CumInCAD is a Cumulative Index about publications in Computer Aided Architectural Design
supported by the sibling associations ACADIA, CAADRIA, eCAADe, SIGraDi, ASCAAD and CAAD futures

PDF papers
References

Hits 1 to 20 of 652

_id ascaad2014_016
id ascaad2014_016
authors Al-Ratrout, Samer A. and Rana Zureikat
year 2014
title Pedagogic Approach in the Age of Parametric Architecture: Experimental method for teaching architectural design studio to 3rd year level students
source Digital Crafting [7th International Conference Proceedings of the Arab Society for Computer Aided Architectural Design (ASCAAD 2014 / ISBN 978-603-90142-5-6], Jeddah (Kingdom of Saudi Arabia), 31 March - 3 April 2014, pp. 211-226
summary In this era, Architectural Design Practice is faced with a paradigm shift in its conventional approaches towards computational methods. In this regard, it is considered a pedagogic challenge to boost up knowledge and skills of architectural students’ towards an advanced approach of architectural design that emphasizes the potentials and complexity of computational environments and parametric tools for design problem solving. For introducing the concept of Parametric Oriented Design Methods to 3rd year level architectural students, an experimental pedagogic course was designed in the scholastic year of 2012-2013 at German Jordanian University GJU (School of Architecture and Built Environment SABE) to approach this concept. In the preparation phase, the experimental course was designed to incorporate structured instructing and training method to be consecutively performed within experimental lab environment to target predetermined learning outcomes and goals. The involved students were intentionally classified into three levels of previous involvement associated with the related software operating skills and computational design exposure. In the implementation phase, the predetermined instructing and training procedures were performed in the controlled environment according to the planned tasks and time intervals. Preceded tactics were prepared to be executed to resolve various anticipated complication. In this phase also, students’ performance and comprehension capacity were observed and recorded. In data analysis phase, the observed results were verified and correlations were recognized. In the final phase, conclusions were established and recommendations for further related pedagogic experiments were introduced.
series ASCAAD
email
last changed 2016/02/15 13:09

_id ecaade2014_022
id ecaade2014_022
authors Asterios Agkathidis and Tuba Kocaturk
year 2014
title Deceptive Landscape Installation - Algorithmic patterning strategies for a small pavilion
doi https://doi.org/10.52842/conf.ecaade.2014.2.071
source Thompson, Emine Mine (ed.), Fusion - Proceedings of the 32nd eCAADe Conference - Volume 2, Department of Architecture and Built Environment, Faculty of Engineering and Environment, Newcastle upon Tyne, England, UK, 10-12 September 2014, pp. 71-79
summary This paper reflects a collaborative, research led design project, aiming to explore the potentials offered by incorporating parametric / generative tools and performative lighting simulation software in order to design and fabricate a small pavilion for the School of Architecture. The Deceptive Landscape pavilion was designed in the framework of a masters level, research led, and collaborative design studio. During its intense 12 weeks schedule, student teams were asked to explore and apply generative / parametric tools such as Rhino and Grasshopper, in order to design and later construct a small pavilion, with a theme of their choice. In addition, each team was asked to optimise their design proposal by embedding environmental software plug-ins (e.g. DIVA for Rhino) in their design process, thereby aiming to re-inform their parametric models and set performance targets. Finally each team was expected to propose a file to factory fabrication technique, following all constrains of a limited, predetermined budget. The most convincing and consistent proposal, was then chosen for fabrication. The finalised project serves as verification of the effectiveness of the design system and teaching methods used.
wos WOS:000361385100006
keywords Generative design, parametric design, pavilion installation, fabrication;
series eCAADe
email
last changed 2022/06/07 07:54

_id caadria2014_184
id caadria2014_184
authors Janssen, Patrick and Vignesh Kaushik
year 2014
title Plot Packing
doi https://doi.org/10.52842/conf.caadria.2014.533
source Rethinking Comprehensive Design: Speculative Counterculture, Proceedings of the 19th International Conference on Computer-Aided Architectural Design Research in Asia (CAADRIA 2014) / Kyoto 14-16 May 2014, pp. 533–542
summary Generative design tools can accelerate the optioneering process by allowing designers to quickly generate large numbers of design variants, thereby enabling a wider and more thorough exploration to be conducted. This paper focuses on procedures for generating inner city street networks and city block massing studies for sites within existing urban areas. A novel procedure is proposed that is capable of subdividing complex non-orthogonal sites into similarly sized well-formed plots and subsequently further subdividing these plots into sizes appropriate for selected city block typologies. The application of the procedure is demonstrated on a site in Singapore.
keywords Urban optioneering; street networks; parametric urbanism; quadrilateral mesh generation
series CAADRIA
email
last changed 2022/06/07 07:52

_id caadria2014_254
id caadria2014_254
authors Tuker, Cetin and Halil Erhan
year 2014
title An Architectural Modeling Method for Game Environments and Visualization
doi https://doi.org/10.52842/conf.caadria.2014.605
source Rethinking Comprehensive Design: Speculative Counterculture, Proceedings of the 19th International Conference on Computer-Aided Architectural Design Research in Asia (CAADRIA 2014) / Kyoto 14-16 May 2014, pp. 605–614
summary Modeling 3D architectural environments for games and design visualization is different than modelling for other purposes, such as for construction. These models include only the outer surfaces as ‘skin’ structures of the facades for rendering for which existing tools are too complex. After interviewing fourteen domain experts and evaluating available modelling tools, we observed a need for new modelling methods for rapid visualizations that leaves redundant model parts out for efficiency. We have developed a surface modelling method and a formalism for modelling architectural environments by slicing a building into layers with strips of façade element sequences. In the first prototype, we focused on parametric structures using userdefined architectonic vocabulary such as voids and solids. We conducted an expert review study with four participants: two user-experience and two domain experts. All participants responded that the method is easy to learn even for non-experts. Based on the tasks completed, they agreed that the method can speed the process of modelling large continuous façades, single-mass single-storey geometries, and repetitive floor layers; they also made suggestions for improvement. The results from the initial evaluation show that the method presented has some merits to be used in practice.
keywords 3D modelling; facade reconstruction; game; visualization
series CAADRIA
email
last changed 2022/06/07 07:57

_id acadia14_609
id acadia14_609
authors Vierlinger, Robert, Bollinger, Klaus
year 2014
title Acommodating Change in Parametric Design
doi https://doi.org/10.52842/conf.acadia.2014.609
source ACADIA 14: Design Agency [Proceedings of the 34th Annual Conference of the Association for Computer Aided Design in Architecture (ACADIA) ISBN 9781926724478]Los Angeles 23-25 October, 2014), pp. 609-618
summary This work presents a set of tools and methods to lever the flexibility and openness of contemporary parametric design environments as well as modern computational power, to ultimately push the quality of the artifact but also the design process itself.
keywords generative, parametric and evolutionary design; multi-objective search; custom optimization; parallel computing; open representation; karamba; octopus
series ACADIA
type Normal Paper
email
last changed 2022/06/07 07:58

_id ascaad2014_004
id ascaad2014_004
authors Afsari, Kereshmeh; Matthew E. Swarts and T. Russell Gentry
year 2014
title Integrated Generative Technique for Interactive Design of Brickworks
source Digital Crafting [7th International Conference Proceedings of the Arab Society for Computer Aided Architectural Design (ASCAAD 2014 / ISBN 978-603-90142-5-6], Jeddah (Kingdom of Saudi Arabia), 31 March - 3 April 2014, pp. 49-64
summary Bricks have been used in the construction industry as a building medium for millennia. Distinct patterns of bricks depict the unique aesthetic intentions found in Roman, Gothic and Islamic architecture. In contemporary practice, the use of digital tools in design has enabled methodologies for creating new forms in architecture. CAD and BIM systems provide new opportunities for designers to create parametric objects for building form generation. In masonry design, there exists an inherent contradiction between traditional patterns in brick design, which are formal and prescribed, and the potential for new patterns generated using design scripting. In addition, current tools do not provide interactive techniques for the design of brickwork patterns that can manage constant changes parametrically, to inform and influence design process, by providing design feedback on the constructive and structural aspects of the proposed brick pattern and geometry. This research looks into the parametric techniques that can be applied to create different kinds of patterns on brick walls. It discusses a methodology for an interactive brickwork design within generative techniques. By integrating data between two computational platforms – the first based on image analysis and the second on parametric modeling, we demonstrate a methodology and application that can generate interactive arbitrary patterns and map it to the brick wall in real-time.
series ASCAAD
email
last changed 2016/02/15 13:09

_id acadia14_317
id acadia14_317
authors Andrew, Mullenix, Ryan
year 2014
title Digitally Designing Collaboration: Computational Approaches to Process, Practice, and Product
doi https://doi.org/10.52842/conf.acadia.2014.317
source ACADIA 14: Design Agency [Proceedings of the 34th Annual Conference of the Association for Computer Aided Design in Architecture (ACADIA) ISBN 9781926724478]Los Angeles 23-25 October, 2014), pp. 317-326
summary In this paper we present recent experiences, research and thinking at NBBJ on the topic of collaboration, and how parametric models and algorithmic tools can facilitate and shape the collaboration between designers, between designers and clients, and between the end users of architecture.
keywords Design Computation Best Practices, Collaborative Design Agency, Parametric Modeling, Architect-Client Relationships, Multi-User Parametric Modeling, Practice-based computational design research, Design Decision Making
series ACADIA
type Normal Paper
email
last changed 2022/06/07 07:54

_id sigradi2014_030
id sigradi2014_030
authors Borges, Marina Ferreira; Ricardo Hallal Fakury
year 2014
title Processo iterativo de design paramétrico e projeto estrutural aplicado ao desenvolvimento de torre eólica [Iterative process of parametric design and structural project applied to the development of lattice and wind power]
source SIGraDi 2014 [Proceedings of the 18th Conference of the Iberoamerican Society of Digital Graphics - ISBN: 978-9974-99-655-7] Uruguay - Montevideo 12 - 14 November 2014, pp. 35-38
summary This article proposes to study the process of parametric design integrated analysis and structural design. This application model is called Performative Model; the form is generated based on performance criteria. The digital tools facilitate the information flow between designers using parametric model and Finite Element Analysis. To research the method of Performative Model is proposed the development of a conceptual framework of lattice wind tower with the aim of a quantitative and qualitative structure optimization. Therefore, the parametric modeling will be done using Rhinoceros software, the plugin for creating algorithms Grasshoper and structural analysis plugin Scan & Solve.
keywords Performative model; Parametric model; Finite Element Analysis; Lattice Wind Tower
series SIGRADI
email
last changed 2016/03/10 09:47

_id acadia14projects_55
id acadia14projects_55
authors Carlow, Jason
year 2014
title Parametric Façade Systems: Performance-Driven design for ultra-thin buildings in Hong Kong
doi https://doi.org/10.52842/conf.acadia.2014.055
source ACADIA 14: Design Agency [Projects of the 34th Annual Conference of the Association for Computer Aided Design in Architecture (ACADIA) ISBN 9789126724478]Los Angeles 23-25 October, 2014), pp. 55-58
summary Through design research, analysis and modeling, the project seeks to distort the standardizing forces of building code limitations, economic concerns and mass production on the built environment. The project presents a proposal for an extremely thin building type that features a more responsive, better integrated façade developed with parametric design tools.
keywords Parametric Design, Pre-fabrication, Façade Systems, Digital Fabrication, Linear Domesticity, Building Code
series ACADIA
type Research Projects
email
last changed 2022/06/07 07:56

_id caadria2021_089
id caadria2021_089
authors Cristie, Verina, Ibrahim, Nazim and Joyce, Sam Conrad
year 2021
title Capturing and Evaluating Parametric Design Exploration in a Collaborative Environment - A study case of versioning for parametric design
doi https://doi.org/10.52842/conf.caadria.2021.2.131
source A. Globa, J. van Ameijde, A. Fingrut, N. Kim, T.T.S. Lo (eds.), PROJECTIONS - Proceedings of the 26th CAADRIA Conference - Volume 2, The Chinese University of Hong Kong and Online, Hong Kong, 29 March - 1 April 2021, pp. 131-140
summary Although parametric modelling and digital design tools have become ubiquitous in digital design, there is a limited understanding of how designers apply them in their design processes (Yu et al., 2014). This paper looks at the use of GHShot versioning tool developed by the authors (Cristie & Joyce, 2018; 2019) used to capture and track changes and progression of parametric models to understand early-stage design exploration and collaboration empirically. We introduce both development history graph-based metrics (macro-process) and parametric model and geometry change metric (micro-process) as frameworks to explore and understand the captured progression data. These metrics, applied to data collected from three cohorts of classroom collaborative design exercises, exhibited students' distinct modification patterns such as major and complex creation processes or minor parameter explorations. Finally, with the metrics' applicability as an objective language to describe the (collaborative) design process, we recommend using versioning for more data-driven insight into parametric design exploration processes.
keywords Design exploration; parametric design; history recording; version control; collaborative design
series CAADRIA
email
last changed 2022/06/07 07:56

_id ecaade2023_000
id ecaade2023_000
authors Dokonal, Wolfgang, Hirschberg, Urs and Wurzer, Gabriel
year 2023
title eCAADe 2023 Digital Design Reconsidered - Volume 1
doi https://doi.org/10.52842/conf.ecaade.2023.1.001
source Dokonal, W, Hirschberg, U and Wurzer, G (eds.), Digital Design Reconsidered - Proceedings of the 41st Conference on Education and Research in Computer Aided Architectural Design in Europe (eCAADe 2023) - Volume 1, Graz, 20-22 September 2023, 905 p.
summary The conference logo is a bird’s eye view of spiral stairs that join and separate – an homage to the famous double spiral staircase in Graz, a tourist attraction of this city and a must-see for any architecturally minded visitor. Carved out of limestone, the medieval construction of the original is a daring feat of masonry as well as a symbolic gesture. The design speaks of separation and reconciliation: The paths of two people that climb the double spiral stairs separate and then meet again at each platform. The relationship between architectural design and the growing digital repertoire of tools and possibilities seems to undergo similar cycles of attraction and rejection: enthusiasm about digital innovations – whether in Virtual Reality, Augmented Reality, Energy Design, Robotic Fabrication, the many Dimensions of BIM or, as right now, in AI and Machine Learning – is typically followed by a certain disillusionment and a realization that the promises were somewhat overblown. But a turn away from these digital innovations can only be temporary. In our call for papers we refer to the first and second ‘digital turns’, a term Mario Carpo coined. Yes, it’s a bit of a pun, but you could indeed see these digital turns in our logo as well. Carpo would probably agree that design and the digital have become inseparably intertwined. While they may be circling in different directions, an innovative rejoinder is always just around the corner. The theme of the conference asked participants to re-consider the relationship between Design and the Digital. The notion of a cycle is already present in the syllable “re”. Indeed, 20 years earlier, in 2003, we held an ECAADE conference in Graz simply under the title “Digital Design” and our re-using – or is it re-cycling? – the theme can be seen as the completion of one of those cycles described above: One level up, we meet again, we’ve come full circle. The question of the relationship between Design and the Digital is still in flux, still worthy of renewed consideration. There is a historical notion implicit in the theme. To reconsider something, one needs to take a step back, to look into the past as well as into the future. Indeed, at this conference we wanted to take a longer view, something not done often enough in the fast-paced world of digital technology. Carefully considering one’s past can be a source of inspiration. In fact, the double spiral stair that inspired our conference logo also inspired many architects through the ages. Konrad Wachsmann, for example, is said to have come up with his famous Grapevine assembly system based on this double spiral stair and its intricate joinery. More recently, Rem Koolhaas deemed the double spiral staircase in Graz important enough to include a detailed model of it in his “elements of architecture” exhibition at the Venice Biennale in 2014. Our interpretation of the stair is a typically digital one, you might say. First of all: it’s a rendering of a virtual model; it only exists inside a computer. Secondly, this virtual model isn’t true to the original. Instead, it does what the digital has made so easy to do: it exaggerates. Where the original has just two spiral stairs that separate and join, our model consists of countless stairs that are joined in this way. We see only a part of the model, but the stairs appear to continue in all directions. The implication is of an endless field of spiral stairs. As the 3D model was generated with a parametric script, it would be very easy to change all parameters of it – including the number of stairs that make it up. Everyone at this conference is familiar with the concept of parametric design: it makes generating models of seemingly endless amounts of connected spiral stairs really easy. Although, of course, if we’re too literal about the term ‘endless’, generating our stair model will eventually crash even the most advanced computers. We know that, too. – That's another truth about the Digital: it makes a promise of infinity, which, in the end, it can’t keep. And even if it could: what’s the point of just adding more of the same: more variations, more options, more possible ways to get lost? Doesn’t the original double spiral staircase contain all those derivatives already? Don’t we know that ‘more’ isn’t necessarily better? In the original double spiral stair the happy end is guaranteed: the lovers’ paths meet at the top as well as when they exit the building. Therefore, the stair is also colloquially known as the Busserlstiege (the kissing stair) or the Versöhnungsstiege (reconciliation stair). In our digitally enhanced version, this outcome is no longer clear: we can choose between multiple directions at each level and we risk losing sight of the one we were with. This is also emblematic of our field of research. eCAADe was founded to promote “good practice and sharing information in relation to the use of computers in research and education in architecture and related professions” (see ecaade.org). That may have seemed a straightforward proposition forty years ago, when the association was founded. A look at the breadth and depth of research topics presented and discussed at this conference (and as a consequence in this book, for which you’re reading the editorial) shows how the field has developed over these forty years. There are sessions on Digital Design Education, on Digital Fabrication, on Virtual Reality, on Virtual Heritage, on Generative Design and Machine Learning, on Digital Cities, on Simulation and Digital Twins, on BIM, on Sustainability, on Circular Design, on Design Theory and on Digital Design Experimentations. We hope you will find what you’re looking for in this book and at the conference – and maybe even more than that: surprising turns and happy encounters between Design and the Digital.
series eCAADe
email
last changed 2023/12/10 10:49

_id ecaade2023_001
id ecaade2023_001
authors Dokonal, Wolfgang, Hirschberg, Urs and Wurzer, Gabriel
year 2023
title eCAADe 2023 Digital Design Reconsidered - Volume 2
doi https://doi.org/10.52842/conf.ecaade.2023.2.001
source Dokonal, W, Hirschberg, U and Wurzer, G (eds.), Digital Design Reconsidered - Proceedings of the 41st Conference on Education and Research in Computer Aided Architectural Design in Europe (eCAADe 2023) - Volume 2, Graz, 20-22 September 2023, 899 p.
summary The conference logo is a bird’s eye view of spiral stairs that join and separate – an homage to the famous double spiral staircase in Graz, a tourist attraction of this city and a must-see for any architecturally minded visitor. Carved out of limestone, the medieval construction of the original is a daring feat of masonry as well as a symbolic gesture. The design speaks of separation and reconciliation: The paths of two people that climb the double spiral stairs separate and then meet again at each platform. The relationship between architectural design and the growing digital repertoire of tools and possibilities seems to undergo similar cycles of attraction and rejection: enthusiasm about digital innovations – whether in Virtual Reality, Augmented Reality, Energy Design, Robotic Fabrication, the many Dimensions of BIM or, as right now, in AI and Machine Learning – is typically followed by a certain disillusionment and a realization that the promises were somewhat overblown. But a turn away from these digital innovations can only be temporary. In our call for papers we refer to the first and second ‘digital turns’, a term Mario Carpo coined. Yes, it’s a bit of a pun, but you could indeed see these digital turns in our logo as well. Carpo would probably agree that design and the digital have become inseparably intertwined. While they may be circling in different directions, an innovative rejoinder is always just around the corner. The theme of the conference asked participants to re-consider the relationship between Design and the Digital. The notion of a cycle is already present in the syllable “re”. Indeed, 20 years earlier, in 2003, we held an ECAADE conference in Graz simply under the title “Digital Design” and our re-using – or is it re-cycling? – the theme can be seen as the completion of one of those cycles described above: One level up, we meet again, we’ve come full circle. The question of the relationship between Design and the Digital is still in flux, still worthy of renewed consideration. There is a historical notion implicit in the theme. To reconsider something, one needs to take a step back, to look into the past as well as into the future. Indeed, at this conference we wanted to take a longer view, something not done often enough in the fast-paced world of digital technology. Carefully considering one’s past can be a source of inspiration. In fact, the double spiral stair that inspired our conference logo also inspired many architects through the ages. Konrad Wachsmann, for example, is said to have come up with his famous Grapevine assembly system based on this double spiral stair and its intricate joinery. More recently, Rem Koolhaas deemed the double spiral staircase in Graz important enough to include a detailed model of it in his “elements of architecture” exhibition at the Venice Biennale in 2014. Our interpretation of the stair is a typically digital one, you might say. First of all: it’s a rendering of a virtual model; it only exists inside a computer. Secondly, this virtual model isn’t true to the original. Instead, it does what the digital has made so easy to do: it exaggerates. Where the original has just two spiral stairs that separate and join, our model consists of countless stairs that are joined in this way. We see only a part of the model, but the stairs appear to continue in all directions. The implication is of an endless field of spiral stairs. As the 3D model was generated with a parametric script, it would be very easy to change all parameters of it – including the number of stairs that make it up. Everyone at this conference is familiar with the concept of parametric design: it makes generating models of seemingly endless amounts of connected spiral stairs really easy. Although, of course, if we’re too literal about the term ‘endless’, generating our stair model will eventually crash even the most advanced computers. We know that, too. – That's another truth about the Digital: it makes a promise of infinity, which, in the end, it can’t keep. And even if it could: what’s the point of just adding more of the same: more variations, more options, more possible ways to get lost? Doesn’t the original double spiral staircase contain all those derivatives already? Don’t we know that ‘more’ isn’t necessarily better? In the original double spiral stair the happy end is guaranteed: the lovers’ paths meet at the top as well as when they exit the building. Therefore, the stair is also colloquially known as the Busserlstiege (the kissing stair) or the Versöhnungsstiege (reconciliation stair). In our digitally enhanced version, this outcome is no longer clear: we can choose between multiple directions at each level and we risk losing sight of the one we were with. This is also emblematic of our field of research. eCAADe was founded to promote “good practice and sharing information in relation to the use of computers in research and education in architecture and related professions” (see ecaade.org). That may have seemed a straightforward proposition forty years ago, when the association was founded. A look at the breadth and depth of research topics presented and discussed at this conference (and as a consequence in this book, for which you’re reading the editorial) shows how the field has developed over these forty years. There are sessions on Digital Design Education, on Digital Fabrication, on Virtual Reality, on Virtual Heritage, on Generative Design and Machine Learning, on Digital Cities, on Simulation and Digital Twins, on BIM, on Sustainability, on Circular Design, on Design Theory and on Digital Design Experimentations. We hope you will find what you’re looking for in this book and at the conference – and maybe even more than that: surprising turns and happy encounters between Design and the Digital.
series eCAADe
type normal paper
email
last changed 2024/08/29 08:36

_id acadia14_117
id acadia14_117
authors Elkhaldi, Maher; Woodbury, Robert
year 2014
title Interacting With Alternatives: Alt.Text
doi https://doi.org/10.52842/conf.acadia.2014.117
source ACADIA 14: Design Agency [Proceedings of the 34th Annual Conference of the Association for Computer Aided Design in Architecture (ACADIA) ISBN 9781926724478]Los Angeles 23-25 October, 2014), pp. 117-124
summary Demonstration of the Alt.Text a prototype that tackles usability issues found in parametric modeling tools for exploring alternatives, from the context of text-authoring. The authors draw on similarities between text-editing and parametric modeling; and introduce a number of novel interactions through a multi-state data model, subjunctive interfaces, and a flexible hierarchy model.
keywords Human-Computer interaction Design Alternatives Design SpaceSubjunctive User-Interfaces Multi-State ModelsParallel EditingHierarchy
series ACADIA
type Normal Paper
email
last changed 2022/06/07 07:55

_id sigradi2014_132
id sigradi2014_132
authors Hu, Yongheng; Qinying Li, Feng Yuang, Han Li
year 2014
title The BIM based Responsive Environmental Performance Design Methodology
source SIGraDi 2014 [Proceedings of the 18th Conference of the Iberoamerican Society of Digital Graphics - ISBN: 978-9974-99-655-7] Uruguay- Montevideo 12,13,14 November 2014, pp. 120-125
summary The concept of “families” lies in the core of internal data structure in Building Information Modeling (BIM). The elements of this modeling platform are all associated with each other as parts of the “families”, independent of their geometrical structure, materiality, parametric dependencies or their physical connection to other elements. Through the associations introduced among the parameters of the ‘families’ members, this study aims at establishing a methodology for a multi-objective evaluation of the environmental performance of the building as an organism. The methodology is founded on a system of different values and weights attributed to the parameters of the families members which are adjusted and fine-tuned through a series of iterations, thus affecting the overall building performance towards an optimum goal. The performance evaluation method used in the “families” methodology is not limited to the individual assessment of the environmental performance objectives or to an integrated multi-objective weighting mechanism; as an overall evaluation platform it checks and balances the individual characteristics of the system not as static conclusive results but as dynamic criteria intended to guide the overall design and building process. The importance of this paper lies in the construction of a concrete methodological set of tools for the assessment of the environmental performance of the building. It will lead the way in independent research in the field of architectural design and the development of ecological thinking and building in China.
keywords BIM ‘families’; Multi-Objective Generic Algorithm; Environmental Performance Simulation; Multi-Objective Environmental Performance Optimization
series SIGRADI
email
last changed 2016/03/10 09:53

_id caadria2014_037
id caadria2014_037
authors Khoo, Chin Koi
year 2014
title Designing a Responsive Material System with Physical Computing
doi https://doi.org/10.52842/conf.caadria.2014.097
source Rethinking Comprehensive Design: Speculative Counterculture, Proceedings of the 19th International Conference on Computer-Aided Architectural Design Research in Asia (CAADRIA 2014) / Kyoto 14-16 May 2014, pp. 97–106
summary This paper focuses on an investigation to explore architectural design potentials with a responsive material system and physical computing. Contemporary architects and designers are seeking to integrate physical computing in responsive architectural designs; however, they have largely borrowed from engineering technology’s mechanical devices and components. There is the opportunity to investigate an unexplored design approach to exploit the responsive capacity of material properties as alternatives to the current focus on mechanical components and discrete sensing devices. This opportunity creates a different design paradigm for responsive architecture that investigates the potential to integrate physical computing with responsive materials as one integrated material system. Instead of adopting highly intricate and expensive materials, this approach is explored through accessible and off-the-shelf materials to form a responsive material system, called Lumina. Lumina is implemented as an architectural installation called Cloud that serves as a morphing architectural skin. Cloud is a proof of concept to embody a responsive material system with physical computing to create a reciprocal and luminous architectural intervention for a selected dark corridor. It represents a different design paradigm for responsive architecture through alternative exploitation of contemporary materials and parametric design tools.
keywords Physical computing; responsive material systems; adaptive architecture
series CAADRIA
email
last changed 2022/06/07 07:52

_id ecaade2014_109
id ecaade2014_109
authors Kristoffer Negendahl, Thomas Perkov and Alfred Heller
year 2014
title Approaching Sentient Building Performance Simulation Systems
doi https://doi.org/10.52842/conf.ecaade.2014.2.049
source Thompson, Emine Mine (ed.), Fusion - Proceedings of the 32nd eCAADe Conference - Volume 2, Department of Architecture and Built Environment, Faculty of Engineering and Environment, Newcastle upon Tyne, England, UK, 10-12 September 2014, pp. 49-60
summary Building designers make decisions in early design stages that have large impact on building performance, including those of energy-, daylight- and indoor environment performance. Building performance simulation (BPS) tools can support the designer, in making better decisions, by providing the performance consequences of design choices. However BPS tools often require deep technical knowledge and is too time consuming to use to effectively support the design exploration in the early design stages. To solve this challenge, the current paper proposes: Sentient building performance simulation systems, which combine one or more high precision BPS tools to provide near instantaneous performance feedback directly in the design tool. Sentient BPS systems are essentially combining: 1) design tools, 2) parametric tools, 3) BPS tools, 4) dynamic databases 5) interpolation techniques and 6) prediction techniques as a fast and valid simulation system for the early design stage.
wos WOS:000361385100004
keywords Building performance simulation; parametric modelling; visual programming language; database; responsive system; integrated dynamic model
series eCAADe
email
last changed 2022/06/07 07:52

_id ecaade2011_144
id ecaade2011_144
authors Kunze, Antje; Halatsch, Jan; Vanegas, Carlos; Jacobi, Martina Maldaner
year 2011
title A Conceptual Participatory Design Framework for Urban Planning: The case study workshop ‘World Cup 2014 Urban Scenarios’, Porto Alegre, Brazil
doi https://doi.org/10.52842/conf.ecaade.2011.895
source RESPECTING FRAGILE PLACES [29th eCAADe Conference Proceedings / ISBN 978-9-4912070-1-3], University of Ljubljana, Faculty of Architecture (Slovenia) 21-24 September 2011, pp.895-903
summary This paper focuses on the definition of a conceptual participatory design framework for urban planning. Traditional planning methods can no longer satisfy the growing demands on sustainable urban planning in regard to factors such as complexity, problem size, and level of detail and these limitations make the development of new approaches necessary. Expert knowledge as well as insights from stakeholders and community members needs to take part equally in the decision-making process since they are responsible for a broad understanding and acceptance of final planning decisions. Therefore, a participatory framework is presented in the following, which integrates needs and requirements of stakeholders. In order to enable diverse groups of stakeholders to act conjointly, we propose the application of interactive decision support tools, which will leverage general conclusions especially to solve crucial zplanning decisions.
wos WOS:000335665500103
keywords Decision-making process; stakeholder participation; shape grammars; procedural model; urban planning
series eCAADe
email
last changed 2022/05/01 23:21

_id ecaade2014_191
id ecaade2014_191
authors Mads Brath Jensen and Isak Worre Foged
year 2014
title Cellular Automata as a learning process in Architecture and Urban design
doi https://doi.org/10.52842/conf.ecaade.2014.1.297
source Thompson, Emine Mine (ed.), Fusion - Proceedings of the 32nd eCAADe Conference - Volume 1, Department of Architecture and Built Environment, Faculty of Engineering and Environment, Newcastle upon Tyne, England, UK, 10-12 September 2014, pp. 297-302
summary This paper explores the application of cellular automata as method for investigating the dynamic parameters and interrelationships that constitute the urban space. With increasing aspects needed for integration during the architectural and urban design process with the relations between these aspects growing in parallel, complexity of the design process and design solution increases. Additionally, aspects and relations are of a transformative character in that they change over time and therefore construct a time-based condition for which problems are presented and solutions are sought. An architectural methodological response to this situation is presented through the development of a conceptual computational design system that allows these dynamics to unfold and to be observed for architectural design decision taking. Reflecting on the development and implementation of a cellular automata based design approach on a master level urban design studio this paper will discuss the strategies for dealing with complexity at an urban scale as well as the pedagogical considerations behind applying computational tools and methods to a urban design education.
wos WOS:000361384700029
keywords Computational design; cellular automata; education; design exploration
series eCAADe
email
last changed 2022/06/07 07:59

_id ecaade2014_024
id ecaade2014_024
authors Maycon Sedrez, Rafael Meneghel and Gabriela Celani
year 2014
title Digital fabrication of a brise-soleil using fractal geometry as generative system
doi https://doi.org/10.52842/conf.ecaade.2014.2.315
source Thompson, Emine Mine (ed.), Fusion - Proceedings of the 32nd eCAADe Conference - Volume 2, Department of Architecture and Built Environment, Faculty of Engineering and Environment, Newcastle upon Tyne, England, UK, 10-12 September 2014, pp. 315-325
summary Parametric design and digital fabrication are becoming ubiquitous tools to contemporary architecture and imply a different design process. With this new perception of the contemporary production we have designed a façade sun shade using fractal geometry as a generative system. Fractals are complex shapes generated with simple rules, so it is relatively easy to change the final geometry when we work with parameters. The design process made possible the creation of different options for the brise-soleil using parametric definitions. Some solutions were physically modeled using rapid prototyping, which we consider an essential tool in the contemporary design process. The whole process conducted to the conclusion that architects need to incorporate a new set of skills when working with digital fabrication. Keywords: fractal, design process, generative system, digital fabrication.
wos WOS:000361385100033
keywords Fractal geometry; generative system; digital fabrication; design process
series eCAADe
email
last changed 2022/06/07 07:58

_id ecaade2014_224
id ecaade2014_224
authors Mohammad Rahmani Asl, Michael Bergin, Adam Menter and Wei Yan
year 2014
title BIM-based Parametric Building Energy Performance Multi-Objective Optimization
doi https://doi.org/10.52842/conf.ecaade.2014.2.455
source Thompson, Emine Mine (ed.), Fusion - Proceedings of the 32nd eCAADe Conference - Volume 2, Department of Architecture and Built Environment, Faculty of Engineering and Environment, Newcastle upon Tyne, England, UK, 10-12 September 2014, pp. 455-464
summary Building energy performance assessments are complex multi-criteria problems. Appropriate tools that can help designers explore design alternatives and assess the energy performance for choosing the most appropriate alternative are in high demand. In this paper, we present a newly developed integrated parametric Building Information Modeling (BIM)-based system to interact with cloud-based whole building energy performance simulation and daylighting tools to optimize building energy performance using a Multi-Objective Optimization (MOO) algorithm. This system enables designers to explore design alternatives using a visual programming interface, while assessing the energy performance of the design models to search for the most appropriate design. A case study of minimizing the energy use while maximizing the appropriate daylighting level of a residential building is provided to showcase the utility of the system and its workflow.
wos WOS:000361385100048
keywords Building energy performance analysis; building information model (bim); parametric modelling; parametric energy simulation; multi-objective optimization
series eCAADe
email
last changed 2022/06/07 07:58

For more results click below:

this is page 0show page 1show page 2show page 3show page 4show page 5... show page 32HOMELOGIN (you are user _anon_422816 from group guest) CUMINCAD Papers Powered by SciX Open Publishing Services 1.002