CumInCAD is a Cumulative Index about publications in Computer Aided Architectural Design
supported by the sibling associations ACADIA, CAADRIA, eCAADe, SIGraDi, ASCAAD and CAAD futures

PDF papers
References

Hits 1 to 20 of 578

_id ecaade2023_000
id ecaade2023_000
authors Dokonal, Wolfgang, Hirschberg, Urs and Wurzer, Gabriel
year 2023
title eCAADe 2023 Digital Design Reconsidered - Volume 1
doi https://doi.org/10.52842/conf.ecaade.2023.1.001
source Dokonal, W, Hirschberg, U and Wurzer, G (eds.), Digital Design Reconsidered - Proceedings of the 41st Conference on Education and Research in Computer Aided Architectural Design in Europe (eCAADe 2023) - Volume 1, Graz, 20-22 September 2023, 905 p.
summary The conference logo is a bird’s eye view of spiral stairs that join and separate – an homage to the famous double spiral staircase in Graz, a tourist attraction of this city and a must-see for any architecturally minded visitor. Carved out of limestone, the medieval construction of the original is a daring feat of masonry as well as a symbolic gesture. The design speaks of separation and reconciliation: The paths of two people that climb the double spiral stairs separate and then meet again at each platform. The relationship between architectural design and the growing digital repertoire of tools and possibilities seems to undergo similar cycles of attraction and rejection: enthusiasm about digital innovations – whether in Virtual Reality, Augmented Reality, Energy Design, Robotic Fabrication, the many Dimensions of BIM or, as right now, in AI and Machine Learning – is typically followed by a certain disillusionment and a realization that the promises were somewhat overblown. But a turn away from these digital innovations can only be temporary. In our call for papers we refer to the first and second ‘digital turns’, a term Mario Carpo coined. Yes, it’s a bit of a pun, but you could indeed see these digital turns in our logo as well. Carpo would probably agree that design and the digital have become inseparably intertwined. While they may be circling in different directions, an innovative rejoinder is always just around the corner. The theme of the conference asked participants to re-consider the relationship between Design and the Digital. The notion of a cycle is already present in the syllable “re”. Indeed, 20 years earlier, in 2003, we held an ECAADE conference in Graz simply under the title “Digital Design” and our re-using – or is it re-cycling? – the theme can be seen as the completion of one of those cycles described above: One level up, we meet again, we’ve come full circle. The question of the relationship between Design and the Digital is still in flux, still worthy of renewed consideration. There is a historical notion implicit in the theme. To reconsider something, one needs to take a step back, to look into the past as well as into the future. Indeed, at this conference we wanted to take a longer view, something not done often enough in the fast-paced world of digital technology. Carefully considering one’s past can be a source of inspiration. In fact, the double spiral stair that inspired our conference logo also inspired many architects through the ages. Konrad Wachsmann, for example, is said to have come up with his famous Grapevine assembly system based on this double spiral stair and its intricate joinery. More recently, Rem Koolhaas deemed the double spiral staircase in Graz important enough to include a detailed model of it in his “elements of architecture” exhibition at the Venice Biennale in 2014. Our interpretation of the stair is a typically digital one, you might say. First of all: it’s a rendering of a virtual model; it only exists inside a computer. Secondly, this virtual model isn’t true to the original. Instead, it does what the digital has made so easy to do: it exaggerates. Where the original has just two spiral stairs that separate and join, our model consists of countless stairs that are joined in this way. We see only a part of the model, but the stairs appear to continue in all directions. The implication is of an endless field of spiral stairs. As the 3D model was generated with a parametric script, it would be very easy to change all parameters of it – including the number of stairs that make it up. Everyone at this conference is familiar with the concept of parametric design: it makes generating models of seemingly endless amounts of connected spiral stairs really easy. Although, of course, if we’re too literal about the term ‘endless’, generating our stair model will eventually crash even the most advanced computers. We know that, too. – That's another truth about the Digital: it makes a promise of infinity, which, in the end, it can’t keep. And even if it could: what’s the point of just adding more of the same: more variations, more options, more possible ways to get lost? Doesn’t the original double spiral staircase contain all those derivatives already? Don’t we know that ‘more’ isn’t necessarily better? In the original double spiral stair the happy end is guaranteed: the lovers’ paths meet at the top as well as when they exit the building. Therefore, the stair is also colloquially known as the Busserlstiege (the kissing stair) or the Versöhnungsstiege (reconciliation stair). In our digitally enhanced version, this outcome is no longer clear: we can choose between multiple directions at each level and we risk losing sight of the one we were with. This is also emblematic of our field of research. eCAADe was founded to promote “good practice and sharing information in relation to the use of computers in research and education in architecture and related professions” (see ecaade.org). That may have seemed a straightforward proposition forty years ago, when the association was founded. A look at the breadth and depth of research topics presented and discussed at this conference (and as a consequence in this book, for which you’re reading the editorial) shows how the field has developed over these forty years. There are sessions on Digital Design Education, on Digital Fabrication, on Virtual Reality, on Virtual Heritage, on Generative Design and Machine Learning, on Digital Cities, on Simulation and Digital Twins, on BIM, on Sustainability, on Circular Design, on Design Theory and on Digital Design Experimentations. We hope you will find what you’re looking for in this book and at the conference – and maybe even more than that: surprising turns and happy encounters between Design and the Digital.
series eCAADe
email
last changed 2023/12/10 10:49

_id ecaade2023_001
id ecaade2023_001
authors Dokonal, Wolfgang, Hirschberg, Urs and Wurzer, Gabriel
year 2023
title eCAADe 2023 Digital Design Reconsidered - Volume 2
doi https://doi.org/10.52842/conf.ecaade.2023.2.001
source Dokonal, W, Hirschberg, U and Wurzer, G (eds.), Digital Design Reconsidered - Proceedings of the 41st Conference on Education and Research in Computer Aided Architectural Design in Europe (eCAADe 2023) - Volume 2, Graz, 20-22 September 2023, 899 p.
summary The conference logo is a bird’s eye view of spiral stairs that join and separate – an homage to the famous double spiral staircase in Graz, a tourist attraction of this city and a must-see for any architecturally minded visitor. Carved out of limestone, the medieval construction of the original is a daring feat of masonry as well as a symbolic gesture. The design speaks of separation and reconciliation: The paths of two people that climb the double spiral stairs separate and then meet again at each platform. The relationship between architectural design and the growing digital repertoire of tools and possibilities seems to undergo similar cycles of attraction and rejection: enthusiasm about digital innovations – whether in Virtual Reality, Augmented Reality, Energy Design, Robotic Fabrication, the many Dimensions of BIM or, as right now, in AI and Machine Learning – is typically followed by a certain disillusionment and a realization that the promises were somewhat overblown. But a turn away from these digital innovations can only be temporary. In our call for papers we refer to the first and second ‘digital turns’, a term Mario Carpo coined. Yes, it’s a bit of a pun, but you could indeed see these digital turns in our logo as well. Carpo would probably agree that design and the digital have become inseparably intertwined. While they may be circling in different directions, an innovative rejoinder is always just around the corner. The theme of the conference asked participants to re-consider the relationship between Design and the Digital. The notion of a cycle is already present in the syllable “re”. Indeed, 20 years earlier, in 2003, we held an ECAADE conference in Graz simply under the title “Digital Design” and our re-using – or is it re-cycling? – the theme can be seen as the completion of one of those cycles described above: One level up, we meet again, we’ve come full circle. The question of the relationship between Design and the Digital is still in flux, still worthy of renewed consideration. There is a historical notion implicit in the theme. To reconsider something, one needs to take a step back, to look into the past as well as into the future. Indeed, at this conference we wanted to take a longer view, something not done often enough in the fast-paced world of digital technology. Carefully considering one’s past can be a source of inspiration. In fact, the double spiral stair that inspired our conference logo also inspired many architects through the ages. Konrad Wachsmann, for example, is said to have come up with his famous Grapevine assembly system based on this double spiral stair and its intricate joinery. More recently, Rem Koolhaas deemed the double spiral staircase in Graz important enough to include a detailed model of it in his “elements of architecture” exhibition at the Venice Biennale in 2014. Our interpretation of the stair is a typically digital one, you might say. First of all: it’s a rendering of a virtual model; it only exists inside a computer. Secondly, this virtual model isn’t true to the original. Instead, it does what the digital has made so easy to do: it exaggerates. Where the original has just two spiral stairs that separate and join, our model consists of countless stairs that are joined in this way. We see only a part of the model, but the stairs appear to continue in all directions. The implication is of an endless field of spiral stairs. As the 3D model was generated with a parametric script, it would be very easy to change all parameters of it – including the number of stairs that make it up. Everyone at this conference is familiar with the concept of parametric design: it makes generating models of seemingly endless amounts of connected spiral stairs really easy. Although, of course, if we’re too literal about the term ‘endless’, generating our stair model will eventually crash even the most advanced computers. We know that, too. – That's another truth about the Digital: it makes a promise of infinity, which, in the end, it can’t keep. And even if it could: what’s the point of just adding more of the same: more variations, more options, more possible ways to get lost? Doesn’t the original double spiral staircase contain all those derivatives already? Don’t we know that ‘more’ isn’t necessarily better? In the original double spiral stair the happy end is guaranteed: the lovers’ paths meet at the top as well as when they exit the building. Therefore, the stair is also colloquially known as the Busserlstiege (the kissing stair) or the Versöhnungsstiege (reconciliation stair). In our digitally enhanced version, this outcome is no longer clear: we can choose between multiple directions at each level and we risk losing sight of the one we were with. This is also emblematic of our field of research. eCAADe was founded to promote “good practice and sharing information in relation to the use of computers in research and education in architecture and related professions” (see ecaade.org). That may have seemed a straightforward proposition forty years ago, when the association was founded. A look at the breadth and depth of research topics presented and discussed at this conference (and as a consequence in this book, for which you’re reading the editorial) shows how the field has developed over these forty years. There are sessions on Digital Design Education, on Digital Fabrication, on Virtual Reality, on Virtual Heritage, on Generative Design and Machine Learning, on Digital Cities, on Simulation and Digital Twins, on BIM, on Sustainability, on Circular Design, on Design Theory and on Digital Design Experimentations. We hope you will find what you’re looking for in this book and at the conference – and maybe even more than that: surprising turns and happy encounters between Design and the Digital.
series eCAADe
type normal paper
email
last changed 2024/08/29 08:36

_id sigradi2014_063
id sigradi2014_063
authors Garcia, Alex; Smith Angelo, Elizabeth Romani, Juliana Harrison Henno, Milton Villegas Lemus
year 2014
title Resultados Sobre la Práctica del Diseño Asociado con el Trabajo Colaborativo y el Construccionismo en una Comunidad de Guarulhos, Brasil [Findings on the Design Practice Associated with the Collaborative Working and Constructionism in a Community of Guarulhos, Brazil]
source SIGraDi 2014 [Proceedings of the 18th Conference of the Iberoamerican Society of Digital Graphics - ISBN: 978-9974-99-655-7] Uruguay - Montevideo 12 - 14 November 2014, pp. 200-204
summary This article has a purpose to introduce a methodology to learn the product design principles, applied with the children of a neighborhood in the City of Guarulhos, State of São Paulo. This project is developed through a workshop organized with the collaboration of the Unified Educational Center, two companies and a digital inclusion program of the Municipality of Guarulhos. In order to provide an understanding on the development stages of a product from its design through its completion, the workshop allowed the participants to learn together and provided the access to a simplified design procedure.
keywords Design; Digital Manufacturing; Society; Technology Learning; Collaborative Network
series SIGRADI
email
last changed 2016/03/10 09:52

_id ecaaderis2023_45
id ecaaderis2023_45
authors Morton, David, Ahmed, Tarek MF and Humphery, Richard
year 2023
title BIM and Teaching in Architecture: Current thinking and approaches
source De Luca, F, Lykouras, I and Wurzer, G (eds.), Proceedings of the 9th eCAADe Regional International Symposium, TalTech, 15 - 16 June 2023, pp. 105–115
summary Increasing use of BIM has represented a continuing shift in traditional assumptions on how we navigate the design process. BIM is affording the student the ability to gain a greater understanding of their design ideas via the exploration of scale, spatial organisation and structure, amongst many other design layers, in increasing levels of detail, at the same point in the design process. Architectural education is at a delayed tipping point where architectural students are increasingly looking towards BIM to streamline their design process drawn by the production of realistic visualisation, but with a lack of knowledge and skill in its application. With a lack of guidance and understanding around the application of BIM, the use of BIM in this manner overlooks the potential of BIM to construct and test virtual simulations of proposed schemes, to support design enquiry. A historical concern for the pedagogy constructed around the students’ design process is the application of methods and techniques that support the progression through the design process, (Ambrose, 2014; dash mei & Safari, 2018). This study examines the design process of architectural students and the interaction between analogue and digital methods used in design. These primary modes of communication, offer the opportunity to query the roles and rules of traditional architectural conventions around ‘problem finding’ and ‘problem solving’, challenging the ‘traditional’ design process examined by pioneers like Bruner (1966) and Schon (1987). These approaches are distilled from the findings of the study and presented as guidance to those teaching in architectural aBIMemia to align pedagogic goals to methods of abstraction in this new era of design education reconsidering digital methods in design.
keywords BIM, BIM, Design Process, Architecture, Learning
series eCAADe
email
last changed 2024/02/05 14:28

_id ecaade2024_167
id ecaade2024_167
authors Alammar, Ammar; Alymani, Abdulrahman; Jabi, Wassim
year 2024
title Building Energy Efficiency Estimations with Random Forest for Single and Multi-Zones
doi https://doi.org/10.52842/conf.ecaade.2024.2.365
source Kontovourkis, O, Phocas, MC and Wurzer, G (eds.), Data-Driven Intelligence - Proceedings of the 42nd Conference on Education and Research in Computer Aided Architectural Design in Europe (eCAADe 2024), Nicosia, 11-13 September 2024, Volume 2, pp. 365–374
summary Surrogate models (SM) present an opportunity for rapid assessment of a building's performance, surpassing the pace of simulation-based methods. Setting up a simulation for a single concept involves defining numerous parameters, disrupting the architect's creative flow due to extended simulation run times. Therefore, this research explores integrating building energy analysis with advanced machine learning techniques to predict heating and cooling loads (KWh/m2) for single and multi-zones in buildings. To generate the dataset, the study adopts a parametric generative workflow, building upon Chou and Bui's (2014) methodology. This dataset encompasses multiple building forms, each with unique topological connections and attributes, ensuring a thorough analysis across varied building scenarios. These scenarios undergo thermal simulation to generate data for machine learning analysis. The study primarily utilizes Random Forest (RF) as a new technique to estimate the heating and cooling loads in buildings, a critical factor in building energy efficiency. Following that, A random search approach is utilized to optimize the hyperparameters, enhancing the robustness and accuracy of the machine learning models employed later in the research. The RF algorithms demonstrate high performance in predicting heating and cooling loads (KWh/m2), contributing to enhanced building energy efficiency. The study underscores the potential of machine learning in optimizing building designs for energy efficiency.
keywords Heating and Cooling loads, Topology, Machine learning, Random Forest
series eCAADe
email
last changed 2024/11/17 22:05

_id ecaade2014_192
id ecaade2014_192
authors David Stasiuk and Mette Ramsgaard Thomsen
year 2014
title Learning to be a Vault - Implementing learning strategies for design exploration in inter-scalar systems
doi https://doi.org/10.52842/conf.ecaade.2014.1.381
source Thompson, Emine Mine (ed.), Fusion - Proceedings of the 32nd eCAADe Conference - Volume 1, Department of Architecture and Built Environment, Faculty of Engineering and Environment, Newcastle upon Tyne, England, UK, 10-12 September 2014, pp. 381-390
summary Parametric design models enable the production of dynamic form, responsive material assemblies, and numerically and geometrically analytical feedback. The value potential for design produced through the procedural transformation of input parameters (or features) through algorithmic models has been repeatedly demonstrated and epistemically refined. However, despite their capacity to improve productivity and iteration, parametric models are nonetheless prone to inflexibility and reduction, both of which obscure processes of invention and discovery that are central to an effective design practice. This paper presents an experimental approach for the application of multiple, parallel computational design modelling strategies which are tested in the production of an inter-scalar model array that synthesises design intent, the simulation of material behaviours, performance-driven adaptation, and open-ended processes of discovery and categorical description. It is particularly focused on the computational potentials embedded in interdependent applications of simulation and machine learning algorithms as generative and descriptive drivers of form, performance, and architectural quality. It ultimately speculates towards an architectural design modelling method that privileges open model topologies and emergent feature production as critical operators in the generation of flexible and adaptive design solutions.
wos WOS:000361384700038
keywords Parametric design; computational modelling; machine learning; multi-objective optimisation; k-means clustering
series eCAADe
email
last changed 2022/06/07 07:55

_id caadria2023_187
id caadria2023_187
authors Lopez Rodriguez, Alvaro and Pantic, Igor
year 2023
title Augmented Environments: The Architecture for the Augmented Era
doi https://doi.org/10.52842/conf.caadria.2023.1.403
source Immanuel Koh, Dagmar Reinhardt, Mohammed Makki, Mona Khakhar, Nic Bao (eds.), HUMAN-CENTRIC - Proceedings of the 28th CAADRIA Conference, Ahmedabad, 18-24 March 2023, pp. 403–412
summary Human imagination has played with the idea of an alternative technological world for years. From dystopian proposals like Neuromancer or The Matrix to more positive views like the recent Upload series, the exploration of the friction between the digital world and the physical world has entertained the imagination of our society for decades. Outside the fictional environments, the omnipresence of the internet and the development of “the cloud” are showing that the virtual world is possible and that the idea of a Metaverse is no longer part of science fiction but a very real future for human relations (Winters 2021). In line with the idea of the Metaverse, the intersection of the virtual and the physical world is being explored through the idea of Extended Realities. Technology is allowing humans to enhance their capabilities more than ever, and in fact, it has been proposed that we are entering the Augmented era (King 2014). This paper explores the opportunities and possible challenges that “Extended Architecture” has by analyzing a research project based on augmented reality as the media to explore these ideas. This project will propose a speculative approach to how the fact that in the recent future, everyone will have access to an AR device will change the way we perceive and understand our architectural environment.
keywords Work in progress, Virtual and Augmented Environments, Disruptive Modes of Practice and Pedagogy, Extended Realities, Machine Learning
series CAADRIA
email
last changed 2023/06/15 23:14

_id cdrf2023_273
id cdrf2023_273
authors Pixin Gong, Xiaoran Huang, Chenyu Huang, Shiliang Wang
year 2023
title Modeling on Outdoor Thermal Comfort in Traditional Residential Neighborhoods in Beijing Based on GAN
doi https://doi.org/https://doi.org/10.1007/978-981-99-8405-3_23
source Proceedings of the 2023 DigitalFUTURES The 5st International Conference on Computational Design and Robotic Fabrication (CDRF 2023)
summary With the support of new urban science and technology, the bottom-up and human-centered space quality research has become the key to delicacy urban governance, of which the Universal Thermal Climate Index (UTCI) have a severe influence. However, in the studies of actual UTCI, datasets are mostly obtained from on-site measurement data or simulation data, which is costly and ineffective. So, how to efficiently and rapidly conduct a large-scale and fine-grained outdoor environmental comfort evaluation based on the outdoor environment is the problem to be solved in this study. Compared to the conventional qualitative analysis methods, the rapidly developing algorithm-supported data acquisition and machine learning modelling are more efficient and accurate. Goodfellow proposed Generative Adversarial Nets (GANs) in 2014, which can successfully be applied to image generation with insufficient training data. In this paper, we propose an approach based on a generative adversarial network (GAN) to predict UTCI in traditional blocks. 36000 data samples were obtained from the simulations, to train a pix2pix model based on the TensorFlow framework. After more than 300 thousand iterations, the model gradually converges, where the loss of the function gradually decreases with the increase of the number of iterations. Overall, the model has been able to understand the overall semantic information behind the UTCI graphs to a high degree. Study in this paper deeply integrates the method of data augmentation based on GAN and machine learning modeling, which can be integrated into the workflow of detailed urban design and sustainable construction in the future.
series cdrf
email
last changed 2024/05/29 14:04

_id ascaad2014_007
id ascaad2014_007
authors Al-Rawi, Osama
year 2014
title Evolutionary Algorithms in Islamic Architecture
source Digital Crafting [7th International Conference Proceedings of the Arab Society for Computer Aided Architectural Design (ASCAAD 2014 / ISBN 978-603-90142-5-6], Jeddah (Kingdom of Saudi Arabia), 31 March - 3 April 2014, pp. 99-107
summary The cosmological nature of Islamic architecture makes it a useful case study for the capability of the adaptation, assimilation and accommodation with the development of evolutionary algorithms and their applications in architectural design. Genetic algorithm derives its structure from the observation of nature. We shall review the concept of intelligent agents and their organization into complex adaptive systems as well as genetic-type algorithms for learning and evolution. Since algorithmic art consists of generation of images on the basis of algorithms, algorithms can be viewed as a notation, and notation is something that music has but visual artefacts in general miss. This paper aims to discover the role of evolutionary algorithms in historical Islamic architecture. Also, we shall try to investigate the way in which the future development could occur not only through the discovery of new facts or theories, but also through the rise and dissemination of new visions having different explanation of Islamic architecture that considers it as a result of serious application of formation through evolutionary genetic algorithms.
series ASCAAD
email
last changed 2016/02/15 13:09

_id ecaade2014_030
id ecaade2014_030
authors Ellen Kathrine Hansen and Michael Mullins
year 2014
title Lighting Design - Toward a synthesis of science, media technology and architecture
doi https://doi.org/10.52842/conf.ecaade.2014.2.613
source Thompson, Emine Mine (ed.), Fusion - Proceedings of the 32nd eCAADe Conference - Volume 2, Department of Architecture and Built Environment, Faculty of Engineering and Environment, Newcastle upon Tyne, England, UK, 10-12 September 2014, pp. 613-620
summary Light as a multi-dimensional design element has fundamental importance for a sustainable environment. The paper discusses the need for an integration of scientific, technical and creative approaches to light and presents theory, methods and applications toward fulfilling this need. A theory of design developed from three experiments show how distinct qualitative and quantitative criteria in different disciplinary traditions can be integrated successfully, despite disparate technical/scientific, social scientific and art/humanities backgrounds. The model is applied to a pedagogical curriculum in the context of multi-level learning competencies.
wos WOS:000361385100064
keywords Lighting design; collaborative design; trans disciplinary design; media technology; architectural experiments
series eCAADe
email
last changed 2022/06/07 07:55

_id ascaad2014_036
id ascaad2014_036
authors Assassi, Abdelhalim; Belal Taher and Samai Rachida
year 2014
title Intelligent Digital Craft to Recognize Spatial Installations for Residential Designs: Approach to Understand the Design of Housing Barbaric in Algeria using the Majali Composition Software
source Digital Crafting [7th International Conference Proceedings of the Arab Society for Computer Aided Architectural Design (ASCAAD 2014 / ISBN 978-603-90142-5-6], Jeddah (Kingdom of Saudi Arabia), 31 March - 3 April 2014, pp. 195-196; 443-456
summary Architecture took an evolutionary context over time, where designers were interested in finding pragmatic spontaneous appropriate solutions and met the needs of people in urban and architectural spaces. Whereas, in modern architecture an intense and varied competition happens between architects through various currents of thoughts , schools and movements, however, that creativity was the ultimate goal , and a the same time we find that every architect distinguishes himself individually or collectively through tools of architectural expression and design representation adopting a school of thought, using , for example, the leaves of various sizes and diverse technical drawing tools to accurately show that he can be read by professionals or craftsmen outside the geographical scope to which it belongs .With the rapid technological development which accompanied the digital craft in the contemporary world , The digital craft summed up time, distance and tools , so they gave the concept more appropriate accuracy , as virtualization has become the most effective tool for Architecture To reach the ideal and typical results at the practical level, or pure research. At the level of residential design and on the grounds that housing plays an important role in the government policies and given that housing is a basic unit common to all urban communities on earth , the use of different programs to show its typicality in two dimensions or in the third dimension - for example, using software "AutoCAD " " 3D Max " , " ArchiCAD " ... etc. - gave virtualisation smart, creative and beautiful forms which lead to better understand the used /or to be used residential spaces, and thus the conclusion that the life system of dwelling under design or under study , as can specifically recognize spatial structure in housing design - using digital software applying "Space Syntax" for example - in the shadow of slowly growing digital and creative development with the help of high-speed computers . the morphological structure of the dwelling is considered to be the most important contemporary residential designs Investigation through which the researcher in this area aims to understand the various behavioral relations and social structures within the projected residential area, using Space Syntax techniques. Through the structural morphology of dwellings can be inferred quality networks, levels of connectivity and depth and places of openness or closure within the dwelling under study, or under design. How, then, have intelligently contributed this digital craft to the perception of those spatial fixtures ? The aim of this research is to apply an appropriate program in the field of vernacular residential design and notably Space syntax which relate to the understanding and analysis of spatial structures, and also demonstrate its role at the morphological and spatial structure aspects, and prove how effective it helps to understand the social logic of domestic space through social individual/collective relationships and behaviors projected on the spatial configurations of dwellings. The answer to the issue raised above and at the methodological aspect, the study discussed the application of space syntax techniques on the subject. The findings tend to prove the efficiency by comparing samples of Berber vernacular domestic spaces from the Mzab, the Aures and Kabilya in Algeria, and has also led to ascertain the intelligibility of space syntax techniques in reading the differences between the behaviors in domestic spaces in different areas of the sample through long periods of time .
series ASCAAD
type normal paper
email
last changed 2021/07/16 10:39

_id caadria2021_089
id caadria2021_089
authors Cristie, Verina, Ibrahim, Nazim and Joyce, Sam Conrad
year 2021
title Capturing and Evaluating Parametric Design Exploration in a Collaborative Environment - A study case of versioning for parametric design
doi https://doi.org/10.52842/conf.caadria.2021.2.131
source A. Globa, J. van Ameijde, A. Fingrut, N. Kim, T.T.S. Lo (eds.), PROJECTIONS - Proceedings of the 26th CAADRIA Conference - Volume 2, The Chinese University of Hong Kong and Online, Hong Kong, 29 March - 1 April 2021, pp. 131-140
summary Although parametric modelling and digital design tools have become ubiquitous in digital design, there is a limited understanding of how designers apply them in their design processes (Yu et al., 2014). This paper looks at the use of GHShot versioning tool developed by the authors (Cristie & Joyce, 2018; 2019) used to capture and track changes and progression of parametric models to understand early-stage design exploration and collaboration empirically. We introduce both development history graph-based metrics (macro-process) and parametric model and geometry change metric (micro-process) as frameworks to explore and understand the captured progression data. These metrics, applied to data collected from three cohorts of classroom collaborative design exercises, exhibited students' distinct modification patterns such as major and complex creation processes or minor parameter explorations. Finally, with the metrics' applicability as an objective language to describe the (collaborative) design process, we recommend using versioning for more data-driven insight into parametric design exploration processes.
keywords Design exploration; parametric design; history recording; version control; collaborative design
series CAADRIA
email
last changed 2022/06/07 07:56

_id ecaade2014_065
id ecaade2014_065
authors Daniel Prohasky, Rafael Moya Castro, Simon Watkins, Jane Burry and Mark Burry
year 2014
title Wind sensing with real-time visualisations for Designers - An approach to understanding wind phenomena for pedestrian comfort using low cost wind sensors
doi https://doi.org/10.52842/conf.ecaade.2014.1.165
source Thompson, Emine Mine (ed.), Fusion - Proceedings of the 32nd eCAADe Conference - Volume 1, Department of Architecture and Built Environment, Faculty of Engineering and Environment, Newcastle upon Tyne, England, UK, 10-12 September 2014, pp. 165-171
summary The evaluation of a low-tech wind sensing platform for urban aerodynamic simulations relevant to pedestrian comfort. In this paper, the wind canyon effect is simulated with two different building morphologies. The platform provides conceptual knowledge of the dynamics in wind relevant for designers, architectural practitioners and students of design. Low-cost hot wire anemometry is utilised for the design of an Experimental Fluid Dynamic (EFD) wind sensing network interface. This paper explores the validity of the sensing platform for a new approach for non-wind engineers to gain a better understanding of the dynamics of wind. The influence of real-time feedback from quantified wind on the understanding of wind phenomena for non-wind engineers is discussed and compared with post analysis data. It was found that real-time quantified feedback from wind intrigues and stimulates the intuitive notion of wind dynamics through discussion, however post analysis remains critical to evaluate building design performance.
wos WOS:000361384700016
keywords Wind sensing; real-time feedback; experimental fluid dynamics; hot-wire anemometry; atmospheric boundary layer
series eCAADe
email
last changed 2022/06/07 07:55

_id sigradi2014_303
id sigradi2014_303
authors De Monte, Andrea Maria
year 2014
title Visualización de información y cadena de significados. Cartografía de Infovis orientada a su experimentación didáctica en procesos de diseño [Information visualization and chain of meanings. Infovis cartography oriented to its didactic experimentation in design processes]
source SiGraDi 2014 [Proceedings of the 18th Conference of the Iberoamerican Society of Digital Graphics - ISBN: 978-9974-99-655-7] Uruguay - Montevideo 12 - 14 November 2014, pp. 609-613
summary The digitization of culture imposes new logic to the design disciplines in professional and academic areas. New roles, competencies and requirements emerge in front of an architecture that today is essentially material and also informational. The overabundance of information confuses and forced to develop strategies and skills that go beyond the traditional system of reading and observation to achieve its analysis and understanding. In this sense, the work investigates and cartography variables of information visualization related to semantic attributes, aimed to recognize their potential for instrumental experimentation in design processes within learning environments.
series SIGRADI
email
last changed 2016/03/10 09:50

_id ecaade2014_111
id ecaade2014_111
authors Fabian Danker and Oliver Jones
year 2014
title Combining Augmented Reality and Building Information Modelling - An industry perspective on applications and future directions.
doi https://doi.org/10.52842/conf.ecaade.2014.2.525
source Thompson, Emine Mine (ed.), Fusion - Proceedings of the 32nd eCAADe Conference - Volume 2, Department of Architecture and Built Environment, Faculty of Engineering and Environment, Newcastle upon Tyne, England, UK, 10-12 September 2014, pp. 525-536
summary The aim of this paper is to investigate the applications both current and potential, of combining Augmented Reality (AR) and Building Information Modelling (BIM), providing an insight into attitudes towards utilising these technologies within the construction industry. This paper presents a study which has evaluated current research on the topic of AR and BIM, conducted semi structured interviews with a panel of industry experts and surveyed a sample group of 43 within the wider UK construction industry . Industry experts were interviewed using semi-structured interviews and results were thematically analysed with the data gathered from the literature review. 5 core themes used to structure a nine item industry and practitioner questionnaire. Results suggest that use of AR and BIM within the construction industry will continue to grow with the advent of emerging technologies. Use of AR and BIM combined with 3D Scanning, Wireless Sensory Network will also increase and the synergies between BIM and these emerging technologies will improve overall efficiencies in design, delivery, maintenance and demolition of projects. The findings of this study contribute further knowledge to understanding the implications and possibilities that utilising AR and BIM will have in the construction industry.
wos WOS:000361385100055
keywords Augmented reality; emerging technologies; building information modelling; aec industry
series eCAADe
email
last changed 2022/06/07 07:55

_id ecaade2014_057
id ecaade2014_057
authors Ivo Vrouwe and Burak Pak
year 2014
title Framing Parametric and Generative Structures - A Novel Framework for Analysis and Education
doi https://doi.org/10.52842/conf.ecaade.2014.1.365
source Thompson, Emine Mine (ed.), Fusion - Proceedings of the 32nd eCAADe Conference - Volume 1, Department of Architecture and Built Environment, Faculty of Engineering and Environment, Newcastle upon Tyne, England, UK, 10-12 September 2014, pp. 365-371
summary In this paper we aimed at the development of a novel tool to facilitate the structured analysis of architectural construction principles, materials and production methods in digital design and fabrication practices. In order to assist the understanding and teaching of these subjects, we employed a taxonomy of spatial design construction (Vrouwe 2013). By using the taxonomy, we analysed and categorised 34 parametric structures published in the IJAC Journal (2002-2014). Informed by this study, we aligned the initial taxonomy using various framing strategies. As a result we developed a new framework for spatial design construction specifically customised for the design and fabrication of parametric structures which can potentially serve as a constructive tool to create a novel design learning environment and integrated teaching strategies.
wos WOS:000361384700036
keywords Digital fabrication; parametric design; education; framing; pedagogy
series eCAADe
email
last changed 2022/06/07 07:50

_id acadia14_389
id acadia14_389
authors Johnson, Jason; Parker, Matthew
year 2014
title This is not a Glitch: Algorithms and Anomalies in Google Architecture
doi https://doi.org/10.52842/conf.acadia.2014.389
source ACADIA 14: Design Agency [Proceedings of the 34th Annual Conference of the Association for Computer Aided Design in Architecture (ACADIA) ISBN 9781926724478]Los Angeles 23-25 October, 2014), pp. 389-398
summary This paper presents a body of research that explores the ways in which computer vision is being paired with big data collection engines to map/simulate the physical environment in digital space. These algorithms are producing increasingly ubiquitous representations of 3 dimensional space which are accessed by governments, security agencies, private citizens and in the context of this paper, designers. Designers often accept these simulations as highly accurate despite understanding very little about how they are produced. 
keywords Big Data, Simulation and Representation, Google Earth, Image Mapping, Computational Design, Computer Vision
series ACADIA
type Normal Paper
email
last changed 2022/06/07 07:52

_id caadria2014_177
id caadria2014_177
authors Jonas, Katrin; Alan Penn and Paul Shepherd
year 2014
title Designing with Discrete Geometry
doi https://doi.org/10.52842/conf.caadria.2014.513
source Rethinking Comprehensive Design: Speculative Counterculture, Proceedings of the 19th International Conference on Computer-Aided Architectural Design Research in Asia (CAADRIA 2014) / Kyoto 14-16 May 2014, pp. 513–522
summary There has been a shift in aesthetics from the modern orthogonal building envelope to more elaborate curved and folded forms. Non_orthogonal forms are often associated with complete freedom of geometry, entrusting the advancement in custom manufacturing and robotic fabrication of one-off building parts to realise the design. This paper presents a methodology that allows non_orthogonal surfaces to be designed using a constrained library of discrete, tessellating parts. The method enables the designer both to produce ‘approximations’ of freeform designs in a top_down manner or to generate ‘candidate’ designs in a bottom_up process. It addresses the challenge in the field of design engineering to generate architectural surfaces which are complex, yet simple and economical to construct. The system relates to the notion that complexity derives from simple parts and simple rules of interaction. Here complexity relates to the holistic understanding of a structure as an interaction between its local parts, global form and visual, as well as functional performance.
keywords Geometry system; form generation; form growth; discrete growth model; design tool; complex geometry
series CAADRIA
email
last changed 2022/06/07 07:52

_id ecaade2014_052
id ecaade2014_052
authors Kieran A. J. Stapleton, Barry J. Gledson and Zaid Alwan
year 2014
title Understanding technological interoperability through observations of data leakage in Building Information Modelling (BIM) based transactions
doi https://doi.org/10.52842/conf.ecaade.2014.2.515
source Thompson, Emine Mine (ed.), Fusion - Proceedings of the 32nd eCAADe Conference - Volume 2, Department of Architecture and Built Environment, Faculty of Engineering and Environment, Newcastle upon Tyne, England, UK, 10-12 September 2014, pp. 515-524
summary The use of Building Information Modelling (BIM) and collaborative techniques have been identified as solutions to the problem of managing construction project information and data. However the implementation and success of BIM may stagnate due to issues associated with unsatisfactory technological interoperability, which can impede the flow of information through a project lifecycle. To gain further understanding of technological interoperability within a BIM-enabled project environment, a review of relevant literature was undertaken to assimilate key information and provide a framework for future research. An observational method of reviewing a series of data transactions between multiple BIM packages was then devised in order to assess interoperability issues, and inform future research design. Interim findings from the preliminary stage of this research project have been reported in this paper.
wos WOS:000361385100054
keywords Bim; information technology; interoperability; technology transfer; data leakage
series eCAADe
email
last changed 2022/06/07 07:52

_id ecaade2011_144
id ecaade2011_144
authors Kunze, Antje; Halatsch, Jan; Vanegas, Carlos; Jacobi, Martina Maldaner
year 2011
title A Conceptual Participatory Design Framework for Urban Planning: The case study workshop ‘World Cup 2014 Urban Scenarios’, Porto Alegre, Brazil
doi https://doi.org/10.52842/conf.ecaade.2011.895
source RESPECTING FRAGILE PLACES [29th eCAADe Conference Proceedings / ISBN 978-9-4912070-1-3], University of Ljubljana, Faculty of Architecture (Slovenia) 21-24 September 2011, pp.895-903
summary This paper focuses on the definition of a conceptual participatory design framework for urban planning. Traditional planning methods can no longer satisfy the growing demands on sustainable urban planning in regard to factors such as complexity, problem size, and level of detail and these limitations make the development of new approaches necessary. Expert knowledge as well as insights from stakeholders and community members needs to take part equally in the decision-making process since they are responsible for a broad understanding and acceptance of final planning decisions. Therefore, a participatory framework is presented in the following, which integrates needs and requirements of stakeholders. In order to enable diverse groups of stakeholders to act conjointly, we propose the application of interactive decision support tools, which will leverage general conclusions especially to solve crucial zplanning decisions.
wos WOS:000335665500103
keywords Decision-making process; stakeholder participation; shape grammars; procedural model; urban planning
series eCAADe
email
last changed 2022/05/01 23:21

For more results click below:

this is page 0show page 1show page 2show page 3show page 4show page 5... show page 28HOMELOGIN (you are user _anon_657338 from group guest) CUMINCAD Papers Powered by SciX Open Publishing Services 1.002