CumInCAD is a Cumulative Index about publications in Computer Aided Architectural Design
supported by the sibling associations ACADIA, CAADRIA, eCAADe, SIGraDi, ASCAAD and CAAD futures

PDF papers
References

Hits 1 to 20 of 141

_id caadria2017_031
id caadria2017_031
authors Crolla, Kristof, Williams, Nicholas, Muehlbauer, Manuel and Burry, Jane
year 2017
title SmartNodes Pavilion - Towards Custom-optimized Nodes Applications in Construction
doi https://doi.org/10.52842/conf.caadria.2017.467
source P. Janssen, P. Loh, A. Raonic, M. A. Schnabel (eds.), Protocols, Flows, and Glitches - Proceedings of the 22nd CAADRIA Conference, Xi'an Jiaotong-Liverpool University, Suzhou, China, 5-8 April 2017, pp. 467-476
summary Recent developments in Additive Manufacturing are creating possibilities to make not only rapid prototypes, but directly manufactured customised components. This paper investigates the potential for combining standard building materials with customised nodes that are individually optimised in response to local load conditions in non-standard, irregular, or doubly curved frame structures. This research iteration uses as a vehicle for investigation the SmartNodes Pavilion, a temporary structure with 3D printed nodes built for the 2015 Bi-City Biennale of Urbanism/Architecture in Hong Kong. The pavilion is the most recent staged output of the SmartNodes Project. It builds on the findings in earlier iterations by introducing topologically constrained node forms that marry the principals of the evolved optimised node shape with topological constraints imposed to meet the printing challenges. The 4m high canopy scale prototype structure in this early design research iteration represents the node forms using plastic Fused Deposition Modelling (FDM).
keywords Digital Fabrication; Additive Manufacturing; File to Factory; Design Optimisation; 3D printing for construction
series CAADRIA
email
last changed 2022/06/07 07:56

_id cf2015_463
id cf2015_463
authors Leblanc, François
year 2015
title Super-details: Integrated patterns from 3D printing processes to performance-based design
source The next city - New technologies and the future of the built environment [16th International Conference CAAD Futures 2015. Sao Paulo, July 8-10, 2015. Electronic Proceedings/ ISBN 978-85-85783-53-2] Sao Paulo, Brazil, July 8-10, 2015, pp. 463.
summary Performance-based architecture has predominately been influenced by computational advances in simulating complex organizations. The advent of 3D printing, however, has introduced a new approach to generate complex forms, which is redirecting focus from shape-centric design to material design, namely, innovative structures and properties generated by the process itself. This article investigated the multiscale approach potential to design using extrusion-based 3D printing techniques that offer novel geometric organizations that conform to desired performance. It was found that 3D printed toolpaths adapted to extrusion-based systems render an anisotropic behavior to the architectural object that is best optimized by designing tessellated surfaces as the primary structural shape from which small-scale periodic surfaces can be embedded within a larger geometric system.
keywords 3D printing, multiscale design, extrusion-based systems, porous material, topology, CAD integration.
series CAAD Futures
email
last changed 2015/06/29 07:55

_id acadia19_168
id acadia19_168
authors Adilenidou, Yota; Ahmed, Zeeshan Yunus; Freek, Bos; Colletti, Marjan
year 2019
title Unprintable Forms
doi https://doi.org/10.52842/conf.acadia.2019.168
source ACADIA 19:UBIQUITY AND AUTONOMY [Proceedings of the 39th Annual Conference of the Association for Computer Aided Design in Architecture (ACADIA) ISBN 978-0-578-59179-7] (The University of Texas at Austin School of Architecture, Austin, Texas 21-26 October, 2019) pp.168-177
summary This paper presents a 3D Concrete Printing (3DCP) experiment at the full scale of virtualarchitectural bodies developed through a computational technique based on the use of Cellular Automata (CA). The theoretical concept behind this technique is the decoding of errors in form generation and the invention of a process that would recreate the errors as a response to optimization (Adilenidou 2015). The generative design process established a family of structural and formal elements whose proliferation is guided through sets of differential grids (multi-grids) leading to the build-up of large span structures and edifices, for example, a cathedral. This tooling system is capable of producing, with specific inputs, a large number of outcomes in different scales. However, the resulting virtual surfaces could be considered as "unprintable" either due to their need of extra support or due to the presence of many cavities in the surface topology. The above characteristics could be categorized as errors, malfunctions, or undesired details in the geometry of a form that would need to be eliminated to prepare it for printing. This research project attempts to transform these "fabrication imprecisions" through new 3DCP techniques into factors of robustness of the resulting structure. The process includes the elimination of the detail / "errors" of the surface and their later reinsertion as structural folds that would strengthen the assembly. Through this process, the tangible outputs achieved fulfill design and functional requirements without compromising their structural integrity due to the manufacturing constraints.
series ACADIA
type normal paper
email
last changed 2022/06/07 07:54

_id ecaade2016_164
id ecaade2016_164
authors Dobiesz, Sebastian and Grajper, Anna
year 2016
title Animating the Static. Case Study of The Project "Urbanimals" - Enhancing play in the cities through an augmented and interactive environment
doi https://doi.org/10.52842/conf.ecaade.2016.1.691
source Herneoja, Aulikki; Toni Österlund and Piia Markkanen (eds.), Complexity & Simplicity - Proceedings of the 34th eCAADe Conference - Volume 1, University of Oulu, Oulu, Finland, 22-26 August 2016, pp. 691-700
summary This article delineates the process of developing the project "Urbanimals" - an interactive installation designed and realised in Bristol, UK, in 2015. As the case study research, it draws attention to the difficulties in designing interactive structures in urban spaces - from an architects' idea to a construction stage. There are four areas that are being investigated: (1) Modelling interactions, (2) Negotiating locations and logistics, (3) Developing hardware and (4) Performing the on-site observations. The project draws from the idea of Smart City (SC) as the concept of the urban environment with a certain level of responsiveness through implementing a technology-driven matter that expands city offer perceivable, but gentle and not hindering way. It highlights the possible applications of projection technology and the utilisation of the 3D modelling software which provides complex tools for creating animations, movements and interactions with future users. The article gives clues how to design more engaging interactions and how to deal with implementing them in public realm.
wos WOS:000402063700074
keywords Smart Cities; Interactive Architecture; public realm; art installations
series eCAADe
email
last changed 2022/06/07 07:55

_id cf2015_328
id cf2015_328
authors Gamez, Oscar; Bignon, Jean-Claude and Duchanois, Gilles
year 2015
title Assisted construction of non-standard wooden walls and envelope structures by parametric modeling
source The next city - New technologies and the future of the built environment [16th International Conference CAAD Futures 2015. Sao Paulo, July 8-10, 2015. Electronic Proceedings/ ISBN 978-85-85783-53-2] Sao Paulo, Brazil, July 8-10, 2015, pp. 328.
summary We introduce a parametric modeling method in the field of computer-aided architectural conception, which aims to produce non-standard wooden walls and envelopes with CNC machinery. This method explores the application of polygonal cellular structures (as patterns) on facade and envelope interventions for new and old projects. We innovate by bringing the 3D production environment complexity into the conception model to improve the production of manifold woodworking items by CNC (Computer Numerical Control) 3D fabrication. A recent experimentation, tests the entire workflow from parametric modeling to production of two full-scale prototypes. The results prove the range of inputs offered by the method to be functional, though it needs various improvements in order to optimize parametric modeling and digital fabrication procedures. Future research will focus on treating a wider range of joints via parametric modeling and deal with joint creation regardless wall deformation to expand the morphological approach of non-standard wooden walls design.
keywords Non-standard walls, Computer-aided architectural design, Wood construction, Parametric modeling, CNC fabrication, Mass customization.
series CAAD Futures
email
last changed 2015/06/29 07:55

_id ecaade2015_247
id ecaade2015_247
authors Garcia, Manuel Jimenez and Retsin, Gilles
year 2015
title Design Methods for Large Scale Printing
doi https://doi.org/10.52842/conf.ecaade.2015.2.331
source Martens, B, Wurzer, G, Grasl T, Lorenz, WE and Schaffranek, R (eds.), Real Time - Proceedings of the 33rd eCAADe Conference - Volume 2, Vienna University of Technology, Vienna, Austria, 16-18 September 2015, pp. 331-339
summary With an exponential increase in the possibilities of computation and computer-controlled fabrication, high density information is becoming a reality in digital design and architecture. However, construction methods and industrial fabrication processes have not yet been reshaped to accommodate the recent changes in those disciplines. Although it is possible to build up complex simulations with millions of particles, the simulation is often disconnected from the actual fabrication process. Our research proposes a bridge between both stages, where one drives the other, producing a smooth transition from design to production. A particle in the digital domain becomes a drop of material in the construction method.The architect's medium of expression has become much more than a representational tool in the last century, and more recently it has evolved even beyond a series of rules to drive from design to production. The design system is the instruction itself; embedding structure, material and tectonics and gets delivered to the very end of the construction chain, where it gets materialised. The research showcased in this paper investigates tectonic systems associated with large scale 3D printing and additive manufacturing methods, inheriting both material properties and fabrication constraints at all stages from design to production. Computational models and custom design software packages are designed and developed as strategies to organise material in space in response to specific structural and logistical input.Although the research has developed a wide spectrum of 3D printing methods, this paper focuses only on two of the most recent projects, where different material and computational logics were investigated. The first, titled Filamentrics, intends to develop free-form space frames, overcoming their homogeneity by introducing robotic plastic extrusion. Through the use of custom made extruders a vast range of high resolution prototypes were developed, evolving the design process towards the fabrication of precise structures that can be materialised using additive manufacturing but without the use of a layered 3D printing method. Instead, material limitations were studied and embedded in custom algorithms that allow depositing material in the air for internal connectivity. The final result is a 3x2x2.5m structure that demonstrates the viability of this construction method for being implemented in more industrial scenarios.While Filamentrics is reshaping the way we could design and build light weight structures, the second project Microstrata aims to establish new construction methods for compression based materials. A layering 3D printing method combines both the deposition of the binder and the distribution of an interconnected network of capillaries. These capillaries are organised following structural principles, configuring a series of channels which are left empty within the mass. In a second stage aluminium is cast in this hollow space to build a continuous tension reinforcement.
wos WOS:000372316000039
series eCAADe
type normal paper
email
more https://mh-engage.ltcc.tuwien.ac.at/engage/ui/watch.html?id=07a6d8e0-6fe7-11e5-9994-cb14cd908012
last changed 2022/06/07 07:51

_id caadria2015_105
id caadria2015_105
authors Hosny, A.; N. Jacobson and Z. Seibold
year 2015
title Voxel Beam
doi https://doi.org/10.52842/conf.caadria.2015.755
source Emerging Experience in Past, Present and Future of Digital Architecture, Proceedings of the 20th International Conference of the Association for Computer-Aided Architectural Design Research in Asia (CAADRIA 2015) / Daegu 20-22 May 2015, pp. 755-764
summary Voxelbeam explores precedents in the optimization of architectural structures, namely the Sydney Opera house Arup beam. The authors research three areas crucial to conceiving an innovative contemporary reinterpretation of the beam: A shift in structural analysis techniques from analytical to numerical models such as topology optimization, the fundamental differences between digital and analog representations of structural forces, and the translation of structural analysis data into methods for digital fabrication. The research aims to re-contextualize the structural beam within contemporary digital platforms, explores the architectural implications of topology optimization, and proposes two fabrication strategies based on the analysis results – including automated off-site pre-casting and multi-material 3d printing.
keywords Digital Fabrication, Topology Optimization, Multi-material 3D Printing, Emergent Structural Design, Arup Beam.
series CAADRIA
email
last changed 2022/06/07 07:50

_id caadria2015_213
id caadria2015_213
authors Kornkasem, Sorachai and John B. Black
year 2015
title CAAD, Cognition & Spatial Thinking Training
doi https://doi.org/10.52842/conf.caadria.2015.561
source Emerging Experience in Past, Present and Future of Digital Architecture, Proceedings of the 20th International Conference of the Association for Computer-Aided Architectural Design Research in Asia (CAADRIA 2015) / Daegu 20-22 May 2015, pp. 561-570
summary The current study explored different spatial training methods and investigated the sequence of processed-based mental simulation that was facilitated by various structures of external spatial representations, including 3D technology in Computer Aided-Architectural Design (CAAD), spatial cues, and/or technical languages. The goal was to better understand how these components fostered planning experiences and affected spatial ability acquisition framed as the formation of spatial mental models, for further developing spatial training environments fundamental to Science, Technology, Engineering, and Mathematics (STEM) education, specifically for architecture education and cognition. Two experiments were conducted using a between-subjects design to examine the effects of spatial training methods on spatial ability performance. Across both studies learners improved in their spatial skills, specifically the learners in the 3D-augmented virtual environments over the 3D-direct physical manipulation conditions. This study is built upon the work in the fields of computer-user interface, visuospatial thinking and human learning.
keywords Spatial thinking training; cognitive processes; CAAD.
series CAADRIA
email
last changed 2022/06/07 07:51

_id ecaade2015_140
id ecaade2015_140
authors Kowal, Slawomir; Koszewski, Krzysztof, Slyk, Jan and Wrona, Stefan
year 2015
title Parametric Methods in Reconstruction of the Medieval Proto-Town in Pultusk, Poland
doi https://doi.org/10.52842/conf.ecaade.2015.1.695
source Martens, B, Wurzer, G, Grasl T, Lorenz, WE and Schaffranek, R (eds.), Real Time - Proceedings of the 33rd eCAADe Conference - Volume 1, Vienna University of Technology, Vienna, Austria, 16-18 September 2015, pp. 695-700
summary This paper describes methods, processes and the outcome of the reconstruction in the medieval wooden settlement complex in Pultusk, Poland. It is the result of the interdisciplinary cooperation between architects from Warsaw University of Technology and archaeologists from Regional Museum of Pultusk. They have undertaken the research issues of information exchange and knowledge-building processes in the digital environment. Main issues were related to the methods of computer reconstruction in architectural and urban scale, which enable alternative narrative threads. To achieve this, parametric techniques were adopted and the 'Pultusk Recontructor' application was developed in Grasshopper. The interaction between architects and archaeologists over hypotheses and alternatives was supported in urban scale by 'Rapid Reconstruction Modular Model'. This 3D printed urban model, consist of segments which can be simultaneously exchanged. It became not only a substrate for scientific debate, but also may serve an education role for the permanent Museum exhibition.
wos WOS:000372317300075
series eCAADe
email
more https://mh-engage.ltcc.tuwien.ac.at/engage/ui/watch.html?id=21013e32-702a-11e5-99b6-d34246563b4e
last changed 2022/06/07 07:51

_id sigradi2015_10.250
id sigradi2015_10.250
authors Linardi, Ana Beatriz; Ramos, Fernando da Silva; Garotti, Flavio Valverde; Damiani, Vitor
year 2015
title 3D printing as support for arts education for the visually impaired
source SIGRADI 2015 [Proceedings of the 19th Conference of the Iberoamerican Society of Digital Graphics - vol. 2 - ISBN: 978-85-8039-133-6] Florianópolis, SC, Brasil 23-27 November 2015, pp. 564-568.
summary This article discusses some methodologies in art education in schools and educational activities in museums. It focuses on accessibility and in the visually impaired rights to access and improve the experiences and repertoire in artistic languages, recognizing the use of new technologies in the field of digital manufacturing as valuable resources for the production of teaching materials with the use of cheaper and accessible technology, which expands the access to cultural institutions and education. Considering that most of the museums art works are not to be touched, 3D printing reproductions in durable low cost plastic present as an alternative for tactile experience. In addition, the photogrammetric 3D scanning process and digital editing allow for the creation of isolated parts and materials originated from the art piece, broadening the pedagogical possibilities of art educators. The production of didactic material for arts teaching, with the use of 3D printed copies (edited or not) originated from 3D scans, may help revealing a more subtle and sophisticated aspect of artistic narrative to the public and the visually impaired.
keywords Education, Art, 3D Scan, 3D Printing
series SIGRADI
email
last changed 2016/03/10 09:55

_id ecaade2015_109
id ecaade2015_109
authors Markusiewicz, Jacek, Strzala, Marcin and Koszewski, Krzysztof
year 2015
title Modular Light Cloud. Design, Programming and Making - Towards the Integration of Creative Actions
doi https://doi.org/10.52842/conf.ecaade.2015.2.091
source Martens, B, Wurzer, G, Grasl T, Lorenz, WE and Schaffranek, R (eds.), Real Time - Proceedings of the 33rd eCAADe Conference - Volume 2, Vienna University of Technology, Vienna, Austria, 16-18 September 2015, pp. 91-101
summary Modular Light Cloud is an installation that is conceived to explore the boundaries of architecture and art. Its interactivity is a metaphor of mutual influences that derive from activities performed in space - associated with motion, sound and light.It is an experimental project focused on the integration of architectural elements, structure, information technology, performing arts, electronics and digital fabrication in architectural education.The project was completed in a two-week student workshop in collaboration with a contemporary dance artist. The students were taught the basics of parametric design, programming of electronic components and digital fabrication during tutorial classes. The making process combined three stages of development: design, construction and programming of interaction.The final form consists of two irregular spatial trusses made of aluminum profiles connected with 3d printed nodes. The profiles are equipped with LED strips and electronic components: light sensors, sound and communication between them. These systems control the intensity of light emitted by the diodes based on the inputs.The result is a working prototype presented as interactive installation featuring contemporary dance artist. It was displayed at art festivals and other events.
wos WOS:000372316000012
series eCAADe
email
more https://mh-engage.ltcc.tuwien.ac.at/engage/ui/watch.html?id=e17b2300-6f83-11e5-836f-4becdc2939a0
last changed 2022/06/07 07:59

_id ecaade2015_129
id ecaade2015_129
authors Mostafavi, Sina; Bier, Henriette, Bodea, Serban and Anton, AnaMaria
year 2015
title Informed Design to Robotic Production Systems - Developing Robotic 3D Printing System for Informed Material Deposition
doi https://doi.org/10.52842/conf.ecaade.2015.2.287
source Martens, B, Wurzer, G, Grasl T, Lorenz, WE and Schaffranek, R (eds.), Real Time - Proceedings of the 33rd eCAADe Conference - Volume 2, Vienna University of Technology, Vienna, Austria, 16-18 September 2015, pp. 287-296
summary This paper discusses the development of an informed Design-to-Robotic-Production (D2RP) system for additive manufacturing to achieve performative porosity in architecture at various scales. An extended series of experiments on materiality, fabrication and robotics were designed and carried out resulting in the production of a one-to-one scale prototype. In this context, design materiality has been approached from both digital and physical perspectives. At digital materiality level, a customized computational design framework is implemented for form finding of compression only structures combined with a material distribution optimization method. Moreover, the chained connection between parametric design model and robotic production setup has led to a systematic study of certain aspects of physicality that cannot be fully simulated in the digital medium, which then establish a feedback loop for underrating material behaviors and properties. As a result, the D2RP system proposes an alternative method of robotic material deposition to create an informed material architecture.
wos WOS:000372316000034
series eCAADe
email
more https://mh-engage.ltcc.tuwien.ac.at/engage/ui/watch.html?id=9b8d34a6-6fe6-11e5-be92-57ca3f902ce9
last changed 2022/06/07 07:58

_id sigradi2015_3.268
id sigradi2015_3.268
authors Naboni, Roberto; Mirante, Lorenzo
year 2015
title Metamaterial computation and fabrication of auxetic patterns for architecture
source SIGRADI 2015 [Proceedings of the 19th Conference of the Iberoamerican Society of Digital Graphics - vol. 1 - ISBN: 978-85-8039-135-0] Florianópolis, SC, Brasil 23-27 November 2015, pp. 129-136.
summary The paper investigates the potential of auxetics in architectural applications by means of computational design and additive manufacturing. This class of metamaterials expresses interesting behaviour related to the unusual characteristics of a negative Poisson’s ratio. Different patterns have been studied through a design workflow based on parametric software and the use of Particle Spring systems to support the form-finding process of bending-active auxetic structures. An advanced understanding of their bending capacity is explored with the use of variable infill patterns informed by structural analysis. Furthermore, principles for the design and fabrication of auxetic gridshells are discussed.
keywords Auxetics, Computational Design, Form-Finding, Synclastic Shell, 3D-printing
series SIGRADI
email
last changed 2016/03/10 09:55

_id ecaade2015_161
id ecaade2015_161
authors Papasarantou, Chrissa; Kalaouzis, Giorgos, Pentazou, Ioulia and Bourdakis, Vassilis
year 2015
title A Spatio-Temporal 3D Representation of a Historic Dataset
doi https://doi.org/10.52842/conf.ecaade.2015.1.701
source Martens, B, Wurzer, G, Grasl T, Lorenz, WE and Schaffranek, R (eds.), Real Time - Proceedings of the 33rd eCAADe Conference - Volume 1, Vienna University of Technology, Vienna, Austria, 16-18 September 2015, pp. 701-708
summary Previous research (Bourdakis et al, 2012; Papasarantou et al, 2013) dealt with the problem of creating information visualisation systems capable of combining historical data of MUCIV's database and developing strategies that embed the non-spatial data in spatial models. The database was primarily designed as an experimental flexible spatio-temporal configuration of dynamic visual structures generating a variety of narrations through interaction.The attempt of producing a legible configuration driven by a number of criteria, led to the proposition of two different arrangements, namely the linear and radial array. The aim of this paper is to present the next step on the visualization after redefining both the way that thematic axes and data are visualized and arranged/scattered. Alternate configurations are investigated, based also on theoretical analysis on the conceptualization and perception of information visualization systems (Card et al 1999, Ware, 2004).
wos WOS:000372317300076
series eCAADe
email
more https://mh-engage.ltcc.tuwien.ac.at/engage/ui/watch.html?id=74178dba-702a-11e5-aa5b-67bfe1e6502f
last changed 2022/06/07 08:00

_id ijac202321410
id ijac202321410
authors Rihani, Nemeh
year 2023
title Interactive immersive experience: Digital technologies for reconstruction and experiencing temple of Bel using crowdsourced images and 3D photogrammetric processes
source International Journal of Architectural Computing 2023, Vol. 21 - no. 4, 730-756
summary This paper investigates the potential of dense multi-image 3D photogrammetric reconstruction of destroyed cultural heritage monuments by employing public domain imagery for heritage site visitors. This work focuses on the digital reconstruction of the Temple of Bel, one of the heritage monuments in Palmyra, Syria, which was demolished in the summer of 2015 due to armed conflict. This temple is believed to be one of the most significant religious structures of the first century AD in the Middle East and North Africa (MENA) region with its unique design and condition before destruction actions. The process is carried out using solely one source of images; the freely available visitors’ images collected from the social media platforms and web search engines. This paper presents a digital 3D reconstruction workflow for the collected images using an advanced photogrammetry pipeline and dense image matching software. The virtually reconstructed outputs will be managed and implemented efficiently in Unity3D to create an entire 3D virtual interactive environment for the deconstructed temple to be visualised and experienced using the new Oculus Quest VR headset. The virtual Palmyra’s visitor will be offered an enhanced walk-through off-site interactive, immersive experience compared to the real-world one, which is non-existing and unobtainable at the site in the current time.
keywords Cultural heritage, crowdsourced images, 3D photogrammetric reconstruction, digital heritage, virtual heritage, immersive technologies, Palmyra
series journal
last changed 2024/04/17 14:30

_id sigradi2015_3.345
id sigradi2015_3.345
authors Sousa, José Pedro; Xavier, Jo?o Pedro
year 2015
title Robotic Fabrication in Architectural Education: An Experience on the Design and Construction of Brick Structures
source SIGRADI 2015 [Proceedings of the 19th Conference of the Iberoamerican Society of Digital Graphics - vol. 1 - ISBN: 978-85-8039-135-0] Florianópolis, SC, Brasil 23-27 November 2015, pp. 143-147.
summary In the last decade, architectural researchers have demonstrated the potential of using robots to design and construct in novel ways. However, the integration of such practices in architectural education has been difficult and the examples are rare. By analyzing this context, this paper describes a teaching experience at FAUP where robotic technologies were introduced to the Master students for the first time. The assignment consisted in the production of a brick structure and ended up with the construction of a 1:1 scale installation. With this experience, this paper wants to contribute for the dissemination of robotic technologies in architectural curriculums.
keywords Architectural Education, Digital Fabrication, Robotics, 3D Printing, Brick Construction
series SIGRADI
email
last changed 2016/03/10 10:00

_id sigradi2015_8.163
id sigradi2015_8.163
authors Tramontano, Marcelo; Junior, Anibal Pereira
year 2015
title A new meaning to the physical model: 3D printing and architectural design teaching
source SIGRADI 2015 [Proceedings of the 19th Conference of the Iberoamerican Society of Digital Graphics - vol. 1 - ISBN: 978-85-8039-135-0] Florianópolis, SC, Brasil 23-27 November 2015, pp. 350-354.
summary This article aims to produce reflections on two main aspects of the use of so-called 3D printing to produce physical models in architectural design processes: 1. preparation of files, preparation of students; 2. printed physical models as part of the design process. In addition to brief literature review of the key concepts involved, the article relies on results of research conducted by Nomads.usp Center of Interactive Living Studies (www.nomads.usp.br), and activities with students of the mandatory undergraduate course “Project 3: architecture, city, landscape,” both of the Institute of Architecture and Urbanism, University of Sao Paulo, IAU-USP (www.iau.usp.br), Brazil.
keywords 3D Printing, Digital Fabrication, Architectural Design Teaching, Physical Models
series SIGRADI
email
last changed 2016/03/10 10:01

_id caadria2015_013
id caadria2015_013
authors Wu, Chengde and Mark J. Clayton
year 2015
title Visualizing Climate Data as a 3D Climate Torus
doi https://doi.org/10.52842/conf.caadria.2015.273
source Emerging Experience in Past, Present and Future of Digital Architecture, Proceedings of the 20th International Conference of the Association for Computer-Aided Architectural Design Research in Asia (CAADRIA 2015) / Daegu 20-22 May 2015, pp. 273-281
summary In this research, a system is developed to visualize climate data as a 3D geometry, a climate torus. The system extracts time, dry bulb temperature, relative humidity, and wind speed information. Four points are created on a psychrometric chart using maximum temperature, minimum temperature, maximum humidity, and minimum humidity of a day. A closed curve passing these four points is drawn as a profile curve. 365 profile curves are generated for each day of the year. These curves are rotated along the vertical axis of the psychrometric chart, each at the incremental angle of 365/360, so that these curves rotate full 360 degrees to represent one year period. The system then generates a climate torus by lofting all the curves. Wind speed information is coded on the climate torus as holes. The diameter of the holes denotes wind speed. The climate torus is 3D printed after giving a minimum thickness to the surface. This process was assigned to sophomore architecture students. They showed great interest and gained better understanding of climate responsive design through the task. The climate torus has the future potential of coding more climate elements into it, e.g. solar radiation as colour, precipitation as texture, etc.
keywords Climate data visualization; Climate torus; 3D printing
series CAADRIA
email
last changed 2022/06/07 07:57

_id caadria2015_078
id caadria2015_078
authors Yanagawa, Kane
year 2015
title Confluence of Parametric Design and Digital Fabrication Restructuring Manufacturing Industries
doi https://doi.org/10.52842/conf.caadria.2015.013
source Emerging Experience in Past, Present and Future of Digital Architecture, Proceedings of the 20th International Conference of the Association for Computer-Aided Architectural Design Research in Asia (CAADRIA 2015) / Daegu 20-22 May 2015, pp. 13-22
summary The positive consumer reception of 3D printed products suggests that the coupling of digital fabrication technology and parametric design methodologies presents opportunities and challenges to traditional modes of industrial manufacturing. This paper outlines the manner in which parametrically defined constraints of components within design hysteresis can be implemented to maintain conformation to real world constraints. The study challenged ten architectural designers to develop parametric definitions using conventional CAD software and visual programming languages to describe the geometric logic of a simple pendant lamp while permitting some consumer defined shape parameters. The assessment of submitted design descriptions suggests that defining such a system parametrically for manufacturing requires the development of an approach that is capable of not only intelligently managing interdisciplinary dependencies but also evaluating performance factors within implicit design space. During the next phase of this research, focus will be on the application of the proposed constrained design hysteresis methodology in collaboration with a major manufacturing industry partner to further develop and explore its potential in real world implementation. If proven effective, it can be expected that adoption of the combination of parametric design tools and digital fabrication among major manufacturing industries will be pervasive in the coming years.
keywords Parametric design; digital fabrication; collaborative design; mass-customization; constrained design hysteresis
series CAADRIA
email
last changed 2022/06/07 07:57

_id acadia15_263
id acadia15_263
authors Ahlquist, Sean
year 2015
title Social Sensory Architectures: Articulating Textile Hybrid Structures for Multi-Sensory Responsiveness and Collaborative Play
doi https://doi.org/10.52842/conf.acadia.2015.263
source ACADIA 2105: Computational Ecologies: Design in the Anthropocene [Proceedings of the 35th Annual Conference of the Association for Computer Aided Design in Architecture (ACADIA) ISBN 978-0-692-53726-8] Cincinnati 19-25 October, 2015), pp. 263-273
summary This paper describes the development of the StretchPLAY prototype as a part of the Social Sensory Surfaces research project, focusing on the design of tactile and responsive environments for children with Autism Spectrum Disorder (ASD). The project is directed specifically at issues with sensory processing, the inability of the nervous system to filter sensory input in order to indicate an appropriate response. This can be referred to as a “traffic jam” of sensory data where the intensity of such unfiltered information leads to an over-intensified sensory experience, and ultimately a dis-regulated state. To create a sensory regulating environments, a tactile structure is developed integrating physical, visual and auditory feedback. The structure is defined as a textile hybrid system integrating a seamless knitted textile to form a continuous topologically complex surface. Advancements in the fabrication of the boundary structure, of glass-fiber reinforced rods, enable the form to be more robustly structured than previous examples of textile hybrid or tent-like structures. The tensioned textile is activated as a tangible interface where sensing of touch and pressure on the surface triggers ranges of visual and auditory response. A specific child, a five-year old girl with ASD, is studied in order to tailor the technologies as a response to her sensory challenges. This project is a collaboration with students, researchers and faculty in the fields of architecture, computer science, information (human-computer interaction), music and civil engineering, along with practitioners in the field of ASD-based therapies.
keywords Textile Hybrid, Knitting, Sensory Environment, Tangible Interface, Responsive systems and environments
series ACADIA
type normal paper
email
last changed 2022/06/07 07:54

For more results click below:

this is page 0show page 1show page 2show page 3show page 4show page 5... show page 7HOMELOGIN (you are user _anon_456396 from group guest) CUMINCAD Papers Powered by SciX Open Publishing Services 1.002