CumInCAD is a Cumulative Index about publications in Computer Aided Architectural Design
supported by the sibling associations ACADIA, CAADRIA, eCAADe, SIGraDi, ASCAAD and CAAD futures

PDF papers
References

Hits 1 to 20 of 585

_id cf2015_380
id cf2015_380
authors Barekati, Ehsan; Clayton, Mark J. and Yan, Wei
year 2015
title A BIM-compatible schema for architectural programming information
source The next city - New technologies and the future of the built environment [16th International Conference CAAD Futures 2015. Sao Paulo, July 8-10, 2015. Electronic Proceedings/ ISBN 978-85-85783-53-2] Sao Paulo, Brazil, July 8-10, 2015, pp. 380.
summary Architectural programming, although a key part of AECFM processes, has not been well integrated into Building Information Modeling (BIM). Having access to architectural programming information throughout the lifecycle of a building can add value to design evaluation, facility management, renovation and extension. There is not currently a comprehensive and standard data model to store architectural programming information. Our research is producing a universal format for an architectural program of requirements (UFPOR) that can connect the architectural programming information to the IFC BIM schema. The result is a data model for architectural programming that is inherently interoperable with BIM standard schema. A graphical user interface facilitates data creation and manipulation. The schema and effectiveness of the bridging fields has been tested by entering the content of three two different architectural programming documents into the UFPOR database.
keywords BIM, Architectural Programming, Data Modelling, Interoperability, IFC.
series CAAD Futures
email
last changed 2015/06/29 07:55

_id ecaade2015_91
id ecaade2015_91
authors Correia, Hugo and Leitão, António
year 2015
title Extending Processing to CAD applications
doi https://doi.org/10.52842/conf.ecaade.2015.1.159
source Martens, B, Wurzer, G, Grasl T, Lorenz, WE and Schaffranek, R (eds.), Real Time - Proceedings of the 33rd eCAADe Conference - Volume 1, Vienna University of Technology, Vienna, Austria, 16-18 September 2015, pp. 159-167
summary The Processing language was created to teach programming to the design, architecture, and electronic arts communities. Despite its success, Processing has limited applicability in the architectural realm, as no CAD (Computer-Aided Design) or BIM (Building Information Modeling) application supports Processing. As a result, architects that have learnt Processing are unable to use the language in the context of modern, script-based, architectural work. This work joins Processing with the world of CAD or BIM applications, creating a solution that allows architects to prototype new designs using Processing and generate results in a CAD or BIM application. To achieve this, we developed an implementation of Processing for the Rosetta programming environment, allowing Processing scripts to generate 2D and 3D models in a variety of CAD or BIM applications, such as AutoCAD, Rhinoceros3D, SketchUp, and Revit.
wos WOS:000372317300017
series eCAADe
email
more https://mh-engage.ltcc.tuwien.ac.at/engage/ui/watch.html?id=1c251750-70c8-11e5-9996-33e39ead7b04
last changed 2022/06/07 07:56

_id sigradi2015_13.316
id sigradi2015_13.316
authors Ariza, Inés; Gazit, Merav
year 2015
title On-site Robotic Assembly of Double-curved Self-supporting Structures
source SIGRADI 2015 [Proceedings of the 19th Conference of the Iberoamerican Society of Digital Graphics - vol. 2 - ISBN: 978-85-8039-133-6] Florianópolis, SC, Brasil 23-27 November 2015, pp. 746-753.
summary Robotic assembly of architectural structures has been an area of research for a few decades. Yet, current methods impose a large number of constraints on the geometry of those structures. In this paper we introduce a method for robotic assembly that enables the construction of double curved self-supporting structures. Latest research challenges have focused on the assembly of sophisticated brick structures and on sensor feedback systems for handling accuracy. We propose an alternative strategy to tackle tolerance handling in complex structures that rely on geometry. The intelligence of the system lies in two main aspects: a subdivision technique that incorporates the robot’s constraints as well as the structural equilibrium of the structure during each step of assembly, in order to omit the use of scaffolding; and a match between geometric information and the robot’s movements in a robot programming environment. As a proof of concept, we fabricated a portion of a full-scale double-curved structure. The structure was assembled without scaffolding by a portable KUKA KR10 on a randomly picked site. This project aims to demonstrate an easy and simple method for robotic assembly that enables the realization of digitally generated complex geometries as concrete complex structures.
keywords Robotic Assembly, Self-supporting Structure, On-site Assembly, Double Curvature, Construction Tolerances
series SIGRADI
email
last changed 2016/03/10 09:47

_id ecaade2015_130
id ecaade2015_130
authors Asl, Mohammad Rahmani; Stoupine, Alexander, Zarrinmehr, Saied and Yan, Wei
year 2015
title Optimo: A BIM-based Multi-Objective Optimization Tool Utilizing Visual Programming for High Performance Building Design
doi https://doi.org/10.52842/conf.ecaade.2015.1.673
source Martens, B, Wurzer, G, Grasl T, Lorenz, WE and Schaffranek, R (eds.), Real Time - Proceedings of the 33rd eCAADe Conference - Volume 1, Vienna University of Technology, Vienna, Austria, 16-18 September 2015, pp. 673-682
summary Within the architecture, engineering, and construction (AEC) industry, the application of multidisciplinary optimization methods has been shown to reach significant improvements in building performance compared to conventional design methods. As a result, the use of multidisciplinary optimization in the process of design is growing and becoming a common method that provides desired performance feedback for decision making. However, there is a lack of BIM-based multidisciplinary optimization tools that use the rich information stored in Building Information Models (BIM) to help designers explore design alternatives across multiple competing design criteria. In this paper we introduce Optimo, an open-source visual programming-based Multi-Objective Optimization (MOO) tool, which is developed to parametrically interact with Autodesk Revit for BIM-based optimization. The paper details the development process of Optimo and also provides the initial validation of its results using optimization test functions. Finally, strengths, limitations, current adoption by academia and industry, and future improvements of Optimo for building performance optimization are discussed.
wos WOS:000372317300073
series eCAADe
email
last changed 2022/06/07 07:54

_id cf2015_005
id cf2015_005
authors Celani, Gabriela; Sperling, David M. and Franco, Juarez M. S. (eds.)
year 2015
title Preface
source The next city - New technologies and the future of the built environment [16th International Conference CAAD Futures 2015. Sao Paulo, July 8-10, 2015. Electronic Proceedings/ ISBN 978-85-85783-53-2] Sao Paulo, Brazil, July 8-10, 2015, pp. 5-13.
summary Since 1985 the Computer-Aided Architectural Design Futures Foundation has fostered high level discussions about the search for excellence in the built environment through the use of new technologies with an exploratory and critical perspective. In 2015, the 16th CAAD Futures Conference was held, for the first time, in South America, in the lively megalopolis of Sao Paulo, Brazil. In order to establish a connection to local issues, the theme of the conference was "The next city". The city of Sao Paulo was torn down and almost completely rebuilt twice, from the mid 1800s to the mid 1900s, evolving from a city built in rammed-earth to a city built in bricks and then from a city built in bricks to a city built in concrete. In the 21st century, with the widespread use of digital technologies both in the design and production of buildings, cities are changing even faster, in terms of layout, materials, shapes, textures, production methods and, above all, in terms of the information that is now embedded in built systems.Among the 200 abstracts received in the first phase, 64 were selected for presentation in the conference and publication in the Electronic Proceedings, either as long or short papers, after 3 tough evaluation stages. Each paper was reviewed by at least three different experts from an international committee of more than 80 highly experienced researchers. The authors come from 23 different countries. Among all papers, 10 come from Latin-American institutions, which have been usually under-represented in CAAD Futures. The 33 highest rated long papers are also being published in a printed book by Springer. For this reason, only their abstracts were included in this Electronic Proceedings, at the end of each chapter.The papers in this book have been organized under the following topics: (1) modeling, analyzing and simulating the city, (2) sustainability and performance of the built environment, (3) automated and parametric design, (4) building information modeling (BIM), (5) fabrication and materiality, and (6) shape studies. The first topic includes papers describing different uses of computation applied to the study of the urban environment. The second one represents one of the most important current issues in the study and design of the built environment. The third topic, automated and parametric design, is an established field of research that is finally becoming more available to practitioners. Fabrication has been a hot topic in CAAD conferences, and is becoming ever more popular. This new way of making design and buildings will soon start affecting the way cities look like. Finally, shape studies are an established and respected field in design computing that is traditionally discussed in CAAD conferences.
series CAAD Futures
email
last changed 2015/06/29 07:55

_id caadria2015_067
id caadria2015_067
authors Choi, Jungsik; Minchan Kim and Inhan Kim
year 2015
title A Methodology of Mapping Interface for Energy Performance Assessment Based on Open BIM
doi https://doi.org/10.52842/conf.caadria.2015.417
source Emerging Experience in Past, Present and Future of Digital Architecture, Proceedings of the 20th International Conference of the Association for Computer-Aided Architectural Design Research in Asia (CAADRIA 2015) / Daegu 20-22 May 2015, pp. 417-426
summary Early design phase energy modelling is used to provide the design team with feedback about the impact of various building configurations. For better energy-conscious and sustainable building design and operation, the construction of BIM data interoperability for energy performance assessment in the early design phase is important. The purpose of this study is to suggest a development of BIM data interoperability for energy performance assessment based on BIM. To archive this, the authors have investigated advantages of BIM-based energy performance assessment through comparison with traditional energy performance assessment; and suggest requirements for development of Open BIM environment such as BIM data creation and BIM data application. In addition, the authors also suggested on BIM data interoperability system and developed mapping interface.
keywords Building Information Modelling (BIM); Energy Performance Assessment (EPA); Data Interoperability; Energy Property; Industry Foundation Classes (IFC).
series CAADRIA
email
last changed 2022/06/07 07:56

_id ecaade2015_118
id ecaade2015_118
authors Ferreira, Bruno and Leitão, António
year 2015
title Generative Design for Building Information Modeling
doi https://doi.org/10.52842/conf.ecaade.2015.1.635
source Martens, B, Wurzer, G, Grasl T, Lorenz, WE and Schaffranek, R (eds.), Real Time - Proceedings of the 33rd eCAADe Conference - Volume 1, Vienna University of Technology, Vienna, Austria, 16-18 September 2015, pp. 635-644
summary Generative Design (GD) is a programming-based approach for Architecture that is becoming increasingly popular amongst architects. However, most Generative Design approaches were thought for traditional Computer Aided Design (CAD) tools and are not adequate for the Building Information Modeling (BIM) paradigm. This paper proposes a solution that extends GD to be used with BIM applications while preserving and taking advantage of its ideas. The solution will be evaluated by developing a connection between Revit, a well-known BIM tool, and Rosetta, a programming environment for GD, and by implementing the necessary programming language features that allows GD to be used in the context of BIM tool.
wos WOS:000372317300069
series eCAADe
email
more https://mh-engage.ltcc.tuwien.ac.at/engage/ui/watch.html?id=cba54e6e-7025-11e5-81ea-00190f04dc4c
last changed 2022/06/07 07:50

_id ecaade2018_243
id ecaade2018_243
authors Gardner, Nicole
year 2018
title Architecture-Human-Machine (re)configurations - Examining computational design in practice
doi https://doi.org/10.52842/conf.ecaade.2018.2.139
source Kepczynska-Walczak, A, Bialkowski, S (eds.), Computing for a better tomorrow - Proceedings of the 36th eCAADe Conference - Volume 2, Lodz University of Technology, Lodz, Poland, 19-21 September 2018, pp. 139-148
summary This paper outlines a research project that explores the participation in, and perception of, advanced technologies in architectural professional practice through a sociotechnical lens and presents empirical research findings from an online survey distributed to employees in five large-scale architectural practices in Sydney, Australia. This argues that while the computational design paradigm might be well accepted, understood, and documented in academic research contexts, the extent and ways that computational design thinking and methods are put-into-practice has to date been less explored. In engineering and construction, technology adoption studies since the mid 1990s have measured information technology (IT) use (Howard et al. 1998; Samuelson and Björk 2013). In architecture, research has also focused on quantifying IT use (Cichocka 2017), as well as the examination of specific practices such as building information modelling (BIM) (Cardoso Llach 2017; Herr and Fischer 2017; Son et al. 2015). With the notable exceptions of Daniel Cardoso Llach (2015; 2017) and Yanni Loukissas (2012), few scholars have explored advanced technologies in architectural practice from a sociotechnical perspective. This paper argues that a sociotechnical lens can net valuable insights into advanced technology engagement to inform pedagogical approaches in architectural education as well as strategies for continuing professional development.
keywords Computational design; Sociotechnical system; Technology adoption
series eCAADe
email
last changed 2022/06/07 07:51

_id ijac201513104
id ijac201513104
authors Holzer, Dominik
year 2015
title BIM and Parametric Design in Academia and Practice: The Changing Context of Knowledge Acquisition and Application in the Digital Age
source International Journal of Architectural Computing vol. 13 - no. 1, 65–82
summary This paper explores the consequences of the use of Building Information Modeling (BIM) and Parametric Design on contemporary architectural practice and associated changes to the roles and responsibilities therein. Knowledge changes associated to new skill-sets of young graduates and their positioning among experienced professionals will be analysed. On one hand the paper will scrutinise how the use of BIM and Parametric design challenges design and delivery of projects, on the other hand the paper will reflect on the extent academic institutions can or should respond to the challenges. What are the opportunities inherent to these changes in practice? How should they influence current academic curricula that include computational design and digital architecture? Based on targeted interviews with recent graduates who entered practice, a number of responses to the challenges and opportunities will be presented by the author for further consideration.
series journal
last changed 2019/05/24 09:55

_id acadia15_381
id acadia15_381
authors Jabi, Wassim
year 2015
title The Potential of Non-Manifold Topology in the Early Design Stages
doi https://doi.org/10.52842/conf.acadia.2015.381
source ACADIA 2105: Computational Ecologies: Design in the Anthropocene [Proceedings of the 35th Annual Conference of the Association for Computer Aided Design in Architecture (ACADIA) ISBN 978-0-692-53726-8] Cincinnati 19-25 October, 2015), pp. 381-493
summary The importance of decisions made during the early design stages has prompted researchers to advocate the use of building performance simulation (BPS) during that stage. This paper investigates non-manifold topology (NTM) as a novel approach to 3D modelling that has the potential to be highly compatible with the early design stages and with the input requirements for BPS. The proposed approach avoids the process of simplifying polyhedral models produced by Building Information Modelling (BIM) software to conduct BPS. In particular, NTM allows for a clear segmentation of a building, unambiguous space boundaries, and perfectly matched surfaces and glazing subsurfaces. The NTM approach was tested through a software prototype that integrates 3D modelling software and an energy simulation engine.
keywords Early design stage, Non-manifold topology, Building performance simulation
series ACADIA
type normal paper
email
last changed 2022/06/07 07:50

_id caadria2015_157
id caadria2015_157
authors Janssen, Patrick
year 2015
title Parametric BIM Workflows
doi https://doi.org/10.52842/conf.caadria.2015.437
source Emerging Experience in Past, Present and Future of Digital Architecture, Proceedings of the 20th International Conference of the Association for Computer-Aided Architectural Design Research in Asia (CAADRIA 2015) / Daegu 20-22 May 2015, pp. 437-446
summary Building Information Modelling systems enable the creation of associative parametric models that include sets of interlinked parametric objects. Graph-based modelling systems on the other hand enable the creation of parametric models with more complex iterative behaviours. Parametric BIM workflows aim to link graph-based systems to BIM systems. A key requirement of such workflows is the ability to generate associative BIM models. However, current approaches to creating such workflows are complicated by the fact that the process of cooking is only able to generate explicit geometry. An alternative approach is proposed in which the cooking process is able to generate associative models, thereby enabling more user friendly and streamlined BIM workflows to be created.
keywords Building Information Modelling, Parametric modelling, BIM workflows
series CAADRIA
email
last changed 2022/06/07 07:52

_id caadria2015_179
id caadria2015_179
authors Kim, Eonyong; Jongtaek Yun and Sanghyun Cho
year 2015
title Integrated Space and Asset Management System for Large Scale Airport
doi https://doi.org/10.52842/conf.caadria.2015.807
source Emerging Experience in Past, Present and Future of Digital Architecture, Proceedings of the 20th International Conference of the Association for Computer-Aided Architectural Design Research in Asia (CAADRIA 2015) / Daegu 20-22 May 2015, pp. 807-816
summary Large-scale airports such as Incheon International Airport have large-scale terminals, annex buildings, and numerous open spaces. An integrated space management system is required to manage these buildings and spaces efficiently. Thus, Incheon International Airport Corporation developed a 3D computer-aided design (CAD)-based integrated space management system. The major system development goal was to provide intuitive 3D-based visual information, thereby realizing an integrated space and asset management system that does not require expert knowledge of any specific field, such as architecture. This paper discusses the construction of the system and the problems that had to be resolved to achieve this goal.
keywords Space and asset management, airport, 3D CAD, BIM
series CAADRIA
email
last changed 2022/06/07 07:52

_id cf2015_347
id cf2015_347
authors Krakhofer, Stefan
year 2015
title Closing the Loop: From Analysis to Transformation within BIM
source The next city - New technologies and the future of the built environment [16th International Conference CAAD Futures 2015. Sao Paulo, July 8-10, 2015. Electronic Proceedings/ ISBN 978-85-85783-53-2] Sao Paulo, Brazil, July 8-10, 2015, pp. 347-357.
summary The shift from traditional CAD to BIM has created a significant potential to embed optimization processes in many stages of the design. The presented research is situated in the early design stage of inception and concept, focusing on analysis-driven-form-finding during the integrated design approach within a BIM environment. A custom analysis framework, has been developed and linked to a visual programming environment that allows the exchange of data with the parametric components of a BIM environment. The developed workflow and sequential split of functionalities enables a shared design environment for multiple experts and the design-team. The environment is intended to close the loop from analysis to parametric modeling in order to generate and evaluate building designs against performance criteria, with the aim to expedite the design decision process. The prototype has been presented to participants of the Deep-Space Cluster at SmartGeometry 2014.
keywords Algorithmic Design, Parametric Design, Parametric Analysis, Building Information Modeling, Design Automation.
series CAAD Futures
email
last changed 2015/06/29 07:55

_id caadria2015_065
id caadria2015_065
authors Matsubayashi, Michio; and Shun Watanabe
year 2015
title Generating Schematic Diagrams of MEP Systems from 3D Building Information Models for Use in Conservation
doi https://doi.org/10.52842/conf.caadria.2015.293
source Emerging Experience in Past, Present and Future of Digital Architecture, Proceedings of the 20th International Conference of the Association for Computer-Aided Architectural Design Research in Asia (CAADRIA 2015) / Daegu 20-22 May 2015, pp. 293-302
summary In this paper, we propose a method of generating schematic diagrams from 3D models of mechanical, electrical and plumbing (MEP) systems in order to represent this information in a more traditional, user-friendly format. It can be difficult to grasp the relationships between various MEP elements in building information models (BIM) because they are represented in a visually complex, three-dimensional manner. On the other hand, the relationships between building elements can be easily understood when using traditional schematic diagrams. First, sets of connected elements are extracted from a 3D model of MEP elements using their connection properties. Next, various elements of these systems are identified as nodes and their connections are represented as edges. Finally, these systems are displayed as a schematic diagram using element attribute information.
keywords BIM; Schematic Diagram; Attribute Information; Graph; Existing Buildings.
series CAADRIA
email
last changed 2022/06/07 07:58

_id caadria2015_164
id caadria2015_164
authors Mcginley, Tim and Darren Fong
year 2015
title Designghosts
doi https://doi.org/10.52842/conf.caadria.2015.365
source Emerging Experience in Past, Present and Future of Digital Architecture, Proceedings of the 20th International Conference of the Association for Computer-Aided Architectural Design Research in Asia (CAADRIA 2015) / Daegu 20-22 May 2015, pp. 365-374
summary For architects, a database of typological specific occupant behaviour patterns could help in the design of buildings, through a typological specific insight into the previous use of buildings. In addition, appropriately represented occupant behaviour data in commercial buildings represent an important factor for facilities management (FM) and business information (BI) teams in the assessment the operational performance of the enterprise. Building Information Models (BIM) could provide an appropriate reference for this user data. However the mapping of user behaviour data to the BIM models is unclear. This paper presents a ‘designGhost’ information system to support the mapping of occupant behaviour to BIM models, so that the user data can be represented to the different stakeholders. To test the information system a prototype tool is presented to enable the mapping of the building use (designGhost) data to the building’s spaces in order to support architects in the design stage and to support navigation from an operational (FM/BI) perspective. This paper addressees the challenges of developing such a system and proposes directions for future work.
keywords Post occupancy evaluation; BIM; visibility graph analysis; designGhost; occupant behaviour; design science; building design and operation.
series CAADRIA
email
last changed 2022/06/07 07:58

_id caadria2015_012
id caadria2015_012
authors Nakama, Yuki; Yasunobu Onishi and Kazuhisa Iki
year 2015
title Development of Building Information Management System Using BIM toward Strategic Building Operation and Maintenance
doi https://doi.org/10.52842/conf.caadria.2015.397
source Emerging Experience in Past, Present and Future of Digital Architecture, Proceedings of the 20th International Conference of the Association for Computer-Aided Architectural Design Research in Asia (CAADRIA 2015) / Daegu 20-22 May 2015, pp. 397-406
summary Facility management is aimed at energy saving, increasing the lifespan of buildings, enhancing the satisfaction of facility users and reducing running costs. To that end, it is important to grasp the conditions of the building in detail, and to analyze them one by one in order to execute building operation and maintenance strategically. However, conventional CAFM is insufficient. Therefore, we developed a system (called Building Information Management System) to utilize BIM data made in BIM-CAD on a Web site. We used groupware to support the system and an information platform that enables flexible management of a great variety of maintenance information. In addition, we developed an environmental measurement module and built a structure to sensor information automatically by using a development system. For quality maintenance, detailed information of building operation and maintenance is both from human input and sensors. The proposed method analysis of a building and provides the foundation for strategic control of maintenance.
keywords BIM, FM, Groupware, Web application, Sensor
series CAADRIA
email
last changed 2022/06/07 07:59

_id ecaade2015_73
id ecaade2015_73
authors Patlakas, Panagiotis; Livingstone, Andrew and Hairstans, Robert
year 2015
title A BIM Platform for Offsite Timber Construction
doi https://doi.org/10.52842/conf.ecaade.2015.1.597
source Martens, B, Wurzer, G, Grasl T, Lorenz, WE and Schaffranek, R (eds.), Real Time - Proceedings of the 33rd eCAADe Conference - Volume 1, Vienna University of Technology, Vienna, Austria, 16-18 September 2015, pp. 597-604
summary This paper discusses the potential of a BIM platform for offsite timber construction within the context of the UK construction industry. It examines the benefits, limitations, and challenges that BIM brings for offsite timber. Proof-of-concept projects are presented that deal with the architectural technology, structural engineering, and life cycle analysis aspects. These demonstrate the feasibility of the development of an open BIM platform which would establish a common standard for the industry. The paper concludes by suggesting an alternative business model for offsite timber construction, as enabled by Building Information Modelling.
wos WOS:000372317300064
series eCAADe
email
more https://mh-engage.ltcc.tuwien.ac.at/engage/ui/watch.html?id=7ea6b1fa-7022-11e5-ae05-00190f04dc4c
last changed 2022/06/07 07:59

_id caadria2015_119
id caadria2015_119
authors Ryu, Jungrim and Seungyeon Choo
year 2015
title A Development Direction of a New Archi-Urban Integration Model for Utilizing Spatial Information
doi https://doi.org/10.52842/conf.caadria.2015.795
source Emerging Experience in Past, Present and Future of Digital Architecture, Proceedings of the 20th International Conference of the Association for Computer-Aided Architectural Design Research in Asia (CAADRIA 2015) / Daegu 20-22 May 2015, pp. 795-805
summary For efficient interoperability of information between IFC (a standard open BIM model) and CityGML(a standard model in GIS), the information system is comparatively analysed through IFC, CityGML and LandXML. A direction for developing object-oriented AUIM (Archi-Urban Integration Model) for analysis and maintenance of spatial information is proposed. In this study, LOD for AUIM-based interior spatial information is presented. At the same time, strategies for BIM-GIS convergence are sought.
keywords Spatial Information, Interoperability, Spatial Data Model Standards, BIM/GIS, Info-Convergence.
series CAADRIA
email
last changed 2022/06/07 07:56

_id ecaade2015_ws-bimdsl
id ecaade2015_ws-bimdsl
authors Tauscher, Helga; Raimar J. Scherer
year 2015
title Workshop: Developing Building Information Model Visualizations Using a Domain Specific Language
doi https://doi.org/10.52842/conf.ecaade.2015.2.021
source Martens, B, Wurzer, G, Grasl T, Lorenz, WE and Schaffranek, R (eds.), Real Time - Proceedings of the 33rd eCAADe Conference - Volume 2, Vienna University of Technology, Vienna, Austria, 16-18 September 2015, pp. 21-24
summary The rise of digital building models has devalued the broad domain of architectural visualization, a former core topic of the domain. At the same time, digital media has opened up new possibilities for interactive and explorative visual representations. Against this background the workshop advocates to rediscover visualization as a distinct topic in the context of architecture and construction. The workshop introduces a method and a theoretic framework for the creation of visual representations from building information models under involvement of architects and engineers as domain experts, and a prototypical implementation, which serves as a proof of concept and allows for the practical application of the method. The workshop presents the prototype based on selected hands-on examples.
wos WOS:000372316000001
keywords BIM; Visualization; DSL
series eCAADe
last changed 2022/06/07 07:58

_id cf2015_358
id cf2015_358
authors Tonn, Christian and Bringmann, Oliver
year 2015
title Point Clouds to BIM: Methods for Building Parts Fitting in Laser Scan Data
source The next city - New technologies and the future of the built environment [16th International Conference CAAD Futures 2015. Sao Paulo, July 8-10, 2015. Electronic Proceedings/ ISBN 978-85-85783-53-2] Sao Paulo, Brazil, July 8-10, 2015, pp. 358-369.
summary New construction within existing buildings requires documentation of the existing buildings, in a form that one is familiar with from new construction or architectural design. Laser scanning is a powerful tool to survey the built reality. It provides a replica of the existing building in the form of a point cloud. The difficulty is to analyse the resulting amounts of data that has been generated and being able to interpret it as a Building Information Model (BIM). This article proposes a new generic approach for pattern recognition of architectural objects. The procedure is introduced through the use of two examples - polygon fitting, which is important for the generation of new building element classes and wall detection. The second part describes how individual components can be automatically connected to consistent networks. BIM systems walls should be aligned, within predefined limits of accuracy, either perpendicular to or in line with each other.
keywords point cloud, BIM, pattern recognition, components, wall alignment.
series CAAD Futures
email
last changed 2015/06/29 07:55

For more results click below:

this is page 0show page 1show page 2show page 3show page 4show page 5... show page 29HOMELOGIN (you are user _anon_907035 from group guest) CUMINCAD Papers Powered by SciX Open Publishing Services 1.002