurable Freeform surface with plywood - From the perspective of Japanese Tsugite-Shiguchi
source Thompson, Emine Mine (ed.), Fusion - Proceedings of the 32nd eCAADe Conference - Volume 1, Department of Architecture and Built Environment, Faculty of Engineering and Environment, Newcastle upon Tyne, England, UK, 10-12 September 2014, pp. 527-535
doi https://doi.org/10.52842/conf.ecaade.2014.1.527
wos WOS:000361384700052
summary This research exhibits a novel construction method for Freeform surfaces with plywood, without using metal joints and bending. By introducing the perspective of Japanese Tsugite-Shiguchi, the research aims for a drastic change from node-oriented thinking to module-oriented thinking. This paper focuses on the investigation of how to simplify fabrication processes, how to realize the environmental capabilities of Freeform wood structures, and how to provide redundancy and stability to the whole architectural system. In order to challenge these problems, we examined three discretion methods. As a result, we have been successful to produce a double-layered surface, filled with triangular mesh, implemented only by cutting one sheet of plywood. Moreover, the system has also acquired a new nature: local-reconfigurability, wherein it can react and adapt to fit local parameters and requirements.
keywords Digital fabrication; freeform timber; without metal and bending; discrete surface; minimal components for mega-assembly
series eCAADe
email
last changed 2022/06/07 07:51

_id ascaad2014_027
id ascaad2014_027
authors Hadilou, Arman
year 2014
title Flexible Formwork: A methodology for casting funicular structures
source Digital Crafting [7th International Conference Proceedings of the Arab Society for Computer Aided Architectural Design (ASCAAD 2014 / ISBN 978-603-90142-5-6], Jeddah (Kingdom of Saudi Arabia), 31 March - 3 April 2014, pp. 345-352
summary This paper describes a method for design and fabrication of funicular structures from discrete precast concrete components. It has a critical look over traditional casting techniques and proposes a new methodology to fabricate a flexible formwork. The design process is engaged with a thorough series of analytical models and employs digital computation techniques to test their structural efficiency. Scripting, modeling and prototyping have been integrated to investigate several case studies through which a set of criteria was developed. Digital modeling tries to keep a limited number of varied components that have certain conditions at joints and flexible in other parts. This variation helps to meet the structural criterion and the flexibility of formwork results the efficiency of fabrication.
series ASCAAD
email
last changed 2016/02/15 13:09

_id acadia21_530
id acadia21_530
authors Adel, Arash; Augustynowicz, Edyta; Wehrle, Thomas
year 2021
title Robotic Timber Construction
source ACADIA 2021: Realignments: Toward Critical Computation [Proceedings of the 41st Annual Conference of the Association of Computer Aided Design in Architecture (ACADIA) ISBN 979-8-986-08056-7]. Online and Global. 3-6 November 2021. edited by S. Parascho, J. Scott, and K. Dörfler. 530-537.
doi https://doi.org/10.52842/conf.acadia.2021.530
summary Several research projects (Gramazio et al. 2014; Willmann et al. 2015; Helm et al. 2017; Adel et al. 2018; Adel Ahmadian 2020) have investigated the use of automated assembly technologies (e.g., industrial robotic arms) for the fabrication of nonstandard timber structures. Building on these projects, we present a novel and transferable process for the robotic fabrication of bespoke timber subassemblies made of off-the-shelf standard timber elements. A nonstandard timber structure (Figure 2), consisting of four bespoke subassemblies: three vertical supports and a Zollinger (Allen 1999) roof structure, acts as the case study for the research and validates the feasibility of the proposed process.
series ACADIA
type project
email
last changed 2023/10/22 12:06

_id acadia14_375
id acadia14_375
authors Maxwell, Iain; Pigram, David; Egholm-Pedersen, Ole
year 2014
title Fabrication Aware Form-Finding: A Combined Quasi-Reciprocal Timber and Discontinious Post-tensioned Concrete Structure
source ACADIA 14: Design Agency [Proceedings of the 34th Annual Conference of the Association for Computer Aided Design in Architecture (ACADIA) ISBN 9781926724478]Los Angeles 23-25 October, 2014), pp. 375-383
doi https://doi.org/10.52842/conf.acadia.2014.375
summary This paper describes innovations in fabrication-aware form-finding applied to two novel construction methods: one for quasi-reciprocal timber frames, the other for post-tensioned precast concrete structures. A pavilion which applies all innovations serves as a case study.
keywords Fabrication-aware form-finding, precast concrete, reciprocal frame, multi-axis timber construction, material logics and tectonics, digital fabrication
series ACADIA
type Normal Paper
email
last changed 2022/06/07 07:58

_id caadria2020_363
id caadria2020_363
authors Pal, Abhipsa, Chan, Wi Leen, Tan, Ying Yi, Chia, Pei Zhi and Tracy, Kenneth Joseph
year 2020
title Knit Concrete Formwork
source D. Holzer, W. Nakapan, A. Globa, I. Koh (eds.), RE: Anthropocene, Design in the Age of Humans - Proceedings of the 25th CAADRIA Conference - Volume 1, Chulalongkorn University, Bangkok, Thailand, 5-6 August 2020, pp. 213-222
doi https://doi.org/10.52842/conf.caadria.2020.1.213
summary The manufacture of concrete funicular shells often relies on traditional formwork construction techniques to provide a sculptured cavity for the fluid material to occupy (Bechthold, 2004). While this enables a predictable geometric outcome, the extensive use of timber and/or steel to construct these formworks account for up to 60% of the total production cost of concrete and are discarded after the casting is complete (Lloret et al. 2014). Thus, we propose an alternative method to create prefabricated modular systems out of concrete casted in customised tubular knitted membranes. These perform as a network of struts that can be affixed onto 3D printed nodes of a singular design. Altogether, these components serve as a kit-of-parts that can be transported to site and assembled together to create shell geometries.
keywords Knitted Textile; Fabric Formwork; Concrete Casting
series CAADRIA
email
last changed 2022/06/07 08:00

_id acadia14_177
id acadia14_177
authors Schwinn, Tobias; Krieg, Oliver David; Menges, Achim
year 2014
title Behavioral Strategies: Synthesizing design computation and robotic fabrication of lightweight timber plate structures
source ACADIA 14: Design Agency [Proceedings of the 34th Annual Conference of the Association for Computer Aided Design in Architecture (ACADIA) ISBN 9781926724478]Los Angeles 23-25 October, 2014), pp. 177-188
doi https://doi.org/10.52842/conf.acadia.2014.177
summary The paper presents the research and development related to the “Landesgartenschau Exhibition Hall”, a built case study for a light-weight timber plate structure consisting of beech plywood plates. The paper describes the integrative design and robotic fabrication methods with a particular focus on the behavioral design approach.
keywords agent-based modeling, light-weight construction, optimization, robotic fabrication, tangent plane intersection, timber plate structure
series ACADIA
type Normal Paper
email
last changed 2022/06/07 07:56

_id caadria2014_124
id caadria2014_124
authors Williams, Nicholas; Sascha Bohnenberger and John Cherrey
year 2014
title A System for Collaborative Design on Timber Gridshells
source Rethinking Comprehensive Design: Speculative Counterculture, Proceedings of the 19th International Conference on Computer-Aided Architectural Design Research in Asia (CAADRIA 2014) / Kyoto 14-16 May 2014, pp. 441–450
doi https://doi.org/10.52842/conf.caadria.2014.441
summary The bent timber laths of the Sound Bites gridshell create two types of performance space over an area of almost 100 m2. Such postformed gridshells are a wellestablished design solution for creating curved forms from linear elements. Extending principles developed since the 1970s, contemporary digital tools have been utilised to drive a renewed interest in them, primarily through so-called form-finding techniques which connect digital and material models through a simulation of shape under bending loads (Nettlebladt, 2013) and the definition of efficient structural geometry acting under compression loads only (Hernandez et. al., 2012). This paper describes the workflow conceived and implemented for the Sound Bites structure. A central challenge of the research was for such a workflow to allow for the principles of gridshell design to be engaged in parallel to other tight constraints and design drivers. As such it needed to facilitate close collaboration between architectural, engineering and fabrication experts. This workflow was tested in the design and realisation of the full-scale structure within a six-week period. The gridshell design was developed through the manipulation of the shape of two edge profiles and the shell form spanning between these. Architectural and fabrication constraints were met and the workflow allowed for a sufficient level of structural analysis to be fed back to inform the design.
keywords Digital Workflow; Collaborative Design; Digital Formfinding; Digital Fabrication
series CAADRIA
email
last changed 2022/06/07 07:57

_id sigradi2014_030
id sigradi2014_030
authors Borges, Marina Ferreira; Ricardo Hallal Fakury
year 2014
title Processo iterativo de design paramétrico e projeto estrutural aplicado ao desenvolvimento de torre eólica [Iterative process of parametric design and structural project applied to the development of lattice and wind power]
source SIGraDi 2014 [Proceedings of the 18th Conference of the Iberoamerican Society of Digital Graphics - ISBN: 978-9974-99-655-7] Uruguay - Montevideo 12 - 14 November 2014, pp. 35-38
summary This article proposes to study the process of parametric design integrated analysis and structural design. This application model is called Performative Model; the form is generated based on performance criteria. The digital tools facilitate the information flow between designers using parametric model and Finite Element Analysis. To research the method of Performative Model is proposed the development of a conceptual framework of lattice wind tower with the aim of a quantitative and qualitative structure optimization. Therefore, the parametric modeling will be done using Rhinoceros software, the plugin for creating algorithms Grasshoper and structural analysis plugin Scan & Solve.
keywords Performative model; Parametric model; Finite Element Analysis; Lattice Wind Tower
series SIGRADI
email
last changed 2016/03/10 09:47

_id caadria2014_288
id caadria2014_288
authors Bacinoglu, Zeynep and Sema Alacam
year 2014
title A Context Based Approach to Digital Architectural Modelling Education
source Rethinking Comprehensive Design: Speculative Counterculture, Proceedings of the 19th International Conference on Computer-Aided Architectural Design Research in Asia (CAADRIA 2014) / Kyoto 14-16 May 2014, pp. 811–820
doi https://doi.org/10.52842/conf.caadria.2014.811
summary This paper presents a context based framework for introducing digital modelling and fabrication to architecture students. Modelling has being taught either as a separate skill, or introduced within a comprehensive context of conventional design approaches. We argue that, a ‘digestive context’ might guide students to gain designing experience with/in digital media in a gradual and a cumulative way. This paper is based on a series of modelling and fabrication exercises as part of a one-semester digital design and modelling studio course for postgraduate students. We focus on the impact the initial exercises we assigned our students had on the final design product; We discuss the affordance and adaptability of the method that was developed by the students.
keywords Digital design; fabrication; architectural education
series CAADRIA
email
last changed 2022/06/07 07:54

_id acadia14_453
id acadia14_453
authors Bell, Brad; Read, T. Cord; Ede, Austin; Barnes, Nathan
year 2014
title Casting non-repetitive Geometries with Digitally Reconfigurable Surfaces
source ACADIA 14: Design Agency [Proceedings of the 34th Annual Conference of the Association for Computer Aided Design in Architecture (ACADIA) ISBN 9781926724478]Los Angeles 23-25 October, 2014), pp. 453-462
doi https://doi.org/10.52842/conf.acadia.2014.453
summary The research is a digitally reconfigurable formwork, controlled by Arduinos and stepper motors, capable of producing a wide range of geometric outcomes for largel-scale panel prototypes using concrete or composite materials.
keywords Reconfigurable Molds, Panelized Surfaces, Precast Concrete, Digital Fabrication and Constructions, 3D Printing, Arduinos, Material Logics and Tectonics
series ACADIA
type Normal Paper
email
last changed 2022/06/07 07:54

_id acadia14projects_269
id acadia14projects_269
authors Bennani, Sofia; Singer-Bieder, Alexandra; Michel, Agathe
year 2014
title ViscoPlasty
source ACADIA 14: Design Agency [Projects of the 34th Annual Conference of the Association for Computer Aided Design in Architecture (ACADIA) ISBN 9789126724478]Los Angeles 23-25 October, 2014), pp. 269-270
doi https://doi.org/10.52842/conf.acadia.2014.269
summary ViscoPlasty proposes an installation using Straw-k: a flexible, fast, and feasible fabrication process, which operates on the plasticity of discrete, standard components to create a dynamic, aggregate surface.
keywords fabrication process, plasticity, bespoke pipe comonent, robotic paths
series ACADIA
type Tex-Fab
email
last changed 2022/06/07 07:54

_id ecaade2014_192
id ecaade2014_192
authors David Stasiuk and Mette Ramsgaard Thomsen
year 2014
title Learning to be a Vault - Implementing learning strategies for design exploration in inter-scalar systems
source Thompson, Emine Mine (ed.), Fusion - Proceedings of the 32nd eCAADe Conference - Volume 1, Department of Architecture and Built Environment, Faculty of Engineering and Environment, Newcastle upon Tyne, England, UK, 10-12 September 2014, pp. 381-390
doi https://doi.org/10.52842/conf.ecaade.2014.1.381
wos WOS:000361384700038
summary Parametric design models enable the production of dynamic form, responsive material assemblies, and numerically and geometrically analytical feedback. The value potential for design produced through the procedural transformation of input parameters (or features) through algorithmic models has been repeatedly demonstrated and epistemically refined. However, despite their capacity to improve productivity and iteration, parametric models are nonetheless prone to inflexibility and reduction, both of which obscure processes of invention and discovery that are central to an effective design practice. This paper presents an experimental approach for the application of multiple, parallel computational design modelling strategies which are tested in the production of an inter-scalar model array that synthesises design intent, the simulation of material behaviours, performance-driven adaptation, and open-ended processes of discovery and categorical description. It is particularly focused on the computational potentials embedded in interdependent applications of simulation and machine learning algorithms as generative and descriptive drivers of form, performance, and architectural quality. It ultimately speculates towards an architectural design modelling method that privileges open model topologies and emergent feature production as critical operators in the generation of flexible and adaptive design solutions.
keywords Parametric design; computational modelling; machine learning; multi-objective optimisation; k-means clustering
series eCAADe
email
last changed 2022/06/07 07:55

_id cdrf2023_526
id cdrf2023_526
authors Eric Peterson, Bhavleen Kaur
year 2023
title Printing Compound-Curved Sandwich Structures with Robotic Multi-Bias Additive Manufacturing
source Proceedings of the 2023 DigitalFUTURES The 5st International Conference on Computational Design and Robotic Fabrication (CDRF 2023)
doi https://doi.org/https://doi.org/10.1007/978-981-99-8405-3_44
summary A research team at Florida International University Robotics and Digital Fabrication Lab has developed a novel method for 3d-printing curved open grid core sandwich structures using a thermoplastic extruder mounted on a robotic arm. This print-on-print additive manufacturing (AM) method relies on the 3d modeling software Rhinoceros and its parametric software plugin Grasshopper with Kuka-Parametric Robotic Control (Kuka-PRC) to convert NURBS surfaces into multi-bias additive manufacturing (MBAM) toolpaths. While several high-profile projects including the University of Stuttgart ICD/ITKE Research Pavilions 2014–15 and 2016–17, ETH-Digital Building Technologies project Levis Ergon Chair 2018, and 3D printed chair using Robotic Hybrid Manufacturing at Institute of Advanced Architecture of Catalonia (IAAC) 2019, have previously demonstrated the feasibility of 3d printing with either MBAM or sandwich structures, this method for printing Compound-Curved Sandwich Structures with Robotic MBAM combines these methods offering the possibility to significantly reduce the weight of spanning or cantilevered surfaces by incorporating the structural logic of open grid-core sandwiches with MBAM toolpath printing. Often built with fiber reinforced plastics (FRP), sandwich structures are a common solution for thin wall construction of compound curved surfaces that require a high strength-to-weight ratio with applications including aerospace, wind energy, marine, automotive, transportation infrastructure, architecture, furniture, and sports equipment manufacturing. Typical practices for producing sandwich structures are labor intensive, involving a multi-stage process including (1) the design and fabrication of a mould, (2) the application of a surface substrate such as FRP, (3) the manual application of a light-weight grid-core material, and (4) application of a second surface substrate to complete the sandwich. There are several shortcomings to this moulded manufacturing method that affect both the formal outcome and the manufacturing process: moulds are often costly and labor intensive to build, formal geometric freedom is limited by the minimum draft angles required for successful removal from the mould, and customization and refinement of product lines can be limited by the need for moulds. While the most common material for this construction method is FRP, our proof-of-concept experiments relied on low-cost thermoplastic using a specially configured pellet extruder. While the method proved feasible for small representative examples there remain significant challenges to the successful deployment of this manufacturing method at larger scales that can only be addressed with additional research. The digital workflow includes the following steps: (1) Create a 3D digital model of the base surface in Rhino, (2) Generate toolpaths for laminar printing in Grasshopper by converting surfaces into lists of oriented points, (3) Generate the structural grid-core using the same process, (4) Orient the robot to align in the direction of the substructure geometric planes, (5) Print the grid core using MBAM toolpaths, (6) Repeat step 1 and 2 for printing the outer surface with appropriate adjustments to the extruder orientation. During the design and printing process, we encountered several challenges including selecting geometry suitable for testing, extruder orientation, calibration of the hot end and extrusion/movement speeds, and deviation between the computer model and the physical object on the build platen. Physical models varied from their digital counterparts by several millimeters due to material deformation in the extrusion and cooling process. Real-time deviation verification studies will likely improve the workflow in future studies.
series cdrf
email
last changed 2024/05/29 14:04

_id ecaade2014_233
id ecaade2014_233
authors Evangelos Pantazis and David Gerber
year 2014
title Material Swarm Articulations - New View Reciprocal Frame Canopy
source Thompson, Emine Mine (ed.), Fusion - Proceedings of the 32nd eCAADe Conference - Volume 1, Department of Architecture and Built Environment, Faculty of Engineering and Environment, Newcastle upon Tyne, England, UK, 10-12 September 2014, pp. 463-473
doi https://doi.org/10.52842/conf.ecaade.2014.1.463
wos WOS:000361384700046
summary Material Swarm Articulations, is an experiment in developing a multi-objective optimization system that incorporates bottom up approaches for informing architectural design. The paper presents an initial built project that demonstrates the combination of a structural form finding method, with an agent based design system through the digital fabrication processes. The objective of this research is to develop a workflow combined with material and construction constraints that has the potential to increase performance objectives while enabling geometric complexity and design driven articulation of a traditional tectonic system. The emphasis of the research at this stage is to take advantage of material properties and assembly methods applied to a digital design and simulation workflow that enables emergent patterns to influence the performance of the space.The paper illustrates the research through a prototype of a self standing canopy structure in 1:1 scale. It presents results of the form finding, generative patterning, digital fabrication affordances and sets and agenda for next steps in the use of multi-agent systems for design purposes.
keywords Computational design; agent-based system; digital fabrication; parametric design; reciprocal frames; form finding; multi-objective optimization, multi-agent systems for design
series eCAADe
email
last changed 2022/06/07 07:55

_id caadria2014_108
id caadria2014_108
authors Gokmen, Sabri
year 2014
title "Tangle Jungle": An Experimental Project to Combine Collaboration and Craftsmanship in Digital Design Pedagogy
source Rethinking Comprehensive Design: Speculative Counterculture, Proceedings of the 19th International Conference on Computer-Aided Architectural Design Research in Asia (CAADRIA 2014) / Kyoto 14-16 May 2014, pp. 13–22
doi https://doi.org/10.52842/conf.caadria.2014.013
summary Tangle Jungle was an experiment in an alternative method of design and making for the digital age. The aim of the project was to interpret and reenact traditional craftmanship through today's digital tools. For a particular study on the subject, we looked at the theory and works of William Morris. Morris had an exceptional taste for medieval art and produced, among other things, hand-woven carpets that are still studied today. Morris reinvented the art of his time by reviving pre-industrial modes of production and designs. Today, the digital age is experiencing a similar paradigm shift. Digital tools already work, in many instances, as a direct extension of the hands of a new breed of digital artisan makers. It is possible to assess that the digital is getting closer to Morris's notion of craftsmanship. Tangle Jungle became a testing ground for this historical connection, bringing forth the question, can we redefine our own digital craftsmanship as a form of digitally reenacted Gothic revival?
keywords William Morris; Craft, Fabrication; Digital Design; Gothic.
series CAADRIA
email
last changed 2022/06/07 07:50

_id acadia14_531
id acadia14_531
authors Kalo, Ammar; Newsum, Michael Jake
year 2014
title Bug-Out Fabrication: A Parallel Investigation using the Namib Darkling Beetle as a Biological Model and Incremental Sheet Metal Forming as a Fabrication Method.
source ACADIA 14: Design Agency [Proceedings of the 34th Annual Conference of the Association for Computer Aided Design in Architecture (ACADIA) ISBN 9781926724478]Los Angeles 23-25 October, 2014), pp.531-538
doi https://doi.org/10.52842/conf.acadia.2014.531
summary This paper presents a project that aims to capitalize on the interchanges between two independent yet concurrent design and fabrication studies. The research demonstrates pairing of design and fabrication workflows using a biological model from the Namib Darkling Beetle, as well as advancing the research on incremental sheet forming.
keywords Incremental Sheet Forming, Namib Darkling Beetle, Computational Design, Fabrication, Sheet Metal, Shelter
series ACADIA
type Normal Paper
email
last changed 2022/06/07 07:52

_id caadria2014_173
id caadria2014_173
authors Lim, Jason; Ammar Mirjan, Fabio Gramazio and Matthias Kohler
year 2014
title Robotic Metal Aggregations
source Rethinking Comprehensive Design: Speculative Counterculture, Proceedings of the 19th International Conference on Computer-Aided Architectural Design Research in Asia (CAADRIA 2014) / Kyoto 14-16 May 2014, pp. 159–168
doi https://doi.org/10.52842/conf.caadria.2014.159
summary The recent convergence of computational design and digital fabrication has made new forms of architectural materialization possible. A workshop conducted at the Royal Melbourne Institute of Technology investigated how differentiated lightweight metal structures may be designed and fabricated under these new conditions. The workshop aim was to complete three such structures; each one is aggregated from aluminum profiles that are robotically assembled according to computationally driven geometric logics. The key challenge was to enable participants, assumed to lack programming and robotic fabrication experience, to design and construct their structures within imposed time constraints. This paper describes the subsequent development of accessible computational design tools and a robust robotic fabrication method for the workshop, and highlights the key decisions taken with their implementation. The workshop results are discussed and the design tools evaluated with respect to them. The paper concludes by recommending an approach to developing computational design tools which emphasizes the importance of usability and integration with the fabrication process.
keywords Robotic fabrication; computational design; visual programming; lightweight structures
series CAADRIA
email
last changed 2022/06/07 07:59

_id acadia14projects_19
id acadia14projects_19
authors Marcus, Adam
year 2014
title Modular Variations
source ACADIA 14: Design Agency [Projects of the 34th Annual Conference of the Association for Computer Aided Design in Architecture (ACADIA) ISBN 9789126724478]Los Angeles 23-25 October, 2014), pp. 19-22
doi https://doi.org/10.52842/conf.acadia.2014.019
summary Modular Variations is a design research project that investigates the notion of variation as it relates to contemporary techniques of computational design. The project explores this question by developing reconfigurable molds constructed from a set of finite, simple components and capable of producing a large range of variable cast plaster modules that can be stacked into a wall assembly.
keywords Category: Computational Design Research; Keywords: digital fabrication, computational design, variation, mass customization, reconfigurable molds
series ACADIA
type Research Projects
email
last changed 2022/06/07 07:59

_id caadria2014_034
id caadria2014_034
authors Nguyen, Danny D. and M. Hank Haeusler
year 2014
title Exploring Immersive Digital Environments
source Rethinking Comprehensive Design: Speculative Counterculture, Proceedings of the 19th International Conference on Computer-Aided Architectural Design Research in Asia (CAADRIA 2014) / Kyoto 14-16 May 2014, pp. 87–96
doi https://doi.org/10.52842/conf.caadria.2014.087
summary In contemporary architecture firms, most design drawings are done via use of 3D modelling software. This method requires advanced knowledge of the software in order to produce an accurate representation of space into the digital environment. The paper argues that conventional 3D visualization methods to design and analyse are restrictive to how well the user understands the space on a computer, as drawings are done ex-situ and without testing the design concept in-situ, hence there might be a level of disparity between the design and final fabrication. This is particularly a challenge when designing Urban Interaction Design concepts, as combinations of variables play a role in how the design will be received by the audience. Observing the design challenges for Urban Interaction Design and applying knowledge to architectural representation, potentially an alternative sketching process can be developed to alleviate the disparity between the conceptual design and post fabrication. This paper discusses an experimental process of using wireless spatial sensing devices to digitize physical spaces in real-time and to use on-the-spot analysis. In its conclusion the paper argues that this method enables the designer to gain advanced conceptual understandings of the intended space and thus make more informed decisions.
keywords Spatial Design; Human-Computing Interfacing; Urban Interaction Design; Spatial 3D Visualization; Wireless Sensor Technology
series CAADRIA
email
last changed 2022/06/07 07:58

_id ecaade2014_015
id ecaade2014_015
authors Odysseas Kontovourkis and George Tryfonos
year 2014
title Physical input-driven offline robotic simulation through a feedback loop process
source Thompson, Emine Mine (ed.), Fusion - Proceedings of the 32nd eCAADe Conference - Volume 1, Department of Architecture and Built Environment, Faculty of Engineering and Environment, Newcastle upon Tyne, England, UK, 10-12 September 2014, pp. 411-421
doi https://doi.org/10.52842/conf.ecaade.2014.1.411
wos WOS:000361384700041
summary This ongoing research describes a feedback loop procedure where physical inputs are used as the medium for offline robotic simulation. The purpose is to investigate the ability of industrial robots that are currently used in manufacturing processes to work in a flexible and productive manner whilst providing a continuous feedback loop between physical inputs and fabrication artifacts. In order to achieve this, a methodology is developed that involves the use of data acquisition devices to enable the transference of information from the physical to the digital environment and then to use this data as real-time parameters to control the robot's behaviour during fabrication. The aim is to achieve active involvement of robots in the manufacturing process to address complex construction issues and to ensure accuracy, a reduction in manufacturing defects and flexibility in the materials used. This investigation is accompanied by relevant experiments to exemplify the potential of control mechanisms to be used in prototyping case studies.
keywords Physical input; robotic simulation; feedback loop; manufacturing process; material control
series eCAADe
email
last changed 2022/06/07 08:00

For more results click below:

this is page 0show page 1show page 2show page 3show page 4show page 5... show page 31HOMELOGIN (you are user _anon_501048 from group guest) CUMINCAD Papers Powered by SciX Open Publishing Services 1.002