CumInCAD is a Cumulative Index about publications in Computer Aided Architectural Design
supported by the sibling associations ACADIA, CAADRIA, eCAADe, SIGraDi, ASCAAD and CAAD futures

PDF papers
References

Hits 1 to 20 of 587

_id ecaade2014_065
id ecaade2014_065
authors Daniel Prohasky, Rafael Moya Castro, Simon Watkins, Jane Burry and Mark Burry
year 2014
title Wind sensing with real-time visualisations for Designers - An approach to understanding wind phenomena for pedestrian comfort using low cost wind sensors
doi https://doi.org/10.52842/conf.ecaade.2014.1.165
source Thompson, Emine Mine (ed.), Fusion - Proceedings of the 32nd eCAADe Conference - Volume 1, Department of Architecture and Built Environment, Faculty of Engineering and Environment, Newcastle upon Tyne, England, UK, 10-12 September 2014, pp. 165-171
summary The evaluation of a low-tech wind sensing platform for urban aerodynamic simulations relevant to pedestrian comfort. In this paper, the wind canyon effect is simulated with two different building morphologies. The platform provides conceptual knowledge of the dynamics in wind relevant for designers, architectural practitioners and students of design. Low-cost hot wire anemometry is utilised for the design of an Experimental Fluid Dynamic (EFD) wind sensing network interface. This paper explores the validity of the sensing platform for a new approach for non-wind engineers to gain a better understanding of the dynamics of wind. The influence of real-time feedback from quantified wind on the understanding of wind phenomena for non-wind engineers is discussed and compared with post analysis data. It was found that real-time quantified feedback from wind intrigues and stimulates the intuitive notion of wind dynamics through discussion, however post analysis remains critical to evaluate building design performance.
wos WOS:000361384700016
keywords Wind sensing; real-time feedback; experimental fluid dynamics; hot-wire anemometry; atmospheric boundary layer
series eCAADe
email
last changed 2022/06/07 07:55

_id ecaade2014_199
id ecaade2014_199
authors Nancy Diniz and Hai-Ning Liang
year 2014
title A Mobile Sensing Kit for Urban Analysis - For more legible, quantifiable intangible and temporary data
doi https://doi.org/10.52842/conf.ecaade.2014.1.063
source Thompson, Emine Mine (ed.), Fusion - Proceedings of the 32nd eCAADe Conference - Volume 1, Department of Architecture and Built Environment, Faculty of Engineering and Environment, Newcastle upon Tyne, England, UK, 10-12 September 2014, pp. 63-70
summary This paper describes the design and testing of a mobile sensing kit for real-timeurban site analysis. It aims to contribute to a discussion on the importance ofsensing-based mapping of urban phenomena following our assertion that current delivery of urban analysis methodologies, with their emphasis on visuo-spatialanalysis only, fail to create maps that reflect the nuanced and layered interrelationships between the people and the physical environmental space they live in. In essence, the paper will bring to light the set up components and deployment of a mobile sensing kit that allows for usually mapped static invisible data (air quality, temperature, humidity) to be mapped as visible data. In other words, we want to explore how real-time geo-referenced data collection can enhance traditional data mapping and visualization methods enabling designers to understand better the urban space.
wos WOS:000361384700005
keywords Environmental data collection; mobile sensing; intangible data collection and visualization; city modeling; site surveying with open hardware; diy electronics
series eCAADe
email
last changed 2022/06/07 07:59

_id cdrf2023_526
id cdrf2023_526
authors Eric Peterson, Bhavleen Kaur
year 2023
title Printing Compound-Curved Sandwich Structures with Robotic Multi-Bias Additive Manufacturing
doi https://doi.org/https://doi.org/10.1007/978-981-99-8405-3_44
source Proceedings of the 2023 DigitalFUTURES The 5st International Conference on Computational Design and Robotic Fabrication (CDRF 2023)
summary A research team at Florida International University Robotics and Digital Fabrication Lab has developed a novel method for 3d-printing curved open grid core sandwich structures using a thermoplastic extruder mounted on a robotic arm. This print-on-print additive manufacturing (AM) method relies on the 3d modeling software Rhinoceros and its parametric software plugin Grasshopper with Kuka-Parametric Robotic Control (Kuka-PRC) to convert NURBS surfaces into multi-bias additive manufacturing (MBAM) toolpaths. While several high-profile projects including the University of Stuttgart ICD/ITKE Research Pavilions 2014–15 and 2016–17, ETH-Digital Building Technologies project Levis Ergon Chair 2018, and 3D printed chair using Robotic Hybrid Manufacturing at Institute of Advanced Architecture of Catalonia (IAAC) 2019, have previously demonstrated the feasibility of 3d printing with either MBAM or sandwich structures, this method for printing Compound-Curved Sandwich Structures with Robotic MBAM combines these methods offering the possibility to significantly reduce the weight of spanning or cantilevered surfaces by incorporating the structural logic of open grid-core sandwiches with MBAM toolpath printing. Often built with fiber reinforced plastics (FRP), sandwich structures are a common solution for thin wall construction of compound curved surfaces that require a high strength-to-weight ratio with applications including aerospace, wind energy, marine, automotive, transportation infrastructure, architecture, furniture, and sports equipment manufacturing. Typical practices for producing sandwich structures are labor intensive, involving a multi-stage process including (1) the design and fabrication of a mould, (2) the application of a surface substrate such as FRP, (3) the manual application of a light-weight grid-core material, and (4) application of a second surface substrate to complete the sandwich. There are several shortcomings to this moulded manufacturing method that affect both the formal outcome and the manufacturing process: moulds are often costly and labor intensive to build, formal geometric freedom is limited by the minimum draft angles required for successful removal from the mould, and customization and refinement of product lines can be limited by the need for moulds. While the most common material for this construction method is FRP, our proof-of-concept experiments relied on low-cost thermoplastic using a specially configured pellet extruder. While the method proved feasible for small representative examples there remain significant challenges to the successful deployment of this manufacturing method at larger scales that can only be addressed with additional research. The digital workflow includes the following steps: (1) Create a 3D digital model of the base surface in Rhino, (2) Generate toolpaths for laminar printing in Grasshopper by converting surfaces into lists of oriented points, (3) Generate the structural grid-core using the same process, (4) Orient the robot to align in the direction of the substructure geometric planes, (5) Print the grid core using MBAM toolpaths, (6) Repeat step 1 and 2 for printing the outer surface with appropriate adjustments to the extruder orientation. During the design and printing process, we encountered several challenges including selecting geometry suitable for testing, extruder orientation, calibration of the hot end and extrusion/movement speeds, and deviation between the computer model and the physical object on the build platen. Physical models varied from their digital counterparts by several millimeters due to material deformation in the extrusion and cooling process. Real-time deviation verification studies will likely improve the workflow in future studies.
series cdrf
email
last changed 2024/05/29 14:04

_id ijac201412204
id ijac201412204
authors Wilkinson, Samuel; Sean Hanna
year 2014
title Approximating Computational Fluid Dynamics for Generative Tall Building Design
source International Journal of Architectural Computing vol. 12 - no. 2, 155-178
summary Background literature review, methodology, results, and analysis are presented for a novel approach to approximating wind pressure on tall buildings for the application of generative design exploration and optimisation.The predictions are approximations of time-averaged computational fluid dynamics (CFD) data with the aim of maintaining simulation accuracy but with improved speed.This is achieved through the use of a back-propagation artificial neural network (ANN) with vertex-based shape features as input and pressure as output.The training set consists of 600 procedurally generated tall building models, and the test set of 10 real building models; for all models in both sets, a feature vector is calculated for every vertex. Over the test set, mean absolute errors against the basis CFD are 1.99–4.44% (_:2.10–5.09%) with an on-line process time of 14.72–809.98s (0.028s/sample). Studies are also included on feature sensitivity, training set size, and comparison of CFD against prediction times. Results indicate that prediction time is only dependent on the number of test model vertices, and is therefore invariant to basis CFD time.
series journal
last changed 2019/05/24 09:55

_id ecaadesigradi2019_645
id ecaadesigradi2019_645
authors Diniz, Nancy, Melendez, Frank, Boonyapanachoti, Woraya and Morales, Sebastian
year 2019
title Body Architectures - Real time data visualization and responsive immersive environments
doi https://doi.org/10.52842/conf.ecaade.2019.2.739
source Sousa, JP, Xavier, JP and Castro Henriques, G (eds.), Architecture in the Age of the 4th Industrial Revolution - Proceedings of the 37th eCAADe and 23rd SIGraDi Conference - Volume 2, University of Porto, Porto, Portugal, 11-13 September 2019, pp. 739-746
summary This project sets up a design framework that promotes augmenting the human body's interactions exploring methods for merging and blending the users of physical and virtual environments, through the design of wearable devices that are embedded with sensors and actuators. This allows for haptic and visual feedback through the use of data that reflects changes in the surrounding physical environment, and visualized in the immersive Virtual Reality (VR) environment. We consider the Body Architectures project to serve as mechanisms for augmenting the body in relation to the virtual architecture. These wearable devices serve to bring a hyper-awareness to our senses, as closed-loop cybernetic systems that utilize 'digitized' biometric and environmental data through the use of 3D scanning technologies and cloud point models, virtual reality visualization, sensing technologies, and actuation. The design of Body Architectures relies on hybrid design, transdisciplinary collaborations, to explore new possibilities for wearable body architectures that evolve human-machine-environment interactions, and create hyper awareness of the temporal, atmospheric qualities that make up our experience of space, as 'sensorial envelopes' (Lally 2014).
keywords Virtual Reality; Wearable Design; Physical Computing; Data Visualization; Immersive Environments; Responsive Architecture
series eCAADeSIGraDi
email
last changed 2022/06/07 07:55

_id ascaad2014_022
id ascaad2014_022
authors Kotsopoulos, Sotirios D.; Leonardo Giusti and Federico Casalegno
year 2014
title Designing Synchronous Interactions for the Fenestration System of a Prototype Sustainable Dwelling
source Digital Crafting [7th International Conference Proceedings of the Arab Society for Computer Aided Architectural Design (ASCAAD 2014 / ISBN 978-603-90142-5-6], Jeddah (Kingdom of Saudi Arabia), 31 March - 3 April 2014, pp. 291-301
summary This paper presents an interactive fenestration system designed for the principal façade of a prototype sustainable dwelling. The system attains autonomous, responsive and interactive modes of operation, and is able to provide synchronous response to a wide variety of environmental conditions and user needs. The method to address the design of the system was to integrate electro-active materials and real time sensing and control technologies. The test was to implement a full-scale façade with the abovementioned capabilities. This presentation discusses the features, technologies and reasoning followed in the design and implementation of the façade.
series ASCAAD
email
last changed 2016/02/15 13:09

_id acadia14_647
id acadia14_647
authors Khorasgani, Mehrnoush Latifi; Prohasky, Daniel; Burry, Jane; Akbarzadeh, Akbar; Khorasgani, Nicholas Willaims
year 2014
title ROBOTHERMODON: An Artificial Sun Study Lab with a Robot Arm and Advanced Model Platform -A Thermal Heliodon(STEVE: Solar Thermal EValuation Experiment)
doi https://doi.org/10.52842/conf.acadia.2014.647
source ACADIA 14: Design Agency [Proceedings of the 34th Annual Conference of the Association for Computer Aided Design in Architecture (ACADIA) ISBN 9781926724478]Los Angeles 23-25 October, 2014), pp. 647-654
summary *This research focuses on the design of a Robotic solar analysis platform for critical studies which explore dynamic solar light and heat phenomena within the laboratory. This robotic platform gives designers the opportunity to receive rapid feedback from physical models in real-time.*
keywords Heliodon; Robothermodon; virtual sun path;Model Platform ;Works in Progres
series ACADIA
type Normal Paper
email
last changed 2022/06/07 07:52

_id ascaad2022_099
id ascaad2022_099
authors Sencan, Inanc
year 2022
title Progeny: A Grasshopper Plug-in that Augments Cellular Automata Algorithms for 3D Form Explorations
source Hybrid Spaces of the Metaverse - Architecture in the Age of the Metaverse: Opportunities and Potentials [10th ASCAAD Conference Proceedings] Debbieh (Lebanon) [Virtual Conference] 12-13 October 2022, pp. 377-391
summary Cellular automata (CA) is a well-known computation method introduced by John von Neumann and Stanislaw Ulam in the 1940s. Since then, it has been studied in various fields such as computer science, biology, physics, chemistry, and art. The Classic CA algorithm is a calculation of a grid of cells' binary states based on neighboring cells and a set of rules. With the variation of these parameters, the CA algorithm has evolved into alternative versions such as 3D CA, Multiple neighborhood CA, Multiple rules CA, and Stochastic CA (Url-1). As a rule-based generative algorithm, CA has been used as a bottom-up design approach in the architectural design process in the search for form (Frazer,1995; Dinçer et al., 2014), in simulating the displacement of individuals in space, and in revealing complex relations at the urban scale (Güzelci, 2013). There are implementations of CA tools in 3D design software for designers as additional scripts or plug-ins. However, these often have limited ability to create customized CA algorithms by the designer. This study aims to create a customizable framework for 3D CA algorithms to be used in 3D form explorations by designers. Grasshopper3D, which is a visual scripting environment in Rhinoceros 3D, is used to implement the framework. The main difference between this work and the current Grasshopper3D plug-ins for CA simulation is the customizability and the real-time control of the framework. The parameters that allow the CA algorithm to be customized are; the initial state of the 3D grid, neighborhood conditions, cell states and rules. CA algorithms are created for each customizable parameter using the framework. Those algorithms are evaluated based on the ability to generate form. A voxel-based approach is used to generate geometry from the points created by the 3D cellular automata. In future, forms generated using this framework can be used as a form generating tool for digital environments.
series ASCAAD
email
last changed 2024/02/16 13:38

_id sigradi2014_030
id sigradi2014_030
authors Borges, Marina Ferreira; Ricardo Hallal Fakury
year 2014
title Processo iterativo de design paramétrico e projeto estrutural aplicado ao desenvolvimento de torre eólica [Iterative process of parametric design and structural project applied to the development of lattice and wind power]
source SIGraDi 2014 [Proceedings of the 18th Conference of the Iberoamerican Society of Digital Graphics - ISBN: 978-9974-99-655-7] Uruguay - Montevideo 12 - 14 November 2014, pp. 35-38
summary This article proposes to study the process of parametric design integrated analysis and structural design. This application model is called Performative Model; the form is generated based on performance criteria. The digital tools facilitate the information flow between designers using parametric model and Finite Element Analysis. To research the method of Performative Model is proposed the development of a conceptual framework of lattice wind tower with the aim of a quantitative and qualitative structure optimization. Therefore, the parametric modeling will be done using Rhinoceros software, the plugin for creating algorithms Grasshoper and structural analysis plugin Scan & Solve.
keywords Performative model; Parametric model; Finite Element Analysis; Lattice Wind Tower
series SIGRADI
email
last changed 2016/03/10 09:47

_id caadria2014_206
id caadria2014_206
authors Dias, Miguel Sales; Sara Eloy, Miguel Carreiro, Pedro Proença, Ana Moural, Tiago Pedro, João Freitas, Elisângela Vilar, Jorge D'alpuim and António Sérgio Azevedo
year 2014
title Designing Better Spaces for People
doi https://doi.org/10.52842/conf.caadria.2014.739
source Rethinking Comprehensive Design: Speculative Counterculture, Proceedings of the 19th International Conference on Computer-Aided Architectural Design Research in Asia (CAADRIA 2014) / Kyoto 14-16 May 2014, pp. 739–748
summary We present a pilot study aiming to explore the use of biometrics sensing technology within a semi-immersive VR environment, where users face architectural spaces which induce them sensations close to fear of heights, claustrophobia, frustration and relief. Electrodermal activity was used to detect users’ emotional arousal, while navigating in VR. Navigation conditions and participants’ expertise with games were controlled. Main results show that physiological measurement of user’s perceptions can discriminate well "positive" from "negative" spaces, providing designers with basic information on people’s emotional state when using the buildings they design.
keywords Virtual reality; computational design; human-computer interaction; space perception; biometrics sensing, electrodermal activity
series CAADRIA
email
last changed 2022/06/07 07:55

_id caadria2014_037
id caadria2014_037
authors Khoo, Chin Koi
year 2014
title Designing a Responsive Material System with Physical Computing
doi https://doi.org/10.52842/conf.caadria.2014.097
source Rethinking Comprehensive Design: Speculative Counterculture, Proceedings of the 19th International Conference on Computer-Aided Architectural Design Research in Asia (CAADRIA 2014) / Kyoto 14-16 May 2014, pp. 97–106
summary This paper focuses on an investigation to explore architectural design potentials with a responsive material system and physical computing. Contemporary architects and designers are seeking to integrate physical computing in responsive architectural designs; however, they have largely borrowed from engineering technology’s mechanical devices and components. There is the opportunity to investigate an unexplored design approach to exploit the responsive capacity of material properties as alternatives to the current focus on mechanical components and discrete sensing devices. This opportunity creates a different design paradigm for responsive architecture that investigates the potential to integrate physical computing with responsive materials as one integrated material system. Instead of adopting highly intricate and expensive materials, this approach is explored through accessible and off-the-shelf materials to form a responsive material system, called Lumina. Lumina is implemented as an architectural installation called Cloud that serves as a morphing architectural skin. Cloud is a proof of concept to embody a responsive material system with physical computing to create a reciprocal and luminous architectural intervention for a selected dark corridor. It represents a different design paradigm for responsive architecture through alternative exploitation of contemporary materials and parametric design tools.
keywords Physical computing; responsive material systems; adaptive architecture
series CAADRIA
email
last changed 2022/06/07 07:52

_id caadria2014_034
id caadria2014_034
authors Nguyen, Danny D. and M. Hank Haeusler
year 2014
title Exploring Immersive Digital Environments
doi https://doi.org/10.52842/conf.caadria.2014.087
source Rethinking Comprehensive Design: Speculative Counterculture, Proceedings of the 19th International Conference on Computer-Aided Architectural Design Research in Asia (CAADRIA 2014) / Kyoto 14-16 May 2014, pp. 87–96
summary In contemporary architecture firms, most design drawings are done via use of 3D modelling software. This method requires advanced knowledge of the software in order to produce an accurate representation of space into the digital environment. The paper argues that conventional 3D visualization methods to design and analyse are restrictive to how well the user understands the space on a computer, as drawings are done ex-situ and without testing the design concept in-situ, hence there might be a level of disparity between the design and final fabrication. This is particularly a challenge when designing Urban Interaction Design concepts, as combinations of variables play a role in how the design will be received by the audience. Observing the design challenges for Urban Interaction Design and applying knowledge to architectural representation, potentially an alternative sketching process can be developed to alleviate the disparity between the conceptual design and post fabrication. This paper discusses an experimental process of using wireless spatial sensing devices to digitize physical spaces in real-time and to use on-the-spot analysis. In its conclusion the paper argues that this method enables the designer to gain advanced conceptual understandings of the intended space and thus make more informed decisions.
keywords Spatial Design; Human-Computing Interfacing; Urban Interaction Design; Spatial 3D Visualization; Wireless Sensor Technology
series CAADRIA
email
last changed 2022/06/07 07:58

_id ascaad2014_033
id ascaad2014_033
authors Al-Mousa , Sukainah Adnan
year 2014
title Temporary Architecture: An urban mirage
source Digital Crafting [7th International Conference Proceedings of the Arab Society for Computer Aided Architectural Design (ASCAAD 2014 / ISBN 978-603-90142-5-6], Jeddah (Kingdom of Saudi Arabia), 31 March - 3 April 2014, pp. 405-413
summary One of the emerging multidisciplinary contemporary art practices is interactive installation art, which is concerned with constructing a temporary artistic environment that is digital, responsive and engaging. It is usually displayed within existing architectural context whether indoor in a gallery space or outdoor in a public space. Recent examples of such art projects show that interactivity and illusion are effectively present and highly influential in the perception and memory of the place. A digital display on a building façade can remain attached to the history of the site in the spectator’s memory even after the display is removed. An interactive space that involves body response and emotional sensory interaction can determine the narrative perceived from the experience. These trends seemingly bring together the physical context and the digital space to contain the spectator. The two mediums are merged to provide a new genre of space, hence a new mode of perception where the art space mediates people’s movement and overlay the context with new meanings. Multiple backgrounds are involved in the creative process of interactive installation art, all of which involve examining various concepts through artistic engagement with temporary spaces. Here, particularly because of interactivity and immerseveness, the spectator becomes part of the performance (the subject); with his moving and reacting he activates the narrative and probably gives it its shape. This paper aims to explore the potentials of the digital spatial display to enhance or weaken our sense of belonging to the surrounding environments while creating an illusionary space within the real physical one. It also aims to discuss how this influence would affect the memory of the mixed experience; the installation being digital, temporary and illusive and the space being physical, permanent and real. What happens to the “spectator” when contained by the digital-interactive and the physical medium(s)?. In order to unfold the mentioned questions, the study uses theories of perception and performance reflected on live case studies of recent art projects where the researcher becomes a member of the audience and an observer at the same time in order to trace the journey inside this new medium. In an era where time is being more difficult to grasp and identities of visual culture is becoming more difficult to define, temporary responsive environments can provide some openings where space becomes durational, yet, influential, and where people’s movements become more meaningful in the visual terrain.
series ASCAAD
email
last changed 2016/02/15 13:09

_id ascaad2014_036
id ascaad2014_036
authors Assassi, Abdelhalim; Belal Taher and Samai Rachida
year 2014
title Intelligent Digital Craft to Recognize Spatial Installations for Residential Designs: Approach to Understand the Design of Housing Barbaric in Algeria using the Majali Composition Software
source Digital Crafting [7th International Conference Proceedings of the Arab Society for Computer Aided Architectural Design (ASCAAD 2014 / ISBN 978-603-90142-5-6], Jeddah (Kingdom of Saudi Arabia), 31 March - 3 April 2014, pp. 195-196; 443-456
summary Architecture took an evolutionary context over time, where designers were interested in finding pragmatic spontaneous appropriate solutions and met the needs of people in urban and architectural spaces. Whereas, in modern architecture an intense and varied competition happens between architects through various currents of thoughts , schools and movements, however, that creativity was the ultimate goal , and a the same time we find that every architect distinguishes himself individually or collectively through tools of architectural expression and design representation adopting a school of thought, using , for example, the leaves of various sizes and diverse technical drawing tools to accurately show that he can be read by professionals or craftsmen outside the geographical scope to which it belongs .With the rapid technological development which accompanied the digital craft in the contemporary world , The digital craft summed up time, distance and tools , so they gave the concept more appropriate accuracy , as virtualization has become the most effective tool for Architecture To reach the ideal and typical results at the practical level, or pure research. At the level of residential design and on the grounds that housing plays an important role in the government policies and given that housing is a basic unit common to all urban communities on earth , the use of different programs to show its typicality in two dimensions or in the third dimension - for example, using software "AutoCAD " " 3D Max " , " ArchiCAD " ... etc. - gave virtualisation smart, creative and beautiful forms which lead to better understand the used /or to be used residential spaces, and thus the conclusion that the life system of dwelling under design or under study , as can specifically recognize spatial structure in housing design - using digital software applying "Space Syntax" for example - in the shadow of slowly growing digital and creative development with the help of high-speed computers . the morphological structure of the dwelling is considered to be the most important contemporary residential designs Investigation through which the researcher in this area aims to understand the various behavioral relations and social structures within the projected residential area, using Space Syntax techniques. Through the structural morphology of dwellings can be inferred quality networks, levels of connectivity and depth and places of openness or closure within the dwelling under study, or under design. How, then, have intelligently contributed this digital craft to the perception of those spatial fixtures ? The aim of this research is to apply an appropriate program in the field of vernacular residential design and notably Space syntax which relate to the understanding and analysis of spatial structures, and also demonstrate its role at the morphological and spatial structure aspects, and prove how effective it helps to understand the social logic of domestic space through social individual/collective relationships and behaviors projected on the spatial configurations of dwellings. The answer to the issue raised above and at the methodological aspect, the study discussed the application of space syntax techniques on the subject. The findings tend to prove the efficiency by comparing samples of Berber vernacular domestic spaces from the Mzab, the Aures and Kabilya in Algeria, and has also led to ascertain the intelligibility of space syntax techniques in reading the differences between the behaviors in domestic spaces in different areas of the sample through long periods of time .
series ASCAAD
type normal paper
email
last changed 2021/07/16 10:39

_id ecaade2014_208
id ecaade2014_208
authors Bruno Figueiredo, Eduardo Castro e Costa, Bruno Araújo, Fernando Fonseca, Daniel Mendes, Joaquim A Jorge and José Pinto Duarte
year 2014
title Interactive Tabletops for Architectural Visualization - Combining Stereoscopy and Touch Interfaces for Cultural Heritage
doi https://doi.org/10.52842/conf.ecaade.2014.1.585
source Thompson, Emine Mine (ed.), Fusion - Proceedings of the 32nd eCAADe Conference - Volume 1, Department of Architecture and Built Environment, Faculty of Engineering and Environment, Newcastle upon Tyne, England, UK, 10-12 September 2014, pp. 585-592
summary This paper presents an interactive apparatus to didactically explore Alberti's treatise on architecture, De re aedificatoria, as generative design systems, namely shape grammars. This apparatus allows users to interactively explore such architectonical knowledge in both appealing and informal ways, by enabling them to visualize and manipulate in real-time different design solutions. The authors identify the difficulties on encoding the architectural knowledge of a parametric design model into an interactive apparatus to be used by laypeople. At last, the authors discuss the results of a survey conducted to users that interacted with the prototype in order to assess its ability to communicate the knowledge of an architectural language.
wos WOS:000361384700058
keywords Alberti; generative design; multi-modal interfaces; shape grammars; user experience
series eCAADe
type normal paper
email
last changed 2022/06/07 07:54

_id ecaade2014_096
id ecaade2014_096
authors Daniel Norell and Einar Rodhe
year 2014
title Erratic - The Material Simulacra of Pliable Surfaces
doi https://doi.org/10.52842/conf.ecaade.2014.2.145
source Thompson, Emine Mine (ed.), Fusion - Proceedings of the 32nd eCAADe Conference - Volume 2, Department of Architecture and Built Environment, Faculty of Engineering and Environment, Newcastle upon Tyne, England, UK, 10-12 September 2014, pp. 145-152
summary This paper examines how designers can invigorate designs with a sense of liveliness and indeterminacy through manipulation of pliable materials. Two approaches to material manipulation are defined and juxtaposed in the paper: The control associated with Frei Otto's elegantly tensioned membranes and the noise associated with Sigurd Lewerentz's intensely material brick walls. These historical approaches become pertinent in relation to current opportunities offered by material simulation software in architecture. Simulation may be used to increase control over the materialization of design, but is at the same time a way to introduce the noise of real-time, real-world experiments into digital design. The paper presents this discussion in parallel with documentation of the research project 'Erratic', a recent installation carried out by the authors' practice Norell/Rodhe. Constructed from polyurethane cold foam, the project combines analogue experiments with digital simulations to target architectural qualities like mass, figuration and relief.
wos WOS:000361385100015
keywords Control; material manipulation; material simulation; noise; pliable surfaces
series eCAADe
email
last changed 2022/06/07 07:55

_id ecaade2014_020
id ecaade2014_020
authors Hans J.C. Hubers, Michela Turrin, Irem Erbas and Ioannis Chatzikonstantinou
year 2014
title pCOLAD: online sharing of parameters for collaborative architectural design
doi https://doi.org/10.52842/conf.ecaade.2014.2.039
source Thompson, Emine Mine (ed.), Fusion - Proceedings of the 32nd eCAADe Conference - Volume 2, Department of Architecture and Built Environment, Faculty of Engineering and Environment, Newcastle upon Tyne, England, UK, 10-12 September 2014, pp. 39-48
summary Simultaneous interdisciplinary architectural design from the very start of a project faces challenges in properly sharing information across disciplines. This research developed a method and related digital tool to improve collaborative design and aimed at making selected information to be shared faster and more transparently. The method consists of developing alternative parametric solutions for different parts of the design in such a way that crucial parameters form a link between these parts. The digital tool has been developed for Grasshopper and permits synchronic (real-time over the Internet) and a-synchronic sharing of these parameters. The design alternatives are evaluated with specific criteria, pros and cons in an Internet Forum and discussed via a video-conferencing tool. Decisions are then taken in a collaborative manner through voting. The paper describes the method based on a case study.
wos WOS:000361385100003
keywords Parametric; collaborative; design; plug-in; stadium
series eCAADe
email
last changed 2022/06/07 07:50

_id caadria2014_249
id caadria2014_249
authors Krietemeyer, Bess
year 2014
title An Adaptive Decision-Making Framework for Designing Material Behaviours
doi https://doi.org/10.52842/conf.caadria.2014.055
source Rethinking Comprehensive Design: Speculative Counterculture, Proceedings of the 19th International Conference on Computer-Aided Architectural Design Research in Asia (CAADRIA 2014) / Kyoto 14-16 May 2014, pp. 55–64
summary This paper describes an adaptive decision-making design framework for investigating the synergies between aesthetically-driven and performance-driven criteria, specifically in designing the material behaviour of an electroresponsive building envelope system. An immersive and interactive simulation environment developed in the C++ programming language provides a computational tool for testing the visual and energetic performance of a dynamic building envelope as it negotiates bioclimatic energy flows with participants’ aesthetic preferences and interactions. Experiments in bioresponsive feedback loops examine the impacts that user engagement and real-time energy performance feedback have on participants’ design choices. Preliminary results demonstrate that exposure to energy performance feedback and to the collective design choices of multiple users leads to adaptive decision-making that favours synergistic system performance with the potential for increased socio-ecological connections. Critically, this research provides new methods for supporting the design of emerging material behaviours for dynamic building envelopes that can negotiate multiple performance criteria.
keywords Participatory design; decision-making tool; interactive environment; dynamic building envelopes; immersive simulation
series CAADRIA
email
last changed 2022/06/07 07:51

_id ecaade2015_229
id ecaade2015_229
authors Pak, Burak and Meeus, Bruno
year 2015
title Project Arrivée: Counter-mapping Super-diversity in Brussels and Ghent with Architecture Students
doi https://doi.org/10.52842/conf.ecaade.2015.1.369
source Martens, B, Wurzer, G, Grasl T, Lorenz, WE and Schaffranek, R (eds.), Real Time - Proceedings of the 33rd eCAADe Conference - Volume 1, Vienna University of Technology, Vienna, Austria, 16-18 September 2015, pp. 369-378
summary This paper introduces a counter-mapping attempt augmented by a Geoweb 2.0 platform in the context of two Belgian inner-city neighborhoods. The two aims of this project were to build a platform for the collective construction of a better understanding this dynamic super-diverse arrival environment and bring the various qualities and aspects of these super-diverse urban neighborhoods to foreground. In this study we report on the first results of this project which took place in Ghent and Brussels in 2014. Around 300 architecture students registered, interpreted and geocoded visible signs along preconceived tracks by means of a Geoweb 2.0 platform. Through field observations and interviews, the students created dynamic and interactive maps. We found that the large-scale mapping through Geoweb 2.0 makes it possible to discern different layers of use in arrival neighborhoods. These layers referred to different population groups which continuously have to negotiate each other's presence. Furthermore, the platform created the possibility to effectively and efficiently combine student fieldwork with online and offline lectures and offered students the opportunity to comment on, peer-review and learn from each other's insights. The findings will serve as an alternative information resource in the forthcoming Master's thesis graduation design studio which will be led by the first author.
wos WOS:000372317300040
series eCAADe
email
last changed 2022/06/07 08:00

_id ijac201412103
id ijac201412103
authors Park, Ju Hong; Takehiko Nagakura
year 2014
title A Thousand BIM: A rapid value-simulation approach to developing a BIM tool for supporting collaboration during schematic design
source International Journal of Architectural Computing vol. 12 - no. 1, 47-60
summary The purpose of this study is to develop a BIM-based plug-in that is able to assist a collaboration among heterogeneous professionals. The tool will enable them to communicate in the same language, articulate criteria and priorities in multiple perspectives, and to share rapidly simulated evaluations of schematic design variations. Among many barriers that block collaborations among professionals, a quintessential barrier in the building and design industries may be epistemological rather than physical. The professionally different ways of thinking, expertise, values, and priorities can be a block on the collaborative development process of architectural design projects. This paper takes the example of the relationship between developers and architects, who tend to have different evaluation criteria. A real-time value simulation tool is introduced as a means to generate possible building typologies on a given project site, with computation of expected total values expressed in simple financial terms.
series journal
last changed 2019/05/24 09:55

For more results click below:

this is page 0show page 1show page 2show page 3show page 4show page 5... show page 29HOMELOGIN (you are user _anon_724301 from group guest) CUMINCAD Papers Powered by SciX Open Publishing Services 1.002