CumInCAD is a Cumulative Index about publications in Computer Aided Architectural Design
supported by the sibling associations ACADIA, CAADRIA, eCAADe, SIGraDi, ASCAAD and CAAD futures

PDF papers
References

Hits 1 to 20 of 591

_id caadria2017_031
id caadria2017_031
authors Crolla, Kristof, Williams, Nicholas, Muehlbauer, Manuel and Burry, Jane
year 2017
title SmartNodes Pavilion - Towards Custom-optimized Nodes Applications in Construction
source P. Janssen, P. Loh, A. Raonic, M. A. Schnabel (eds.), Protocols, Flows, and Glitches - Proceedings of the 22nd CAADRIA Conference, Xi'an Jiaotong-Liverpool University, Suzhou, China, 5-8 April 2017, pp. 467-476
doi https://doi.org/10.52842/conf.caadria.2017.467
summary Recent developments in Additive Manufacturing are creating possibilities to make not only rapid prototypes, but directly manufactured customised components. This paper investigates the potential for combining standard building materials with customised nodes that are individually optimised in response to local load conditions in non-standard, irregular, or doubly curved frame structures. This research iteration uses as a vehicle for investigation the SmartNodes Pavilion, a temporary structure with 3D printed nodes built for the 2015 Bi-City Biennale of Urbanism/Architecture in Hong Kong. The pavilion is the most recent staged output of the SmartNodes Project. It builds on the findings in earlier iterations by introducing topologically constrained node forms that marry the principals of the evolved optimised node shape with topological constraints imposed to meet the printing challenges. The 4m high canopy scale prototype structure in this early design research iteration represents the node forms using plastic Fused Deposition Modelling (FDM).
keywords Digital Fabrication; Additive Manufacturing; File to Factory; Design Optimisation; 3D printing for construction
series CAADRIA
email
last changed 2022/06/07 07:56

_id cf2015_268
id cf2015_268
authors Benedetto, Henrique; Kipper, Fabrício A.;Marques, Vinícius and Bruscato, Underléa M.
year 2015
title Development of Parklets by using parametric modeling
source The next city - New technologies and the future of the built environment [16th International Conference CAAD Futures 2015. Sao Paulo, July 8-10, 2015. Electronic Proceedings/ ISBN 978-85-85783-53-2] Sao Paulo, Brazil, July 8-10, 2015, pp. 268-278.
summary The lack of urban planning has made the recreation areas increasingly smaller in the cities. Parks and squares gradually gave way to streets and avenues to try to accommodate the growing number of cars and motorcycles. An alternative that tries to balance recreation areas and urban roads was found in the city of San Francisco (USA). Parklets are temporary extensions of urban sidewalks that occupy a few parking spaces. This article aims to demonstrate the potential of parametric modeling in the development of parklets. Thus, anthropometric studies, amount of parking spaces and types of benches were used as input parameters. Rhinoceros and grasshopper programs were used for modeling, while 3D Studio Max was used for rendering. With this study it was possible to verify that when the project is parameterized the processes of creation and modification became faster, reducing design and implementation time.
keywords Grasshopper algorithm editor, Parametric model, Parklets.
series CAAD Futures
email
last changed 2015/06/29 07:55

_id sigradi2015_3.9
id sigradi2015_3.9
authors Bola?os-Mora, Adriana; Colpes, Karen Mello; Filho, Aderson. A. Passos; Bruscato, Underléa; Silva, Tânia Luisa Koltermann da; Silva, Régio Pierre da
year 2015
title Parametric Modeling applied to an Assistive Technology Product Design
source SIGRADI 2015 [Proceedings of the 19th Conference of the Iberoamerican Society of Digital Graphics - vol. 1 - ISBN: 978-85-8039-135-0] Florianópolis, SC, Brasil 23-27 November 2015, pp. 60-64.
summary The article presents an Assistive Technology product design, which aims to overcome the medical product idea, considering its aesthetic configuration, and aims to change the concept of mass production into custom manufacturing. The methodological process was to obtain the user’s body 3D model, for subsequent parameterization by using the Grasshopper’s Rhinoceros Plugin software. It is believed that the digital manufacturing process provides a more flexible production, especially in the prototyping and testing stages, which seems a competitive advantage over companies that do not use them.
series SIGRADI
email
last changed 2016/03/10 09:47

_id ecaade2015_103
id ecaade2015_103
authors Choi, Joshua
year 2015
title Democratic Play - Crowd-Sourcing through Digital Games for Architectural Design
source Martens, B, Wurzer, G, Grasl T, Lorenz, WE and Schaffranek, R (eds.), Real Time - Proceedings of the 33rd eCAADe Conference - Volume 2, Vienna University of Technology, Vienna, Austria, 16-18 September 2015, pp. 187-197
doi https://doi.org/10.52842/conf.ecaade.2015.2.187
wos WOS:000372316000023
summary This thesis presents a system that uses games. It allows people to participate in the process of designing an architectural space. The site for the design project of this experimental methodology is a courtyard on MIT campus.The games are initially prepared by the architect through sampling various objects, materials, lighting, and figures from different media such as photogrammetric models around the building site and other relevant 3D modeling/animation contents. The goal of this design system is to collage those components into a final architectural form through a democratic process.The games are distributed to students, faculty and staff who will be the users of the space being designed. Through playing these games, they provide preference about the architectural program and various design decisions regarding formal composition, details, and finishes. This crowd-sourcing occurs both implicitly and explicitly while the game is being played, and the collected feed-back informs the architect about design development.This thesis questions the role of the architects in a democratic process of design: Are we the designer of the space, or creator of a system that controls the design process?.
series eCAADe
email
last changed 2022/06/07 07:56

_id ecaade2015_91
id ecaade2015_91
authors Correia, Hugo and Leitão, António
year 2015
title Extending Processing to CAD applications
source Martens, B, Wurzer, G, Grasl T, Lorenz, WE and Schaffranek, R (eds.), Real Time - Proceedings of the 33rd eCAADe Conference - Volume 1, Vienna University of Technology, Vienna, Austria, 16-18 September 2015, pp. 159-167
doi https://doi.org/10.52842/conf.ecaade.2015.1.159
wos WOS:000372317300017
summary The Processing language was created to teach programming to the design, architecture, and electronic arts communities. Despite its success, Processing has limited applicability in the architectural realm, as no CAD (Computer-Aided Design) or BIM (Building Information Modeling) application supports Processing. As a result, architects that have learnt Processing are unable to use the language in the context of modern, script-based, architectural work. This work joins Processing with the world of CAD or BIM applications, creating a solution that allows architects to prototype new designs using Processing and generate results in a CAD or BIM application. To achieve this, we developed an implementation of Processing for the Rosetta programming environment, allowing Processing scripts to generate 2D and 3D models in a variety of CAD or BIM applications, such as AutoCAD, Rhinoceros3D, SketchUp, and Revit.
series eCAADe
email
more https://mh-engage.ltcc.tuwien.ac.at/engage/ui/watch.html?id=1c251750-70c8-11e5-9996-33e39ead7b04
last changed 2022/06/07 07:56

_id cf2015_124
id cf2015_124
authors de Souza, Douglas Lopes; Martinez, Andressa Carmo Pena and Santos, Denise de Mônaco
year 2015
title The Potential Use of Laser Scanner in Urban Contexts
source The next city - New technologies and the future of the built environment [16th International Conference CAAD Futures 2015. Sao Paulo, July 8-10, 2015. Electronic Proceedings/ ISBN 978-85-85783-53-2] Sao Paulo, Brazil, July 8-10, 2015, pp. 124-134.
summary 3D laser scanner is an instrument that employs LiDAR technology to map out objects in space by means of remote detection. In Architecture, digital mapping through 3D laser scanning mainly aims at creating digital surface models based on instant recordings of still objects, whereas lived spaces such as squares, streets, and urban surroundings presuppose the presence of people on the move. This paper presents some preliminary results of an investigation on the use of 3D laser scanning in urban contexts. It seeks to examine experimental data on moving people obtained in point clouds and discuss their operationalization possibilities and limitations. The main goal of this investigation is to assess the potential of this technology for use as a research tool and in city-scale design processes.
keywords 3D laser scanning technology, motion modeling, geometrical modeling, computational tools, urban survey.
series CAAD Futures
email
last changed 2015/06/29 07:55

_id cf2015_207
id cf2015_207
authors Fukuda, Tomohiro; Ban, Hirokazu; Yagi, Katsuhito and Nishiie, Junro
year 2015
title Development of high-definition Virtual Reality for historical architectural and urban digital reconstruction: A case study of Azuchi Castle and Old Castle Town in 1581
source The next city - New technologies and the future of the built environment [16th International Conference CAAD Futures 2015. Sao Paulo, July 8-10, 2015. Electronic Proceedings/ ISBN 978-85-85783-53-2] Sao Paulo, Brazil, July 8-10, 2015, pp. 207.
summary This study shows fundamental data for constructing a high-definition VR application under the theme of a three-dimensional visualization to restore past architecture and cities. It is difficult for widespread architectural and urban objects to be rendered in real-time. Thus, in this study, techniques for improving the level of detail (LOD) and representation of natural objects were studied. A digital reconstruction project of Azuchi Castle and old castle town was targeted as a case study. Finally, a VR application with specifications of seven million polygons, texture of 1.87 billion pixels, and 1920 × 1080 screen resolution, was successfully developed that could run on a PC. For the developed VR applications, both qualitative evaluation by experts and quantitative evaluation by end users was performed.
keywords Cultural heritage, digital reconstruction, Virtual Reality, visualization, 3D modeling, presentation.
series CAAD Futures
email
last changed 2015/06/29 07:55

_id cf2015_328
id cf2015_328
authors Gamez, Oscar; Bignon, Jean-Claude and Duchanois, Gilles
year 2015
title Assisted construction of non-standard wooden walls and envelope structures by parametric modeling
source The next city - New technologies and the future of the built environment [16th International Conference CAAD Futures 2015. Sao Paulo, July 8-10, 2015. Electronic Proceedings/ ISBN 978-85-85783-53-2] Sao Paulo, Brazil, July 8-10, 2015, pp. 328.
summary We introduce a parametric modeling method in the field of computer-aided architectural conception, which aims to produce non-standard wooden walls and envelopes with CNC machinery. This method explores the application of polygonal cellular structures (as patterns) on facade and envelope interventions for new and old projects. We innovate by bringing the 3D production environment complexity into the conception model to improve the production of manifold woodworking items by CNC (Computer Numerical Control) 3D fabrication. A recent experimentation, tests the entire workflow from parametric modeling to production of two full-scale prototypes. The results prove the range of inputs offered by the method to be functional, though it needs various improvements in order to optimize parametric modeling and digital fabrication procedures. Future research will focus on treating a wider range of joints via parametric modeling and deal with joint creation regardless wall deformation to expand the morphological approach of non-standard wooden walls design.
keywords Non-standard walls, Computer-aided architectural design, Wood construction, Parametric modeling, CNC fabrication, Mass customization.
series CAAD Futures
email
last changed 2015/06/29 07:55

_id ecaade2015_247
id ecaade2015_247
authors Garcia, Manuel Jimenez and Retsin, Gilles
year 2015
title Design Methods for Large Scale Printing
source Martens, B, Wurzer, G, Grasl T, Lorenz, WE and Schaffranek, R (eds.), Real Time - Proceedings of the 33rd eCAADe Conference - Volume 2, Vienna University of Technology, Vienna, Austria, 16-18 September 2015, pp. 331-339
doi https://doi.org/10.52842/conf.ecaade.2015.2.331
wos WOS:000372316000039
summary With an exponential increase in the possibilities of computation and computer-controlled fabrication, high density information is becoming a reality in digital design and architecture. However, construction methods and industrial fabrication processes have not yet been reshaped to accommodate the recent changes in those disciplines. Although it is possible to build up complex simulations with millions of particles, the simulation is often disconnected from the actual fabrication process. Our research proposes a bridge between both stages, where one drives the other, producing a smooth transition from design to production. A particle in the digital domain becomes a drop of material in the construction method.The architect's medium of expression has become much more than a representational tool in the last century, and more recently it has evolved even beyond a series of rules to drive from design to production. The design system is the instruction itself; embedding structure, material and tectonics and gets delivered to the very end of the construction chain, where it gets materialised. The research showcased in this paper investigates tectonic systems associated with large scale 3D printing and additive manufacturing methods, inheriting both material properties and fabrication constraints at all stages from design to production. Computational models and custom design software packages are designed and developed as strategies to organise material in space in response to specific structural and logistical input.Although the research has developed a wide spectrum of 3D printing methods, this paper focuses only on two of the most recent projects, where different material and computational logics were investigated. The first, titled Filamentrics, intends to develop free-form space frames, overcoming their homogeneity by introducing robotic plastic extrusion. Through the use of custom made extruders a vast range of high resolution prototypes were developed, evolving the design process towards the fabrication of precise structures that can be materialised using additive manufacturing but without the use of a layered 3D printing method. Instead, material limitations were studied and embedded in custom algorithms that allow depositing material in the air for internal connectivity. The final result is a 3x2x2.5m structure that demonstrates the viability of this construction method for being implemented in more industrial scenarios.While Filamentrics is reshaping the way we could design and build light weight structures, the second project Microstrata aims to establish new construction methods for compression based materials. A layering 3D printing method combines both the deposition of the binder and the distribution of an interconnected network of capillaries. These capillaries are organised following structural principles, configuring a series of channels which are left empty within the mass. In a second stage aluminium is cast in this hollow space to build a continuous tension reinforcement.
series eCAADe
type normal paper
email
more https://mh-engage.ltcc.tuwien.ac.at/engage/ui/watch.html?id=07a6d8e0-6fe7-11e5-9994-cb14cd908012
last changed 2022/06/07 07:51

_id ecaade2015_81
id ecaade2015_81
authors Hudson, Roland; Schaefer, Gavin, Kroeker, Richard, Forest, Neil and Burnay, Diogo
year 2015
title Subdivision Surface Modeling to Foster Responsive Design Solutions in an Integrated Multi-disciplinary Team
source Martens, B, Wurzer, G, Grasl T, Lorenz, WE and Schaffranek, R (eds.), Real Time - Proceedings of the 33rd eCAADe Conference - Volume 1, Vienna University of Technology, Vienna, Austria, 16-18 September 2015, pp. 403-413
doi https://doi.org/10.52842/conf.ecaade.2015.1.403
wos WOS:000372317300044
summary This paper documents an architectural project developed using subdivision surface modelling. Subdivision surfaces are not new, and the tools are readily available in many 3d modelling applications. Despite their age and availability and recognised benefits they are rarely applied in architectural projects furthermore there is paucity of published case studies that demonstrate these tools in action. The second contribution to the field that this paper offers is in recognising the way in which subdivision surfaces can provide a new form of collaboration. Our core team consisted of architect, artist and 3d modeller and the project was inspired by a ceramic sculpture with unusual geometry. Subdivision surface modelling enabled a unique form of design exploration, feedback and communication between people with diverse skills. This case study therefore offers both insight into applied use of subdivision modelling and further depth into the way it enables interdisciplinary collaboration.
series eCAADe
email
more https://mh-engage.ltcc.tuwien.ac.at/engage/ui/watch.html?id=d57fa2ac-7022-11e5-b34f-83875df41ff7
last changed 2022/06/07 07:50

_id ecaade2015_140
id ecaade2015_140
authors Kowal, Slawomir; Koszewski, Krzysztof, Slyk, Jan and Wrona, Stefan
year 2015
title Parametric Methods in Reconstruction of the Medieval Proto-Town in Pultusk, Poland
source Martens, B, Wurzer, G, Grasl T, Lorenz, WE and Schaffranek, R (eds.), Real Time - Proceedings of the 33rd eCAADe Conference - Volume 1, Vienna University of Technology, Vienna, Austria, 16-18 September 2015, pp. 695-700
doi https://doi.org/10.52842/conf.ecaade.2015.1.695
wos WOS:000372317300075
summary This paper describes methods, processes and the outcome of the reconstruction in the medieval wooden settlement complex in Pultusk, Poland. It is the result of the interdisciplinary cooperation between architects from Warsaw University of Technology and archaeologists from Regional Museum of Pultusk. They have undertaken the research issues of information exchange and knowledge-building processes in the digital environment. Main issues were related to the methods of computer reconstruction in architectural and urban scale, which enable alternative narrative threads. To achieve this, parametric techniques were adopted and the 'Pultusk Recontructor' application was developed in Grasshopper. The interaction between architects and archaeologists over hypotheses and alternatives was supported in urban scale by 'Rapid Reconstruction Modular Model'. This 3D printed urban model, consist of segments which can be simultaneously exchanged. It became not only a substrate for scientific debate, but also may serve an education role for the permanent Museum exhibition.
series eCAADe
email
more https://mh-engage.ltcc.tuwien.ac.at/engage/ui/watch.html?id=21013e32-702a-11e5-99b6-d34246563b4e
last changed 2022/06/07 07:51

_id cf2015_463
id cf2015_463
authors Leblanc, François
year 2015
title Super-details: Integrated patterns from 3D printing processes to performance-based design
source The next city - New technologies and the future of the built environment [16th International Conference CAAD Futures 2015. Sao Paulo, July 8-10, 2015. Electronic Proceedings/ ISBN 978-85-85783-53-2] Sao Paulo, Brazil, July 8-10, 2015, pp. 463.
summary Performance-based architecture has predominately been influenced by computational advances in simulating complex organizations. The advent of 3D printing, however, has introduced a new approach to generate complex forms, which is redirecting focus from shape-centric design to material design, namely, innovative structures and properties generated by the process itself. This article investigated the multiscale approach potential to design using extrusion-based 3D printing techniques that offer novel geometric organizations that conform to desired performance. It was found that 3D printed toolpaths adapted to extrusion-based systems render an anisotropic behavior to the architectural object that is best optimized by designing tessellated surfaces as the primary structural shape from which small-scale periodic surfaces can be embedded within a larger geometric system.
keywords 3D printing, multiscale design, extrusion-based systems, porous material, topology, CAD integration.
series CAAD Futures
email
last changed 2015/06/29 07:55

_id caadria2015_069
id caadria2015_069
authors Lin, Chieh-Jen
year 2015
title Design Criteria Modeling
source Emerging Experience in Past, Present and Future of Digital Architecture, Proceedings of the 20th International Conference of the Association for Computer-Aided Architectural Design Research in Asia (CAADRIA 2015) / Daegu 20-22 May 2015, pp. 479-488
doi https://doi.org/10.52842/conf.caadria.2015.479
summary This paper proposed an ontology-based parametric modeling tool, “Design Criteria Modeling (DCM),” which applies a graphic predicative tool and semantic ontologies of architectural topology. DCM was intended to help architects in representing, exploring, and validating design criteria with parametric 3D model at the early design stage. By applying a reasoner of semantic ontology, architects could use DCM to determine whether conceptual models meet the semantic ontology of proposed design criteria.
keywords Architectural information modeling; architectural design criteria; semantic ontology; parametric design.
series CAADRIA
email
last changed 2022/06/07 07:59

_id sigradi2015_10.250
id sigradi2015_10.250
authors Linardi, Ana Beatriz; Ramos, Fernando da Silva; Garotti, Flavio Valverde; Damiani, Vitor
year 2015
title 3D printing as support for arts education for the visually impaired
source SIGRADI 2015 [Proceedings of the 19th Conference of the Iberoamerican Society of Digital Graphics - vol. 2 - ISBN: 978-85-8039-133-6] Florianópolis, SC, Brasil 23-27 November 2015, pp. 564-568.
summary This article discusses some methodologies in art education in schools and educational activities in museums. It focuses on accessibility and in the visually impaired rights to access and improve the experiences and repertoire in artistic languages, recognizing the use of new technologies in the field of digital manufacturing as valuable resources for the production of teaching materials with the use of cheaper and accessible technology, which expands the access to cultural institutions and education. Considering that most of the museums art works are not to be touched, 3D printing reproductions in durable low cost plastic present as an alternative for tactile experience. In addition, the photogrammetric 3D scanning process and digital editing allow for the creation of isolated parts and materials originated from the art piece, broadening the pedagogical possibilities of art educators. The production of didactic material for arts teaching, with the use of 3D printed copies (edited or not) originated from 3D scans, may help revealing a more subtle and sophisticated aspect of artistic narrative to the public and the visually impaired.
keywords Education, Art, 3D Scan, 3D Printing
series SIGRADI
email
last changed 2016/03/10 09:55

_id ecaade2015_109
id ecaade2015_109
authors Markusiewicz, Jacek, Strzala, Marcin and Koszewski, Krzysztof
year 2015
title Modular Light Cloud. Design, Programming and Making - Towards the Integration of Creative Actions
source Martens, B, Wurzer, G, Grasl T, Lorenz, WE and Schaffranek, R (eds.), Real Time - Proceedings of the 33rd eCAADe Conference - Volume 2, Vienna University of Technology, Vienna, Austria, 16-18 September 2015, pp. 91-101
doi https://doi.org/10.52842/conf.ecaade.2015.2.091
wos WOS:000372316000012
summary Modular Light Cloud is an installation that is conceived to explore the boundaries of architecture and art. Its interactivity is a metaphor of mutual influences that derive from activities performed in space - associated with motion, sound and light.It is an experimental project focused on the integration of architectural elements, structure, information technology, performing arts, electronics and digital fabrication in architectural education.The project was completed in a two-week student workshop in collaboration with a contemporary dance artist. The students were taught the basics of parametric design, programming of electronic components and digital fabrication during tutorial classes. The making process combined three stages of development: design, construction and programming of interaction.The final form consists of two irregular spatial trusses made of aluminum profiles connected with 3d printed nodes. The profiles are equipped with LED strips and electronic components: light sensors, sound and communication between them. These systems control the intensity of light emitted by the diodes based on the inputs.The result is a working prototype presented as interactive installation featuring contemporary dance artist. It was displayed at art festivals and other events.
series eCAADe
email
more https://mh-engage.ltcc.tuwien.ac.at/engage/ui/watch.html?id=e17b2300-6f83-11e5-836f-4becdc2939a0
last changed 2022/06/07 07:59

_id ecaade2015_129
id ecaade2015_129
authors Mostafavi, Sina; Bier, Henriette, Bodea, Serban and Anton, AnaMaria
year 2015
title Informed Design to Robotic Production Systems - Developing Robotic 3D Printing System for Informed Material Deposition
source Martens, B, Wurzer, G, Grasl T, Lorenz, WE and Schaffranek, R (eds.), Real Time - Proceedings of the 33rd eCAADe Conference - Volume 2, Vienna University of Technology, Vienna, Austria, 16-18 September 2015, pp. 287-296
doi https://doi.org/10.52842/conf.ecaade.2015.2.287
wos WOS:000372316000034
summary This paper discusses the development of an informed Design-to-Robotic-Production (D2RP) system for additive manufacturing to achieve performative porosity in architecture at various scales. An extended series of experiments on materiality, fabrication and robotics were designed and carried out resulting in the production of a one-to-one scale prototype. In this context, design materiality has been approached from both digital and physical perspectives. At digital materiality level, a customized computational design framework is implemented for form finding of compression only structures combined with a material distribution optimization method. Moreover, the chained connection between parametric design model and robotic production setup has led to a systematic study of certain aspects of physicality that cannot be fully simulated in the digital medium, which then establish a feedback loop for underrating material behaviors and properties. As a result, the D2RP system proposes an alternative method of robotic material deposition to create an informed material architecture.
series eCAADe
email
more https://mh-engage.ltcc.tuwien.ac.at/engage/ui/watch.html?id=9b8d34a6-6fe6-11e5-be92-57ca3f902ce9
last changed 2022/06/07 07:58

_id sigradi2015_sp_12.402
id sigradi2015_sp_12.402
authors Ryberg, Maria Candelária; Bratti, Maria Luiza; Cavalcanti, Patrícia Biasi; Ely, Vera Helena Moro Bins
year 2015
title Participatory design experience for a milk collecting room of a hospital in Florianópolis
source SIGRADI 2015 [Proceedings of the 19th Conference of the Iberoamerican Society of Digital Graphics - vol. 2 - ISBN: 978-85-8039-133-6] Florianópolis, SC, Brasil 23-27 November 2015, pp. 836-840.
summary This article describes the experience of a participatory design project of a milk collecting room. The objective of this project was to identify the desirable attributes of the environment and contemplate participatory design applications. The methodology used includes: AEIOU, SWOT analysis, Brainstorming, Wish Poems, interaction with the proposals using 3D modeling and Visual Selection. The present work confirms the benefits of the participatory process as a possibility to expand the comprehension of the user’s needs. Moreover, the project proved that digitalized graphic resources are easy to use and are beneficial to interaction with the present proposal.
keywords Participatory Design, Interior Design, Health Care Enviroments, Milk Bank
series SIGRADI
email
last changed 2016/03/10 09:59

_id ecaade2015_319
id ecaade2015_319
authors Teng, Teng and Johnson, Brian R.
year 2015
title Transformable Physical Design Media
source Martens, B, Wurzer, G, Grasl T, Lorenz, WE and Schaffranek, R (eds.), Real Time - Proceedings of the 33rd eCAADe Conference - Volume 1, Vienna University of Technology, Vienna, Austria, 16-18 September 2015, pp. 45-54
doi https://doi.org/10.52842/conf.ecaade.2015.1.045
wos WOS:000372317300005
summary Computer-aided design tools have become an integral part of much architectural design practice, to the point where design is heavily dependent on the assistance of these tools. But current computer-aided design tools are fundamentally limited by the WIMP (windows, icons, menus, and pointer) interface, reliant on 2d input and output. Design of buildings and other 3D objects via 2D workflow is slowed by the conversions that designers must make. In this paper, we explore the potential of transformable physical design media through two design tool prototypes: Integrated spatial gesture-based direct 3D modeling and display system (InSpire), and tangible objects based massing study tool kits (CuBe). Both of these design tool prototypes allow designers to develop their design within a fully 3d environment with optical and haptic references, so that the interaction between designer and design object become much more intuitive and direct.We conclude by discussing some related subjects in the domain of HCI and argue that transformable physical design media represent a desirable solution for enhancing design experience. Architects and designers could benefit from the usage of transformable physical design media, especially during the early phases of architectural design by allowing designers to efficiently alter the topology properties.
series eCAADe
email
more https://mh-engage.ltcc.tuwien.ac.at/engage/ui/watch.html?id=c66d211e-702b-11e5-b61e-53010ec74bd1
last changed 2022/06/07 07:58

_id sigradi2015_8.163
id sigradi2015_8.163
authors Tramontano, Marcelo; Junior, Anibal Pereira
year 2015
title A new meaning to the physical model: 3D printing and architectural design teaching
source SIGRADI 2015 [Proceedings of the 19th Conference of the Iberoamerican Society of Digital Graphics - vol. 1 - ISBN: 978-85-8039-135-0] Florianópolis, SC, Brasil 23-27 November 2015, pp. 350-354.
summary This article aims to produce reflections on two main aspects of the use of so-called 3D printing to produce physical models in architectural design processes: 1. preparation of files, preparation of students; 2. printed physical models as part of the design process. In addition to brief literature review of the key concepts involved, the article relies on results of research conducted by Nomads.usp Center of Interactive Living Studies (www.nomads.usp.br), and activities with students of the mandatory undergraduate course “Project 3: architecture, city, landscape,” both of the Institute of Architecture and Urbanism, University of Sao Paulo, IAU-USP (www.iau.usp.br), Brazil.
keywords 3D Printing, Digital Fabrication, Architectural Design Teaching, Physical Models
series SIGRADI
email
last changed 2016/03/10 10:01

_id ijac201513301
id ijac201513301
authors Voordouw, Johan
year 2015
title Hybrid Representation: Intaglio Etching of Digital Models
source International Journal of Architectural Computing vol. 13 - no. 3, 237-256
summary This paper explores an alternative approach to architectural representation by using computation and digital modeling to develop novel modes of drawing. The project was initiated for the International Architecture Biennale Rotterdam (IABR 2014) and was exhibited in the seminal Kunsthal Rotterdam in the summer of 2014. The project, entitled Weerkas, was a set of twelve intaglio etchings. A combination of digital modeling programs such as Rhino, Grasshopper and 3D Studio Max and drafting software AutoCAD were used to develop the drawings. The digital files were photo-transferred and etched using a polymer intaglio plate. The analog/digital hybrid explores the limitations of such a combined means of expression and its possible significance in developing a two from three-dimensional drawing technique.
series journal
last changed 2019/05/24 09:55

For more results click below:

this is page 0show page 1show page 2show page 3show page 4show page 5... show page 29HOMELOGIN (you are user _anon_946632 from group guest) CUMINCAD Papers Powered by SciX Open Publishing Services 1.002