CumInCAD is a Cumulative Index about publications in Computer Aided Architectural Design
supported by the sibling associations ACADIA, CAADRIA, eCAADe, SIGraDi, ASCAAD and CAAD futures

PDF papers
References

Hits 1 to 20 of 591

_id sigradi2015_8.289
id sigradi2015_8.289
authors Felippe, Alexandre Reis; Fonseca, Raphaela Walger da; Moraes, Letícia Niero; Pereira, Fernando O. Ruttkay
year 2015
title Parametric modeling for the simulation of daylight and thermo-energetic performance of buildings
source SIGRADI 2015 [Proceedings of the 19th Conference of the Iberoamerican Society of Digital Graphics - vol. 1 - ISBN: 978-85-8039-135-0] Florianópolis, SC, Brasil 23-27 November 2015, pp. 398-404.
summary This study comprises the developing process of a parameterization algorithm in grasshopper forbuilding daylight and energy integrated simulation considering the main daylighting key-variables. DIVA for Grasshopper plugin was used to carry out the simulations in Radiance/Daysim and Energyplus. The algorithm enables several sample simulationswhile improvingprocess agility, providing a graphical output of the models andminimizing the possibility of human errors. Acase study considering three different samples simulation was proposed aiming to test the algorithm. Its resultswere used to evaluatethe sample size required to train an artificial neural network for modeling daylighting harvesting potential.
keywords Parametric Modeling, Daylight, Thermo-energetic, Grasshopper, DIVA
series SIGRADI
email
last changed 2016/03/10 09:51

_id ecaade2015_21
id ecaade2015_21
authors Klemmt, Christoph and Bollinger, Klaus
year 2015
title Cell-Based Venation Systems
source Martens, B, Wurzer, G, Grasl T, Lorenz, WE and Schaffranek, R (eds.), Real Time - Proceedings of the 33rd eCAADe Conference - Volume 2, Vienna University of Technology, Vienna, Austria, 16-18 September 2015, pp. 573-580
doi https://doi.org/10.52842/conf.ecaade.2015.2.573
wos WOS:000372316000064
summary Venation structures in leaves fulfil both circulatory as well as structural functions within the organism they belong to. A possible digital simulation algorithm for the growth of venation patterns based on the leaf surface has been described by the Department of Computer Science at the University of Calgary.Cell-based growth algorithms to generate surface meshes have been developed by biological and medical scientists as well as artists, in order to gain an understanding of developmental biology or to generate artistic form. This paper suggests the combination of the two algorithms in order to generate the morphologies of leaves and other structures while at the same time generating the corresponding venation system.The resulting algorithm develops large non-manifold mesh structures based on local rules of division of the individual cells. The venation system develops in parallel based on the flow of the plant hormone auxin from those cells towards the start point or petiole of the leaf. Different local behaviours of the cells towards their adjacent neighbours, towards their rules of division and towards the rules of developing veins have been investigated. The eventual aim of the algorithms is their application as tools to develop architectural and structural morphologies.
series eCAADe
email
more https://mh-engage.ltcc.tuwien.ac.at/engage/ui/watch.html?id=29c4389a-6e8f-11e5-8666-279b88fbd56c
last changed 2022/06/07 07:52

_id cf2015_240
id cf2015_240
authors Aksoy, Yazgi Badem; Çagdas, Gülen and Balaban, Özgün
year 2015
title A model for sustainable site layout design of social housing with Pareto Genetic Algorithm: SSPM
source The next city - New technologies and the future of the built environment [16th International Conference CAAD Futures 2015. Sao Paulo, July 8-10, 2015. Electronic Proceedings/ ISBN 978-85-85783-53-2] Sao Paulo, Brazil, July 8-10, 2015, pp. 240.
summary Nowadays as the aim to reduce the environmental impact of buildings becomes more apparent, a new architectural design approach is gaining momentum called sustainable architectural design. Sustainable architectural design process includes some regulations itself, which requires calculations, comparisons and consists of several possible conflicting objectives that need to be considered together. A successful green building design can be performed by the creation of alternative designs generated according to all the sustainability parameters and local regulations in conceptual design stage. As there are conflicting criteria's according to LEED and BREAM sustainable site parameters, local regulations and local climate conditions, an efficient decision support system can be developed by the help of Pareto based non-dominated genetic algorithm (NSGA-II) which is used for several possibly conflicting objectives that need to be considered together. In this paper, a model which aims to produce site layout alternatives according to sustainability criteria for cooperative apartment house complexes, will be mentioned.
keywords Sustainable Site Layout Design, Multi Objective Genetic Algorithm, LEED-BREEAM.
series CAAD Futures
type normal paper
email
last changed 2015/06/29 09:30

_id sigradi2015_7.184
id sigradi2015_7.184
authors Barber, Gabriela; Lafluf, Marcos
year 2015
title New Media Art; an approach to videomapping
source SIGRADI 2015 [Proceedings of the 19th Conference of the Iberoamerican Society of Digital Graphics - vol. 1 - ISBN: 978-85-8039-135-0] Florianópolis, SC, Brasil 23-27 November 2015, pp. 283-291.
summary This approach to the videomapping technique and theory rises from the experience in the Vidialab environment. Aiming to generate a quality input in the knowledge of this technical and artistic practice that is closely linked to advanced digitalization and digital design, we have limited this study to the local state of the art of it in order to get quality results. The contribution to the unavoidable debate of a practice that involves technology, art, design, architecture and communication is our foremost objective.
series SIGRADI
email
last changed 2016/03/10 09:47

_id caadria2015_237
id caadria2015_237
authors Bazalo, Frano. and Tane J. Moleta
year 2015
title Responsive Algorithms
source Emerging Experience in Past, Present and Future of Digital Architecture, Proceedings of the 20th International Conference of the Association for Computer-Aided Architectural Design Research in Asia (CAADRIA 2015) / Daegu 20-22 May 2015, pp. 209-218
doi https://doi.org/10.52842/conf.caadria.2015.209
summary An algorithm is a process of addressing a problem in a finite number of steps. In the context of architectural design, algorithmic thinking means taking on an interpretive role to understand the results in relation to design criteria, knowing how to modify the code to explore new options, and speculating on further design potentials. The application of algorithms within architecture often addresses the developed design stages, primarily to optimise structure, test environmental performance or to resolve complex construction. This research aims to explore algorithmic tools with a focus on early stage design. This design stage is often developed using traditional processes and is where algorithmic applications have been less successfully executed. The objectives are to algorithmically explore the areas of space planning, programme layout, form finding and form optimisation within early stage architectural design. Through the combination of a range of diverse algorithms, this research has an ultimate aim of integrating a computational workflow into practice at the early design stage.
keywords Computational design, Early stage design
series CAADRIA
email
last changed 2022/06/07 07:54

_id cf2015_268
id cf2015_268
authors Benedetto, Henrique; Kipper, Fabrício A.;Marques, Vinícius and Bruscato, Underléa M.
year 2015
title Development of Parklets by using parametric modeling
source The next city - New technologies and the future of the built environment [16th International Conference CAAD Futures 2015. Sao Paulo, July 8-10, 2015. Electronic Proceedings/ ISBN 978-85-85783-53-2] Sao Paulo, Brazil, July 8-10, 2015, pp. 268-278.
summary The lack of urban planning has made the recreation areas increasingly smaller in the cities. Parks and squares gradually gave way to streets and avenues to try to accommodate the growing number of cars and motorcycles. An alternative that tries to balance recreation areas and urban roads was found in the city of San Francisco (USA). Parklets are temporary extensions of urban sidewalks that occupy a few parking spaces. This article aims to demonstrate the potential of parametric modeling in the development of parklets. Thus, anthropometric studies, amount of parking spaces and types of benches were used as input parameters. Rhinoceros and grasshopper programs were used for modeling, while 3D Studio Max was used for rendering. With this study it was possible to verify that when the project is parameterized the processes of creation and modification became faster, reducing design and implementation time.
keywords Grasshopper algorithm editor, Parametric model, Parklets.
series CAAD Futures
email
last changed 2015/06/29 07:55

_id cf2015_326
id cf2015_326
authors Borges, Marina and Fakury, Ricardo H.
year 2015
title Structural design based on performance applied to development of a lattice wind tower
source The next city - New technologies and the future of the built environment [16th International Conference CAAD Futures 2015. Sao Paulo, July 8-10, 2015. Electronic Proceedings/ ISBN 978-85-85783-53-2] Sao Paulo, Brazil, July 8-10, 2015, pp. 326.
summary This paper studies the process of parametric and algorithmic design, integrating structural analysis and design for the generation of complex geometric structures. This methodology is based on the Performative Model, where the shape is generated using performance criteria. In the approach, the development of complex structures is only possible by reversing the process of thinking to generate the form with established parameters for geometry, material and loading aspects. Thus, the structural engineer no longer only participates in the evaluation phase but also appears in the early stages, creating a process of exploration and production of common knowledge among architects and engineers. To research performance-based design, the development of a conceptual lattice for a wind tower is proposed. Thus, a system is made to generate geometries using Rhinoceros software, the Grasshopper plugin, and the VB programming language, integrated with stress analysis through the Scan & Solve plugin.
keywords Structural Design, Parametric and Algorithm Architecture, Structural Analysis, Performative Model, Lattice Wind Tower.
series CAAD Futures
email
last changed 2015/06/29 07:55

_id cf2015_483
id cf2015_483
authors Caetano, Inês; Santos, Luís and Leitão, António
year 2015
title From idea to shape, from algorithm to design: A framework for the generation of contemporary façades
source The next city - New technologies and the future of the built environment [16th International Conference CAAD Futures 2015. Sao Paulo, July 8-10, 2015. Electronic Proceedings/ ISBN 978-85-85783-53-2] Sao Paulo, Brazil, July 8-10, 2015, pp. 483.
summary Nowadays, there is a growing interest in buildings' envelops presenting complex geometries and patterns. This interest is related with the use of new design tools, such as Generative Design, which promotes a greater design exploration. In this paper we discuss and illustrate a structured and systematic computational framework for the generation of facade designs. This framework includes (1) a classification of facades into different categories that we consider computationally relevant, and (2) an identification and implementation of a set of algorithms and strategies that address the needs of the different designs.
keywords generative design, facades, algorithms.
series CAAD Futures
email
last changed 2015/06/29 07:55

_id sigradi2015_11.166
id sigradi2015_11.166
authors Calixto, Victor; Celani, Gabriela
year 2015
title A literature review for space planning optimization using an evolutionary algorithm approach: 1992-2014
source SIGRADI 2015 [Proceedings of the 19th Conference of the Iberoamerican Society of Digital Graphics - vol. 2 - ISBN: 978-85-8039-133-6] Florianópolis, SC, Brasil 23-27 November 2015, pp. 662-671.
summary Space planning in architecture is a field of research in which the process of arranging a set of space elements is the main concern. This paper presents a survey of 31 papers among applications and reviews of space planning method using evolutionary algorithms. The objective of this work was to organize, classify and discuss about twenty-two years of SP based on an evolutionary approach to orient future research in the field.
keywords Space Planning, Evolutionary algorithms, Generative System
series SIGRADI
email
last changed 2016/03/10 09:47

_id sigradi2015_7.146
id sigradi2015_7.146
authors Cargill, Cristián Canto; Pinto, Eduardo Hamuy
year 2015
title EMOVERE Creative Project: Digital Synesthetic Organism
source SIGRADI 2015 [Proceedings of the 19th Conference of the Iberoamerican Society of Digital Graphics - vol. 1 - ISBN: 978-85-8039-135-0] Florianópolis, SC, Brasil 23-27 November 2015, pp. 276-282.
summary EMOVERE, interdisciplinary project that aims at creating innovative interactive performance, brings together dance, sound and image. Bio-data related to emotions, heart and respiratory rate, are mediated by dancers and gives them control over music and video- mapping on stage. A creative process occurs through successive approaches, where technical possibilities are systematically explored until controlled, then body expression is lead by Alba Emoting, building an artistic discourse. Video-mapping is used for lighting purposes, creating a visual atmosphere for dancers. Fusion of media on stage creates synesthetic scenery where physical and digital aspects combine and interact in a codependent relationship.
keywords Performance Interactiva, Escenografía, Danza, Video Mapping, Bio-Dat
series SIGRADI
email
last changed 2016/03/10 09:48

_id ecaade2015_180
id ecaade2015_180
authors Doe, Robert and Aitchison, Mathew
year 2015
title Multi-criteria Optimisation in the Design of Modular Homes - From Theory to Practice
source Martens, B, Wurzer, G, Grasl T, Lorenz, WE and Schaffranek, R (eds.), Real Time - Proceedings of the 33rd eCAADe Conference - Volume 1, Vienna University of Technology, Vienna, Austria, 16-18 September 2015, pp. 295-304
doi https://doi.org/10.52842/conf.ecaade.2015.1.295
wos WOS:000372317300032
summary Multi-criteria optimisation searches by a genetic algorithm define a Pareto optimal front, a state in which one objective can only be improved at the expense of another. But optimisation is not a search for the best but for better - the goal is to improve performance by trading-off conflicting criteria or objectives. A live case study is the focus of this search with parameters behaving as genes and objectives as the environmental shapers of the phenotype. The genetic algorithm is an effective and powerful tool in the computational design tool box, one which can improve the design process and the fitness of its outcomes.
series eCAADe
email
more https://mh-engage.ltcc.tuwien.ac.at/engage/ui/watch.html?id=664d6b1a-702e-11e5-b8a2-47f249933b51
last changed 2022/06/07 07:55

_id ecaade2015_53
id ecaade2015_53
authors Duro-Royo, Jorge; Mogas-Soldevila, Laia and Oxman, Neri
year 2015
title Physical Feedback Workflows in Fabrication Information Modeling (FIM) - Analysis and Discussion of Exemplar Cases across Media, Disciplines and Scales
source Martens, B, Wurzer, G, Grasl T, Lorenz, WE and Schaffranek, R (eds.), Real Time - Proceedings of the 33rd eCAADe Conference - Volume 2, Vienna University of Technology, Vienna, Austria, 16-18 September 2015, pp. 299-307
doi https://doi.org/10.52842/conf.ecaade.2015.2.299
wos WOS:000372316000035
summary Novel digital fabrication platforms enable the design and construction of materially sophisticated structures with high spatial resolution in manufacturing. However, virtual-to-physical workflows and their associated software environments are yet to incorporate such capabilities. Our research sets the stage for seamless physical feedback workflows across media, disciplines and scales. We have coined the term Fabrication Information Modeling (FIM) to describe this approach. As preliminary methods we have developed four computational strategies for the design and digital construction of custom systems. These methods are presented in the context of specific design challenges and include a biologically driven fiber construction algorithm; an anatomically driven shell-to-wearable translation protocol; an environmentally-driven swarm printing system; and a manufacturing-driven hierarchical fabrication platform. We discuss and analyze these four challenges in terms of their capabilities to integrate design across media, disciplines and scales through concepts such as multi-dimensionality, media-informed computation and trans-disciplinary data.
series eCAADe
email
more https://mh-engage.ltcc.tuwien.ac.at/engage/ui/watch.html?id=e41927e2-6fe7-11e5-a181-5b730dc456c4
last changed 2022/06/07 07:55

_id ecaade2015_233
id ecaade2015_233
authors Garcia, Sara and Barros, Mário
year 2015
title A Grammar-Based System for Chair Design - From Generic to Specific Shape Grammars
source Martens, B, Wurzer, G, Grasl T, Lorenz, WE and Schaffranek, R (eds.), Real Time - Proceedings of the 33rd eCAADe Conference - Volume 1, Vienna University of Technology, Vienna, Austria, 16-18 September 2015, pp. 427-436
doi https://doi.org/10.52842/conf.ecaade.2015.1.427
wos WOS:000372317300046
summary A shape grammar-based computational system for chair design is presented. The paper focuses on the development of a methodology for modelling the definition stage of the design process. It is achieved by incorporating a specific grammar into a generic grammar to assist the designer in the convergence activities during the definition stage. Both grammars and their respective implementations were previously developed by different authors. The purpose is to enable the generation of a generic design solution that encompasses characteristics of a specific style, thus permitting subsequent exploration in the development stage.
series eCAADe
email
last changed 2022/06/07 07:50

_id acadia19_234
id acadia19_234
authors Grewal, Neil; Escallon, Miguel; Chaudhary, Abhinav; Hramyka, Alina
year 2019
title INFRASONIC
source ACADIA 19:UBIQUITY AND AUTONOMY [Proceedings of the 39th Annual Conference of the Association for Computer Aided Design in Architecture (ACADIA) ISBN 978-0-578-59179-7] (The University of Texas at Austin School of Architecture, Austin, Texas 21-26 October, 2019) pp. 234-245
doi https://doi.org/10.52842/conf.acadia.2019.234
summary In 2015, an earthquake of 7.8 magnitude displaced over 6.6 million people in Kathmandu, Nepal. Three years later, the country continues in its struggle to rebuild its capital. The aim of this study is to investigate a construction system, produced from locally sourced materials, that can aggregate and deploy as self-built, habitable infrastructure. The study focused on the relationship between material resonance, earthquake resistant structures, and fabrication strategies. An agent-based form-finding algorithm was developed using knowledge acquired through physical prototyping of mycelium-based composites to generate earthquake resistant geometries, optimize material usage, and enhance spatial performance. The results show compelling evidence for a construction methodology to design and construct a 3-4 story building that holds a higher degree of resistance to earthquakes. The scope of work contributes to advancements in bioengineering, confirming easy-to-grow, light-weight mycelium-composites as viable structural materials for construction.
series ACADIA
type normal paper
email
last changed 2022/06/07 07:51

_id ecaade2015_241
id ecaade2015_241
authors Herneoja, Aulikki; Pihlajaniemi, Henrika, Österlund, Toni, Luusua, Anna and Markkanen, Piia
year 2015
title Remarks on Transdisciplinarity as Basis for Conducting Research by Design Teamwork in Real World Context through Two Case Studies of Algorithm Aided Lighting Design
source Martens, B, Wurzer, G, Grasl T, Lorenz, WE and Schaffranek, R (eds.), Real Time - Proceedings of the 33rd eCAADe Conference - Volume 2, Vienna University of Technology, Vienna, Austria, 16-18 September 2015, pp. 61-70
doi https://doi.org/10.52842/conf.ecaade.2015.2.061
wos WOS:000372316000009
summary The definition of Research by Design (RD) as a research methodology is not yet well established. RD takes its position not only as a research method next to the 'traditional' sciences but also in relation to the creative design practice, where transdicsiplinarity is in essential role. Rather than defining architecture being transdisciplinary in itself, we see beneficial to conduct research together with various disciplines concerning the complexity of the life-world. Also in this interdisciplinary research group we are willing to hold on the designerly way of knowledge production. Of our practical experience working in an interdisciplinary research group shared values, research project management together with participation with evaluative aims were the most challenging aspects. At its best, attempt for genuine transcdisciplinarity was beneficial and rewarding, though sometimes challenging. We would like to target the discussion how we architects, as researchers identify in an interdisciplinary research group conducting transdisciplinary research.
series eCAADe
email
more https://mh-engage.ltcc.tuwien.ac.at/engage/ui/watch.html?id=33cc5b92-6e8f-11e5-b6d3-1f476c2fddef
last changed 2022/06/07 07:49

_id ecaade2015_22
id ecaade2015_22
authors Keles, Hacer Yalim
year 2015
title Embedding Parts in Sketches Using a Parallel Evolutionary Approach
source Martens, B, Wurzer, G, Grasl T, Lorenz, WE and Schaffranek, R (eds.), Real Time - Proceedings of the 33rd eCAADe Conference - Volume 1, Vienna University of Technology, Vienna, Austria, 16-18 September 2015, pp. 269-276
doi https://doi.org/10.52842/conf.ecaade.2015.1.269
wos WOS:000372317300029
summary Detection of emergent shapes in sketches requires extensive exploration of the design space. Automating this process with computational methods enables locating various alternatives sequentially or all at once simultaneously via high computational power. This not only helps efficient design space exploration but also provides a systematic way for keeping track of the design process. However, it is a challenge to define a generic computational method which optimizes the design space searches in time and space. The approaches that are based on optimization may suffer from time efficiency and local minima problems. These problems are substantially solved in this work by performing comprehensive parallel searches in the design space with a genetic algorithm. Advantage of this approach is that the local minima problem is reduced significantly without increasing the execution times.
series eCAADe
email
last changed 2022/06/07 07:52

_id ascaad2010_097
id ascaad2010_097
authors Kenzari, Bechir
year 2010
title Generative Design and the Reduction of Presence
source CAAD - Cities - Sustainability [5th International Conference Proceedings of the Arab Society for Computer Aided Architectural Design (ASCAAD 2010 / ISBN 978-1-907349-02-7], Fez (Morocco), 19-21 October 2010, pp. 97-106
summary Digital design/fabrication is slowly emancipating architectural design from its traditional static/representational role and endowing it instead with a new, generative function. In opposition to the classical isomorphism between drawings and buildings, wherein the second stand as translations of the first, the digital design/fabrication scenario does not strictly fall within a semiotic frame as much as within a quasi biological context, reminiscent of the Aristotelian notion of entelechy. For the digital data does not represent the building as much it actively works to become the building itself. Only upon sending a given file to a machine does the building begin to materialize as an empirical reality, And eventually a habitable space as we empirically know it. And until the digital data actualizes itself, the building qua building is no more than one single, potential possibility among many others. This new universe of digital design/fabrication does not only cause buildings to be produced as quick, precise, multiply-generated objects but also reduces their presence as original entities. Like cars and fashion items, built structures will soon be manufactured as routinely-consumed items that would look original only through the subtle mechanisms of flexibility: frequent alteration of prototype design (Style 2010, Style 2015..) and “perpetual profiling” (mine, yours, hers,..). The generic will necessarily take over the circumstantial. But this truth will be veiled since “customized prototypes” will be produced or altered to individual or personal specifications. This implies that certain “myths” have to be generated to speed up consumption, to stimulate excessive use and to lock people into a continuous system which can generate consumption through a vocabulary of interchangeable, layered and repeatable functions. Samples of “next season’s buildings” will be displayed and disseminated to enforce this strategy of stimulating and channeling desire. A degree of manipulation is involved, and the consumer is flattered into believing that his or her own free assessment of and choice between the options on offer will lead him or her to select the product the advertiser is seeking to sell. From the standpoint of the architect as a maker, the rising upsurge of digital design and fabrication could leave us mourning the loss of what has been a personal stomping ground, namely the intensity of the directly lived experiences of design and building. The direct, sensuous contact with drawings, models and materials is now being lost to a (digital) realm whose attributes refer to physical reality only remotely. Unlike (analogue) drawings and buildings, digital manipulations and prototypes do not exercise themselves in a real space, and are not subjected in the most rigorous way to spatial information. They denote in this sense a loss of immediacy and a withering of corporal thought. This flexible production of space and the consequent loss of immediate experience from the part of the designer will be analyzed within a theoretical framework underpinned mainly by the works of Walter Benjamin. Samples of digitally-produced objects will be used to illustrate this argument.
series ASCAAD
email
last changed 2011/03/01 07:36

_id ecaade2015_158
id ecaade2015_158
authors Kim, Do-Young; Jang, DoJin and author), Sung-AhKim
year 2015
title A Symbiotic Interaction of Virtual and Physical Models in Designing Smart Building Envelope
source Martens, B, Wurzer, G, Grasl T, Lorenz, WE and Schaffranek, R (eds.), Real Time - Proceedings of the 33rd eCAADe Conference - Volume 2, Vienna University of Technology, Vienna, Austria, 16-18 September 2015, pp. 633-642
doi https://doi.org/10.52842/conf.ecaade.2015.2.633
wos WOS:000372316000070
summary The building needs to be designed to minimize its environmental footprint and to be sufficiently adaptive to changing indoor and outdoor environmental conditions. The smart building envelope is an interactive system which is adaptive to environmental conditions by transforming its shape and functions. This is a kind of machine, not like a traditional building component, which should be based on integrated engineering design methods in addition to the exploration of formal aesthetics. As artistic genius or technical skill alone cannot not fully support the design of such a novel product, the design needs to be systemized by introducing a product development method such as prototyping in other industries. Prototyping needs to be integrated in school environment, even if it requires fundamental reconfiguration of current computer-based design studios. This paper aims at proposing a teaching methodology for educating the prototyping-based design of smart building envelope system in digital design studio. This methodology allows novice designers to operate interactions between virtual-physical models. And sketches are used to share ideas to other collaborators such as programming, mechanical operations without technical knowledge. The interactions between virtual-physical models and sketches contribute to not only complement virtual models and physical models, but also achieve high-performance of smart building envelope practically.
series eCAADe
email
more https://mh-engage.ltcc.tuwien.ac.at/engage/ui/watch.html?id=215b1984-6e90-11e5-9ee8-00190f04dc4c
last changed 2022/06/07 07:52

_id acadia15_407
id acadia15_407
authors Kim, Dongil; Lee, Seojoo
year 2015
title A Systemized Aggregation with Generative Growth Mechanism in Solar Environment
source ACADIA 2105: Computational Ecologies: Design in the Anthropocene [Proceedings of the 35th Annual Conference of the Association for Computer Aided Design in Architecture (ACADIA) ISBN 978-0-692-53726-8] Cincinnati 19-25 October, 2015), pp. 407-415
doi https://doi.org/10.52842/conf.acadia.2015.407
summary The paper demonstrates a work-in-progress research on an agent-based aggregation model for architectural applications with a system of assembly based on environmental data acted as a driver for a growth mechanism. Even though the generative design and algorithms have been widely employed in the field of art and architecture, such applications tend to stay in morphological explorations. This paper examines an aggregation model based on Diffusion Limited Aggregation system incorporating solar environment analysis for global perspective of aggregation, the geometry research for lattice systems, and morphological principles of unit module in agent scale. The later part of this research paper demonstrates the potential of a design process through the “Constructed Cloud” case study, including site-specific applications and the implementation of the systematized rule set.
keywords Aggregation, Generative Algorithm, Diffusion Limited Aggregation, Responsive Growth Mechanism, Solar Environment, Responsive System / Algorithm, Adaptable Architecture, Data Analysis, Systemized Architecture, Truncated Octahedron, Sun Oriented Aggregation
series ACADIA
type normal paper
email
last changed 2022/06/07 07:52

_id sigradi2015_10.220
id sigradi2015_10.220
authors Leite, Denivaldo Pereira; Martins, Júlia Tenuta
year 2015
title Emerging designing processes: The use of Digital Design and Rapid Prototyping applied in University Extension
source SIGRADI 2015 [Proceedings of the 19th Conference of the Iberoamerican Society of Digital Graphics - vol. 2 - ISBN: 978-85-8039-133-6] Florianópolis, SC, Brasil 23-27 November 2015, pp. 558-563.
summary This paper is about the experience to show the possibilities of the Algorithm Aided Design to a community of students and Professors that actually uses Computed Aided Design, but just for drawings, not for a full digital process. This community is hosted at Belas Artes de S?o Paulo, who in February of 2015, opened up its first Digital Fabrication Laboratory, but people there didn’t have a good idea of what it could be, beyond scale models. It shows that the new theory that supports new digital paradigms in architecture and design was the job acquired for a research group.
keywords Algorithm Aided Design, Education, Digital Fabrication, Catenary Based Geometries, Musgum
series SIGRADI
email
last changed 2016/03/10 09:54

For more results click below:

this is page 0show page 1show page 2show page 3show page 4show page 5... show page 29HOMELOGIN (you are user _anon_106716 from group guest) CUMINCAD Papers Powered by SciX Open Publishing Services 1.002